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In this paper, we give three main theorems which are new generalizations of Banach fixed point theorem,
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1. Introduction and Preliminaries

A mapping T : X → X where (X, d) is a metric space, is said to be a contraction if there exists k ∈ [0, 1)
such that for all x, y ∈ X,

d (Tx, Ty) ≤ kd (x, y) .

Banach proved that a contraction mapping has a unique fixed point in a complete metric space (X, d)
[1] (see also [2, 5, 6, 9]).

In [11], Ran and Reurings established the Banach fixed point theorem in the context of ordered metric
spaces.

Theorem 1.1 ([11]). Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Furthermore, every pair x, y ∈ X has a lower bound and an upper bound. If f : X → X is a
continuous, monotone (i.e., either order-preserving or order-reversing) map from X into X such that

∃ 0 < c < 1 : d (fx, fy) ≤ cd (x, y) , x ≥ y
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and
∃x0 ∈ X : x0 ≤ fx0 or x0 ≥ fx0,

then f has a unique fixed point x. Morever, for every x ∈ X lim
n→∞

fnx = x.

Nieto and López [10] gave an alternative condition for the continuity of the mapping f as following;

”if any nondecreasing sequence {xn} in Xconverges to z then xn ≼ z for all n ≥ 0”

Also, to guarantee the uniqueness of the fixed point, Nieto and López [10] gave an alternative condition
met the requirement of ” every pair x, y ∈ X has a lower bound and an upper bound” as following;

”for every x, y ∈ X; there exists z ∈ X which is comparable to x and y ”. (1.1)

Theorem 1.2 ([10]). Let (X,≼) be an ordered set endowed with a metric d and the mapping f : X → X be
given. Suppose that the following conditions hold:

i) (X, d) is complete;
ii) if any nondecreasing sequence {xn} in X converges to z, then xn ≼ z for all n ≥ 0;
iii) f is nondecreasing;
iv) there exists x0 ∈ X such that x0 ≼ Tx0;
v) there exists a constant k ∈ (0, 1) such that for all x, y ∈ X with x ≽ y,

d (fx, fy) ≤ kd (x, y) .

Then f has a fixed point. Moreover, if for all (x, y) ∈ X ×X there exists a z ∈ X such that x ≼ z and
y ≼ z, then the fixed point is unique.

Two of the well known fixed point theorems are Kannan fixed point theorem and Chatterjea fixed point
theorem.

Theorem 1.3 ([4]). If a mapping T : X → X where (X, d) is a complete metric space, satisfies the
inequality

d (Tx, Ty) ≤ a [d (x, Tx) + d (y, Ty)] (1.2)

where a ∈
[
0, 12

)
and x, y ∈ X, then T has a unique fixed point. The mappings satisfying (1.2) are called

Kannan type mappings.

Theorem 1.4 ([3]). If a mapping T : X → X where (X, d) is a complete metric space, satisfies the inequality

d (Tx, Ty) ≤ b [d (x, Ty) + d (y, Tx)]

such that b ∈
[
0, 12

)
and x, y ∈ X, then T has a unique fixed point.

Also, in 2011, Moradi and Davood introduced a new extension of Kannan fixed point theorem on
complete metric space as following;

Theorem 1.5 ([8]). Let (X, d) be a complete metric space and T, S : X → X be mappings such that T is
continuous, one to one and subsequentially convergent. If µ ∈

[
0, 12

)
and x, y ∈ X,

d (TSx, TSy) ≤ µ [d (Tx, TSy) + d (Ty, TSx)] ,

then, S has a unique fixed point. Also, if T is sequentially convergent then for every x0 ∈ X the sequence of
iterates {Snx0} converges to the fixed point.
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Definition 1.6 ([8]). Let (X, d) be a metric space.
i) A mapping T : X → X is said to be sequentially convergent if we have, for every sequence {yn}, if

{Tyn} is convergence then {yn} is also convergence.
ii) T is said to be subsequentially convergent if we have, for every sequence {yn}, if {Tyn} is convergence

then {yn} has a convergent subsequence.

In 2014, Mustafa et. al., [7] introduced fixed point theorems for weakly T -Chatterjea and weakly
T -Kannan-contractive mappings in complete b− metric spaces.

In this paper we have three main theorems which are new generalization of Banach fixed point theorem,
Kannan fixed point theorem and Chatterjea fixed point theorem in the context of the ordered metric space.

2. Main Results

For the simplicity in writing, we will use the following symbols. We donote by Ψ the set of all functions
F : [0,∞) → [0,∞) satisfying:
F1) F is continuous and monotone nondecreasing,
F2) F (t) = 0 if and only if t = 0.

