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Abstract

Boundary value problems for the elliptic sinh-Gordon equation formulated in the half plane are studied
by applying the so-called Fokas method. The method is a significant extension of the inverse scattering
transform, based on the analysis of the Lax pair formulation and the global relation that involves all known
and unknown boundary values. In this paper, we derive the formal representation of the solution in terms
of the solution of the matrix Riemann-Hilbert problem uniquely defined by the spectral functions. We also
present the global relation associated with the elliptic sinh-Gordon equation in the half plane. We in turn
show that given appropriate initial and boundary conditions, the unique solution exists provided that the
boundary values satisfy the global relation. Furthermore, we verify that the linear limit of the solution
coincides with that of the linearized equation known as the modified Helmhotz equation. c©2015 All rights
reserved.
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1. Introduction

A unified method introduced by A. S. Fokas [7, 8] (see also the monograph [12]), which can be considered a
significant extension of the inverse scattering transform, is used for analyzing boundary value problems. This
so-called Fokas method has been extensively applied to solve a large class of boundary value problems; for
example, integrable nonlinear evolution equations such as the nonlinear Schrödinger, the Korteweg-deVries
and the sine-Gordon equations [10] and linear and nonlinear elliptic partial differential equations [9, 19] as
well as difference-differential equations [2, 3]. The rigorous result in the implementation of the Fokas method
is that the solution can be expressed in terms of the solution for a Riemann-Hilbert (RH) problem uniquely
defined by spectral functions that involve initial and boundary values. Importantly, the global relation that
couples known and unknown boundary values plays a crucial role of analyzing the boundary value problems.
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Indeed, the global relation is not only able to allow the existence of the unique solution for the boundary
value problem, but it is also able to to characterize the unknown boundary values that enter in the spectral
functions. For example, for the typical Dirichlet boundary value problem, the Neumann boundary value is
unknown. In this case, it is necessary to characterize the unknown Neumann boundary value.

The implementation of the Fokas method to the boundary value problems has remarkable advantages.
In particular, we note that (i) it is possible to eliminate the unknown boundary values that appear in the
representation for the solution. In general, this can be done by solving nonlinear Volterra integral equations
for the unknown boundary values. However, there is a certain class of boundary conditions (BCs), called
linearizable, which makes it possible to bypass the solution of the nonlinear Volterra integral equation. For
such BCs, one can eliminate the unknown boundary values simply by using algebraic manipulation of the
global relation [10]. Thus, the Fokas method is as effective as the classical inverse scattering transform.
(ii) For evolution equations, the jump matrix of the RH problem defined by the spectral functions has an
explicit (x, t)-dependence of exponential form. Thus, it is possible to study the appropriate asymptotics of
the solution by using the Deift-Zhou method [5] for the long time behavior, or to study the small dispersion
limit by using the Deift-Venakides-Zhou method [6].

It should be noted that the classical inverse scattering transform has been used in most cases of hy-
perbolic evolution equations, with some exceptions. For example, in [4, 18] the inverse scattering trans-
form was applied to solve the initial value problem for the elliptic sinh-Gordon equation in the plane
{(x, y)| −∞ < x <∞,−∞ < y <∞}. Recently, regarding boundary value problems of the nonlinear ellip-
tic type, the Fokas method was applied to solve the elliptic sine-Gordon equation in the half plan (y > 0).
In [14, 19], it has been derived the formal representation of the solution and discussed the existence of the
solution for the elliptic sine-Gordon equation by using the global relation. Hence, of particular interest
appears in the study of the boundary value problem for the elliptic sinh-Gordon equation formulated in the
half plane via the Fokas method.

In this paper we study the initial-boundary problem for the elliptic sinh-Gordon equation posed in the
half plane

qxx + qyy = sinh q, −∞ < x <∞, y > 0. (1.1)

The elliptic sinh-Gordon equation arises in models of interacting charged particles in plasma physics [18].
Besides applications in physics, from a mathematical point of view, this equation is also interesting because
it is completely integrable and is connected to the Toda lattice equations [1]. The purpose of this paper is to
implement the Fokas method to the elliptic sinh-Gordon equation posed in the half plane (1.1). We derive
the global relation based on the spectral analysis of the Lax pair formulation. We then show that given
appropriate initial and boundary conditions, the unique solution for (1.1) exists provided that the boundary
values satisfy this global relation. Moreover, we address the formal representation for the solution in terms
of the solution of the RH problem defined by the spectral functions.

The outline of the paper is following. In section 2, we introduce the relevant notations, formulas and
the regularity assumptions for the initial and boundary data. In section 3, we apply the Fokas method to
solve the elliptic sinh-Gordon equation posed in the half plane. In particular, the existence of the solution
is discussed by analyzing the the matrix RH problem as an inverse problem. In section 4, we verify that the
linear limit of the solution for (1.1) coincides with that of the corresponding linearized equation known as
the modified Helmhotz equation. We end with concluding remarks in section 5.

2. Preliminaries

It was shown in [4, 18] that the elliptic sinh-Gordon equation admits the following Lax pair formulation

ϕx + ω1(k)σ3ϕ = Q(x, y, k)ϕ, (2.1a)

ϕy + ω2(k)σ3ϕ = iQ(x, y,−k)ϕ, (2.1b)
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where k ∈ C is a spectral parameter, ϕ is a 2× 2 matrix-valued eigenfunction and

ω1(k) = − 1

2i

(
k − 1

4k

)
, ω2(k) = −1

2

(
k +

1

4k

)
, (2.2)

Q(x, y, k) =
1

4

(
i
2k (cosh q − 1) −

(
r + sinh q

2k

)
r − sinh q

2k − i
2k (cosh q − 1)

)
(2.3)

with

r(x, y) = iqx(x, y) + qy(x, y), σ3 =

(
1 0
0 −1

)
. (2.4)

The Lax pair given in (2.1) is a slightly different formulation from that considered in [18], but they are
equivalent. Using this Lax pair, we compare the linear limit of the elliptic sinh-Gordon equation to the
solution of the linearized equation known as the modified Helmholtz equation, which will be discussed in
Section 4. It should be remarked that the elliptic sinh-Gordon equation (1.1) is the compatible condition of
the Lax pair (2.1) in the sense that φxy = φyx from (2.1) implies that q solves (1.1) if the spectral parameter
k is independent of x and y.

Note that

Reω1(k) = −1

8
Im k

(
4 +

1

|k|2

)
, Reω2(k) = −1

8
Re k

(
4 +

1

|k|2

)
, (2.5)

which implies
Reω1(k) < 0 for Im k > 0, Reω2(k) < 0 for Re k > 0. (2.6)

Also note that due to the symmetry of Q(x, y, k), the eigenfunction has the same symmetry

ϕ11(x, y, k) = ϕ22(x, y,−k), ϕ21(x, y, k) = −ϕ12(x, y,−k), (2.7)

where the subscripts denote the (i, j)-component of the matrix.
Throughout the paper, we denote the matrix commutator by σ̂A, that is,

σ̂A = [σ3, A] = σ3A−Aσ3, (2.8)

where A is a 2× 2 matrix. This yields the notation

eσ̂3ξA = eσ3ξAe−σ3ξ =

(
a11 e2ξa12

e−2ξa21 a22

)
.

We also denote
q(x, 0) = g0(x), qy(x, 0) = g1(x), (2.9)

where the functions g0 and g1 are assumed to be

g0 + 2mπ ∈ H1(R) for some m ∈ Z, g1 ∈ H1(R). (2.10)

Making use of the integrating factor µ(x, y, k) = ϕ(x, y, k)e(ω1(k)x+ω2(k)y)σ3 , it is convenient to derive the
following modified Lax pair of the form

µx + ω1(k) [σ3, µ] = Q(x, y, k)µ, (2.11a)

µy + ω2(k) [σ3, µ] = iQ(x, y,−k)µ. (2.11b)