Also, we denote by SSC (X) the set of all mappings T : X → X such that T is one to one, continuous,
subsequentially convergent and preserve the order, by SC (X) the set of all mappings T : X → X such that
T is one to one, continuous, sequentially convergent and preserve the order.

Theorem 2.1. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X) , F ∈ Ψ. For all
x, y ∈ X with x ≼ y, α ∈ [0, 1),

F (d (Tfx, Tfy)) ≤ αF (d (Tx, Ty)) .

Also, suppose that either
C1) f is continuous or C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Proof. Let x0 ∈ X be an arbitrary point such that xn = fxn−1 = fnx0, n = 1, 2, 3, · · · . As f is nondecreasing
and x0 ≼ fx0, we have

Tx0 ≼ Tfx0 ≼ Tf2x0 ≼ Tf3x0 ≼ · · · ≼ Tfnx0 ≼ · · · (2.1)

Since Txn ≼ Txn+1,

F (d (Txn, Txn+1)) = F (d (Tfxn−1, T fxn))

≤ αF (d (Txn−1, Txn))

...

≤ αnF (d (Tx0, Tx1)) . (2.2)

Letting n → ∞ in (2.2), then we have

F (d (Txn, Txn+1)) → 0+, asn → ∞.

d (Txn, Txn+1) → 0, as n → ∞.

Also, for m,n ∈ N,m > n
F (d (Txn, Txm)) ≤ αnF (d (Tx0, Txm−n)) (2.3)
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letting m,n → ∞ (2.3), we get
d (Txn, Txm) → 0.

Thus, we obtain that {Txn} is Cauchy sequence. As (X, d) is complete, there exists v ∈ X such that

lim
n→∞

Txn = v. (2.4)

Note that T ∈ SSC (X), then {xn} has a convergent subsequence, so there is u ∈ Xsuch that

lim
k→∞

xn(k) = u. (2.5)

Also, T is continuous and xn(k) → u, therefore

lim
k→∞

Txn(k) = Tu. (2.6)

and
lim
k→∞

d
(
Txn(k), Tu

)
= 0.

Now, we will show that u ∈ X is a fixed point of f. In here we have two cases.
Case 1: Let C1) holds. From the continuity of f , we have

Tu = lim
k→∞

Txn(k) = lim
k→∞

Tfxn(k)−1 = Tfu.

since, T is one to one we get fu = u, namely u ∈ X is a fixed point of f.
Case 2: Let C2) holds. Since

{
Txn(k)

}
converges to Tu ∈ X, for all ϵ

2 > 0 there is N1 ∈ N such that for
all n (k) > N1, we have

d
(
Txn(k), Tu

)
<

ϵ

2
.

Also, as
{
Txn(k)

}
converges to Tu. From C2), we get Txn(k) ≼ Tu and we have

F
(
d
(
Tfn(k)+1x, Tfu

))
≤ αF

(
d
(
Tfn(k)x, Tu

))
. (2.7)

Letting k → ∞ in (2.7), we have

F (d (Tu, Tfu)) ≤ 0 (2.8)

The inequality (2.8) implies that Tu = Tfu. As, T is one to one we get u ∈ X is a fixed point of f.
Adding the condition (1.1), we show the uniqueness of the fixed point. We will do this by showing that

lim
k→∞

fn(k)x = u

for every x ∈ X. Here we have two cases.
Firstly, let x and x0 be comparable, then x ≼ x0 or x0 ≼ x. In both cases, we have fn(k)x ≼ fn(k)x0 or

fn(k)x0 ≼ fn(k)x. Hence, we have

F
(
d
(
Tfn(k)x, Tfn(k)x0

))
≤ αn(k)F (d (Tx, Tx0))

letting k → ∞ in the last inequality, we have

lim
k→∞

fn(k)x = lim
k→∞

fn(k)x0 = u.

Secondly, let x and x0 are not comparable and let x1, resp. x2, be an upper bound, resp. a lower bound,
of x and x0.That is x1 ≽ x ≽ x2 and x1 ≽ x0 ≽ x2. Thus we have

lim
k→∞

fn(k)x = lim
k→∞

fn(k)x0 = u.

Hence, the proof is completed.
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Remark 2.2. The case of T ∈ SC (X), the proof of the Theorem 2.1 takes place analogously by replacing
{n} with {n (k)}.

Corollary 2.3. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X). For all x, y ∈ X
with x ≼ y, α ∈ [0, 1),

d (Tfx, Tfy) ≤ αd (Tx, Ty) .

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed
point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the fixed
point is unique.

Corollary 2.4. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and F ∈ Ψ. For all x, y ∈ X with
x ≼ y, α ∈ [0, 1),

F (d (fx, fy)) ≤ αF (d (x, y)) .