3. The elliptic sinh-Gordon equation in the half plane

In this section, we demonstrate the Fokas method to solve the elliptic sinh-Gordon equation in the half
plane.
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Eigenfunctions. In order to analyze the eigenfunctions associated with the Lax pair formulation (2.11), we
introduce a differential 1-form W given by

W (x, t, k) = [Q(x, y, k)dx+ iQ(x, y,−k)dy]µ(x, y, k), (3.1)

and hence, equations (2.11) can be written in the form

d
[
e(ω1(k)x+ω2(k)y)σ̂3µ(x, y, k)

]
= e(ω1(k)x+ω2(k)y)σ̂3W (x, y, k). (3.2)

We now define eigenfunctions that satisfy both parts of the Lax pair (2.11) as

µj(x, y, k) = I +

∫ (x,y)

(xj ,yj)
e−(ω1(k)(x−ξ)+ω2(k)(y−η))σ̂3Wj(ξ, η, k), (3.3)

where (x, y), (xj , yj) ∈ D = {−∞ < x < ∞, 0 < y < ∞}, Wj is the differential form defined in (3.1) with
µj and (xj , yj) is a fixed point in D. If D is the interior of the convex polygon, it has been shown in [12]
that the all vertices of the polygon can be taken for (xj , yj).

We choose three distinct points (xj , yj) in D, j = 1, 2, 3 (see fig. 1),

(x1, y1) = (−∞, y), (x2, y2) = (∞, y), (x3, y3) = (x,∞)

and the corresponding eigenfunctions satisfy the following integral equations:

µ1(x, y, k) = I +

∫ x

−∞
e−ω1(k)(x−ξ)σ̂3 (Qµ1) (ξ, y, k)dξ, (3.4a)

µ2(x, y, k) = I −
∫ ∞
x

e−ω1(k)(x−ξ)σ̂3 (Qµ2) (ξ, y, k)dξ, (3.4b)

µ3(x, y, k) = I − i
∫ ∞
y

e−ω2(k)(y−η)σ̂3 (Q(x, η,−k)µ3(x, η, k)) dη. (3.4c)

Note that the eigenfunctions µj , j = 1, 2, 3, also enjoy the same symmetry as in the form of (2.7). Since the
off-diagonal components of the matrix-valued eigenfunctions µ involve the explicit exponential terms, the
regions of analyticity of the eigenfunctions can be determined:

• [µ1]1 and [µ2]2 are analytic for Im k > 0

• [µ1]2 and [µ2]1 are analytic for Im k < 0

• [µ3]1 is analytic for Re k < 0, while [µ3]2 is analytic for Re k > 0,

where [·]j denotes the j-th column of the matrix. Hereafter, we then write each column of µj as the following
notations:

µ1 =
(
µ+1 , µ

−
1

)
, k ∈

(
C+,C−

)
, µ2 =

(
µ−2 , µ

+
2

)
, k ∈

(
C−,C+

)
, (3.5a)

µ3 =
(
µ−3 , µ

+
3

)
, k ∈ (Re k ≤ 0,Re k ≥ 0) , (3.5b)

where C± denote the upper/lower half plane of the complex k-plane, respectively.

Spectral functions. The matrix eigenfunctions µ1 and µ2 are both fundamental solutions of the Lax pair
(2.11). Hence, they are related by the so-called spectral function S(k):

µ2(x, y, k) = µ1(x, y, k)e−(ω1(k)x+ω2(k)y)σ̂3S(k), k ∈ R, x ∈ R, 0 ≤ y <∞. (3.6)
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Figure 1: The eigenfunctions µ1, µ2 and µ3.

Letting y = 0 and x→ −∞ in (3.6), we find the spectral function given by

S(k) = I −
∫ ∞
−∞

eω1(k)ξσ̂3 (Qµ2) (ξ, 0, k)dξ. (3.7)

From the symmetry of the eigenfunctions µ2, we write the spectral function S(k) in the form

S(k) =

(
a(k) −b(−k)
b(k) a(−k)

)
. (3.8)

We define Φ(x, k) = µ2(x, 0, k). More specifically, the function Φ satisfies

Φ(x, k) = I −
∫ ∞
x

e−ω1(k)(x−ξ)σ̂3(Q0Φ)(ξ, k)dξ, k ∈
(
C−,C+

)
, x ∈ R, (3.9)

where Q0(x, k) = Q(x, 0, k), that is,

Q0(x, k) =
1

4

(
i
2k (cosh q(x, 0)− 1) −

(
r(x, 0) + sinh q(x,0)

2k

)
r(x, 0)− sinh q(x,0)

2k − i
2k (cosh q(x, 0)− 1)

)
. (3.10)

From (3.7), it follows that the spectral function S(k) can be determined by the function Φ

S(k) = lim
x→−∞

[
eω1(k)xσ̂3Φ(x, k)

]
. (3.11)

This justifies that a(k) has an analytic continuation for Im k < 0 and b(k) is defined only for k ∈ R.
Moreover, due to the symmetry of the eigenfunction µ2, Φ can be written as

Φ(x, k) =

(
Φ1(x, k) −Φ2(x,−k)
Φ2(x, k) Φ1(x,−k)

)
. (3.12)

Recalling the domain of analyticity of the eigenfunction µ2, we also denote

Φ =
(
Φ−,Φ+

)
, k ∈

(
C−,C+

)
. (3.13)

Thus, we obtain the integral representations for the spectral functions a(k) and b(k) and we summarize
these representations below.
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Proposition 3.1. Given q(x, 0) = g0(x), the spectral functions {a(k), b(k)} are defined by

a(k) =1− 1

4

∫ ∞
−∞

{
i

2k
(cosh g0(ξ)− 1) Φ1(ξ, k)

−
(
iġ0(ξ) + qy(ξ, 0) +

sinh g0(ξ)

2k

)
Φ2(ξ, k)

}
dξ, Im k < 0, (3.14a)

b(k) =− 1

4

∫ ∞
−∞

e−2ω1(k)ξ

{(
iġ0(ξ) + qy(ξ, 0)− sinh g0(ξ)

2k

)
Φ1(ξ, k)

− i

2k
(cosh g0(ξ)− 1) Φ2(ξ, k)

}
dξ, k ∈ R, (3.14b)

where the functions Φ1 and Φ2 are solutions of the x-part of the Lax pair (2.11a) with y = 0, that is, Φ1

and Φ2 solve the following system of ordinary differential equations:

Φ1x =
1

4

[
i

2k
(cosh g0(x)− 1) Φ1 −

(
iġ0(x) + qy(x, 0) +

sinh g0(x)

2k

)
Φ2

]
, (3.15a)

Φ2x − 2ω1(k)Φ2 =
1

4

[(
iġ0(x) + qy(x, 0)− sinh g0(x)

2k

)
Φ1 −

i

2k
(cosh g0(x)− 1) Φ2

]
(3.15b)

with lim
x→∞

(Φ1,Φ2) = (1, 0).

Global relation. Note that the eigenfunctions µ1 and µ3 solve the same differential equations (2.11) with
the same boundary condition at infinity. Similarly, µ2 and µ3 solve the same differential equations with the
same boundary condition at infinity. Thus, we know

µ−3 (x, y, k) = µ−2 (x, y, k), k ∈ CIII, (3.16a)

µ−3 (x, y, k) = µ+1 (x, y, k), k ∈ CII, (3.16b)

where CII and CIII denote the second and third quadrants of the complex k-plane, respectively. Since
Φ−(x, k) = µ−2 (x, 0, k), we find the following global relation

Φ−(x, k) = µ−3 (x, 0, k), x ∈ R, k ∈ CIII. (3.17)

In particular, letting x → −∞ in (3.17) yields a(k) = 1 for k ∈ CIII and b(k) = 0 for k ≤ 0. From the
analytic continuation, we find the global relation in terms of the spectral functions a(k) and b(k)

a(k) = 1, Im k ≤ 0, b(k) = 0, k ≤ 0. (3.18)

We also obtain an alternative global relation by analyzing eigenfunctions µ1 and µ3. Indeed, let Ψ(x, k) =
µ1(x, 0, k), that is,

Ψ(x, k) = I +

∫ ∞
−∞

e−ω1(k)(x−ξ)σ̂3Q0(ξ, k)Ψ(ξ, k)dξ, x ∈ R, k ∈
(
C+,C−

)
. (3.19)

According to the domain of analyticity, we denote

Ψ =
(
Ψ+,Ψ−

)
, k ∈

(
C+,C−

)
. (3.20)

Then, we also find the following global relation

Ψ+(x, k) = µ−3 (x, 0, k), x ∈ R, k ∈ CII. (3.21)
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Riemann-Hilbert problem. As an inverse problem, we formulate a matrix Riemann-Hilbert (RH) problem.
First, note that from the global relation (3.18), for k ∈ R the spectral function S(k) simply becomes

S(k) =

(
1 −b(−k)
b(k) 1

)
. (3.22)

Recalling equation (3.6), we then formulate the following matrix RH problem

M−(x, y, k) = M+(x, y, k)J(x, y, k), k ∈ R, (3.23)

where the sectionally analytic functions M± are defined by

M+ =
(
µ+2 , µ

+
1

)
, k ∈ C+, M− =

(
µ−1 , µ

−
2

)
, k ∈ C− (3.24)

and the jump matrix is given by

J =

(
1 −b(−k)e−2θ(x,y,k)

b(k)e2θ(x,y,k) 1

)
, (3.25)

where
θ(x, y, k) = ω1(k)x+ ω2(k)y. (3.26)

Note that
detM± = 1, M± = I +O(1/k), k →∞. (3.27)

The solution of the elliptic sinh-Gordon equation can be obtained from the unique solution of the RH
problem. In this respect, we expand the solution of the RH problem M as

M(x, y, k) = I +
M (1)(x, y)

k
+
M (2)(x, y)

k2
+O(1/k2), k →∞. (3.28)

Substituting this expansion into the x-part of the Lax pair (2.11a), from the (2, 1)-component at O(1), we
find

iqx(x, y) + qy(x, y) = −4iM
(1)
21 (x, y) (3.29)

and the (1, 1)-component at O(1/k) yields

M
(1)
11x(x, y) = − 1

8i
(cosh q(x, y)− 1)− 1

4
(iqx(x, y) + qy(x, y))M

(1)
21 (x, y). (3.30)

Simplifying the above equation with (3.29), we obtain the reconstruction formula for the solution of (1.1)
given by

cosh q(x, y) = 1− 8iM
(1)
11x(x, y)− 8

(
M

(1)
21

)2
. (3.31)

Note that the RH problem also can be solved via the Cauchy projector, which results in the integral
representation for the solution of (1.1) in terms of the solution M . Indeed, let J̃ = I − J . Then, the matrix
RH problem can be written as

M+ −M− = M+J̃ , k ∈ R, (3.32)

where the jump matrix J̃ is given by

J̃(x, y, k) =

(
0 b(−k)e−2θ(x,y,k)

−b(k)e2θ(x,y,k) 0

)
, k ∈ R. (3.33)

Employing the Cauchy projector, the solution of the RH problem is found in terms of the Cauchy type of
the integral equation:

M+(x, y, k) = I +
1

2iπ

∫ ∞
0

M+(x, y, l)J̃(x, y, l)
dl

l − k
. (3.34)
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In particular, the first column of (3.34) yields(
M+

11(x, y, k)
M+

21(x, y, k)

)
=

(
1
0

)
− 1

2iπ

∫ ∞
0

(
M+

12(x, y, l)b(l)e
2θ(x,y,l)

M+
22(x, y, l)b(l)e

2θ(x,y,l)

)
dl

l − k
. (3.35)

Substituting equation (3.35) into the Lax pair and collecting the (2, 1)-component of the resulting expression,
finally, we obtain the integral representation of the solution for the elliptic sinh-Gordon equation in the half
plane given by

iqx(x, y) + qy(x, y) = − 2

π

∫ ∞
0

(
µ+1
)
22

(x, y, k)b(k)eω1(k)x+ω2(k)ydk. (3.36)

In summary, we now state the existence theorem of the solution for the elliptic sinh-Gordon equation in
the half plane.

Theorem 3.2. Assume the functions g0 + 2mπ ∈ H1(R) for some m ∈ Z, and g1 ∈ H1(R) with the
sufficiently small H1 norms of g0 and g1. Let the functions a(k) and b(k) be given by (3.14) in Proposition
3.1. Suppose that given g0(x), there exists a function g1(x) such that the global relation is satisfied

a(k) = 1, Im k ≤ 0, b(k) = 0, k ≤ 0. (3.37)

Let M(x, y, k) be the solution of the following matrix Riemann-Hilbert (RH) problem

M−(x, y, k) = M+(x, y, k)J(x, y, k), k ∈ R, (3.38)

where det (M±) = 1, M± = I +O(1/k) as k →∞ and the jump matrix is given in (3.25).
Then the Reimann-Hilbert problem is uniquely solvable and the function q(x, y) defined by

iqx + qy = −4i lim
k→∞

kM21, cosh q(x, y) = 1− 8i lim
k→∞

kM11x − 8 lim
k→∞

(kM21)
2 (3.39)

solves the elliptic sinh-Gordon equation (1.1) in the half plane satisfying

q(x, 0) = g0(x), qy(x, 0) = g1(x). (3.40)

Proof. First , note that the vanishing lemma [12] verifies the unique solvability of the RH problem (3.42),
that is, if M = O(1/k) as k → ∞, the RH problem has only the trivial solution. The proof that q(x, y)
defined in (3.39) solves the elliptic sinh-Gordon equation (1.1) is based on the so-called dressing method [12]
which was also discussed before the theorem.

To prove (3.40), define the map {a(k), b(k)} → {g0(x), g1(x)} given by

cosh g0(x) = 1− 8i lim
k→∞

kM
(x)
11x − 8 lim

k→∞

(
kM

(x)
21

)2
, (3.41a)

iġ0(x) + g1(x) = −4i lim
k→∞

kM
(x)
21 , (3.41b)

where M (x) is the solution of the following matrix Riemann-Hilbert problem

M
(x)
− (x, k) = M

(x)
+ (x, k)J (x)(x, k), k ∈ R, (3.42)

with M (x) = I +O(1/k) as k →∞ and the jump matrix J (x) defined by

J (x)(x, k) =

(
1 − b(−k)

a(−k)e
−2ω1(k)x

b(k)
a(k)e

2ω1(k)x 1

)
, k ∈ R. (3.43)

Note that if the global relation (3.37) is satisfied, then

J (x)(x, k) = J(x, 0, k), (3.44)

which implies that M (x)(x, k) = M(x, 0, k). Hence, letting y = 0 in (3.39), equation (3.40) follows.
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4. Linear limit

We next show that the linear limit of the solution of (1.1) coincides with the solution of the linearized
equation for the elliptic sinh-Gordon equation known as the modified Helmholtz equation in the half plane

qxx + qyy = q, −∞ < x <∞, y > 0, (4.1)

q(x, 0) = g0(x), −∞ < x <∞. (4.2)

It has been shown in [19] that the Fokas method was applied to solve (4.1) and the solution of (4.1) was
found in the form

q(x, y) =
1

2π

∫ ∞
0

e−ω̃1(k)x−ω̃2(k)yω̃2(k)ĝ0(k)
dk

k
, (4.3)

where the linear dispersion relations are defined by

ω̃1(k) =
1

2i

(
k − 1

k

)
, ω̃2(k) =

1

2

(
k +

1

k

)
, (4.4)

and the spectral function ĝ0 is given by

ĝ0(k) =

∫ ∞
−∞

eω̃1(k)xq(x, 0)dx. (4.5)

Regarding the linear limit, we consider equation (3.36). First, we note that in the linear limit,(
µ+1
)
22
→ 1, Φ1 → 1, Φ2 → 0. (4.6)

Hence, the spectral function b(k) becomes

b(k) = −1

4

∫ ∞
−∞

e−2ω1(k)ξ

(
r(ξ)− g0(ξ)

2k

)
dξ, (4.7)

where r(x) = iġ0(x) + qy(x, 0) to suppress the notation for brevity, and then equation (3.36) leads to

iqx(x, y) + qy(x, y) = − 2

π

∫ ∞
0

b(k)e2θ(x,y,k)dk. (4.8)

Noting iω1(k) +ω2(k) = −k, we find the linear limit of the solution for the elliptic sinh-Gordon equation in
the half plane given by

q(x, y) =
1

π

∫ ∞
0

b(k)e2θ(x,y,k)
dk

k
. (4.9)

It should be now required to characterize the spectral function b(k) appearing in (4.9). Note that b(−k) = 0
for k ≥ 0 thanks to the global relation (3.18) and hence, we find

1

4

∫ ∞
−∞

e2ω1(k)ξ

(
r(ξ) +

g0(ξ)

2k

)
dξ = 0, k ≥ 0. (4.10)

Employing the change of variable k → 1
4k in (4.10), we then obtain

1

4

∫ ∞
−∞

e−2ω1(k)ξ (r(ξ) + 2kg0(ξ)) dξ = 0. (4.11)

Adding the above equation with (4.7), the function b(k) can be written as

b(k) = −ω2(k)

∫ ∞
−∞

e−2ω1(k)ξg0(ξ)dξ. (4.12)

Thus, substituting (4.12) into (4.9) yields the linear limit given by

q(x, y) = − 1

π

∫ ∞
0

e2θ(x,y,k)ω2(k)

∫ ∞
−∞

e−2ω1(k)ξg0(ξ)dξ
dk

k
. (4.13)

Finally, performing the change of variable 2k → k, we find the linear limit of the solution for the elliptic
sinh-Gordon equation in the half plane, which coincides with (4.3).
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5. Concluding remarks

In conclusion, we have studied the boundary value problems for the elliptic sinh-Gordon equation posed
in the half plane. We have done so by applying the Fokas method, which is a significant extension of the
inverse scattering transform. We have derived the global relation for the elliptic sinh-Gordon equation that
involves all known and unknown boundary values. Also, we have presented the existence theorem for the
unique solution provided that the boundary values satisfy the global relation. Moreover, we have derived
the representation of the solution in terms of the unique solution of the Riemann-Hilbert problem whose
jump matrix are uniquely defined by the spectral functions. In addition to solving the elliptic sinh-Gordon
equation, we have verified that the linear limit coincides with the solution of the linearized equation known
as the modified Helmhotz equation.

We remark that one of the most difficult steps in the implementation of the Fokas method is to character-
ize unknown boundary values, known as the Dirichlet-to-Neumann map [11]. For example, for the Dirichlet
boundary value problem of the elliptic sinh-Gordon equation in the half plane, the Dirichlet boundary da-
tum q(x, 0) is given, whereas the Neumann boundary value qy(x, 0) is unknown. This unknown boundary
value appears in the representation of the solution through the spectral functions and hence, it is required
to characterize the unknown Neumann boundary value for the explicit solution. This can be done by an-
alyzing the global relation as was done in [14]. It is noted that in [14] the Dirichlet-to-Neumann map for
a nonlinear elliptic partial differential equation, namely the elliptic sine-Gordon equation, was reported for
the first time. Moreover, we expect that it could be possible to study the effective characterization of the
Dirichlet-to-Neumann map by employing the perturbative scheme as in [13, 15, 16, 17]. We will discuss
regarding these issues in the future.
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