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed
point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the fixed
point is unique.

Corollary 2.5. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be mappings such that f is monotone nondecreasing. For all x, y ∈ X with
x ≼ y, α ∈ [0, 1),

d (fx, fy) ≤ αd (x, y) .

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed
point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the fixed
point is unique.

Corollary 2.6. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X). For all x, y ∈ X
with x ≼ y, α ∈ [0, 1), ∫ d(Tfx,Tfy)

0
φ (t) dt ≤ α

∫ d(Tx,Ty)

0
φ (t) dt, (2.9)

where φ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which summeble ( i.e., with finite integral ) on
each compact subset of [0,∞), nonnegative, and such that for each ϵ > 0,

∫ ϵ
0 φ (t) dt > 0.

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a
fixed point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the
fixed point is unique.

Corollary 2.7. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be mappings such that f is monotone nondecreasing. For all x, y ∈ X with
x ≼ y, α ∈ [0, 1), ∫ d(fx,fy)

0
φ (t) dt ≤ α

∫ d(x,y)

0
φ (t) dt, (2.10)

where φ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which summeble ( i.e., with finite integral ) on
each compact subset of [0,∞), nonnegative, and such that for each ϵ > 0,

∫ ϵ
0 φ (t) dt > 0.



M. Kir, H. Kiziltunc, J. Nonlinear Sci. Appl. 8 (2015), 529-539 534

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a
fixed point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the
fixed point is unique.

Theorem 2.8. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X) , F ∈ Ψ. For all
x, y ∈ X with x ≼ y, β ∈

[
0, 12

)
,

F (d (Tfx, Tfy)) ≤ β [F (d (Tx, Tfx)) + F (d (Ty, Tfy))] .

Also, suppose that
C1) f is continuous or C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Proof. Let x0 ∈ X be an arbitrary point such that xn = fxn−1 = fnx0, n = 1, 2, 3, .... As f is nondecreasing
and x0 ≼ fx0, we have

Tx0 ≼ Tfx0 ≼ Tf2x0 ≼ Tf3x0 ≼ · · · ≼ Tfnx0 ≼ · · · (2.11)

Since Txn ≼ Txn+1

F (d (Txn, Txn+1)) = F (d (Tfxn−1, T fxn))

≤ β [F (d (Txn−1, Txn)) + F (d (Txn, Txn+1))] . (2.12)

From, (2.12), we get

F (d (Txn, Txn+1)) ≤
β

1− β
F (d (Txn−1, Txn)) . (2.13)

Also, by continuing the process (2.13), we obtain that

F (d (Txn, Txn+1)) ≤
(

β

1− β

)n

F (d (Tx0, Tx1)) . (2.14)

Letting n → ∞ in (2.14), we obtain that

F (d (Txn, Txn+1)) → 0+ as n → ∞.

Again using (2.14), for all m,n ∈ N, taking m > n, we have

F (d (Txn, Txm)) = F (d (Tfnx0, T f
mx0))

≤
(

β

1− β

)n

F
(
d
(
Tx0, T f

m−nx0
))

. (2.15)

Letting m,n → ∞ in (2.15) ,we have

F (d (Txn, Txm)) → 0+as m,n → ∞.

So, we have d (Txn, Txm) → 0 as, m,n → ∞.
In the next stage, by using similar methods in Theorem 2.1, we obtain that {Txn} is Cauchy sequence

in complete metric space (X, d) and there exist u ∈ X such that {Txn} converges to Tu ∈ X. Now, we will
show that u ∈ X is a fixed point of f. In here we have two cases.

Case 1: Let C1) holds. From the continuity of f , we have

Tu = lim
k→∞

Txn(k) = lim
k→∞

Tfxn(k)−1 = Tfu.
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Since, T is one to one we get that u ∈ X is a fixed point of f.
Case 2: Let C2) holds. Since {Txn} converges to Tu ∈ X, for all ϵ

2 > 0 there is N1 ∈ N such that for all
n > N1, we have

d (Txn, Tu) <
ϵ

2
.

Also, as {Txn} converges to Tu, From C2) we get Txn ≼ Tu and

F (d (Tu, Tfu)) ≤ F (d (Tu, Txn) + d (Txn, T fu))

= F (d (Tu, Txn) + d (Tfnx0, T fu))

≤ F (d (Tu, Txn) + d (Tfnx0, T f
nx1) + d (Tfnx1, T fu))

= F (d (Tu, Txn) + d (Tfxn, T fxn+1) + d (Tfxn, Tfu)). (2.16)

Letting n → ∞ in (2.7), we have

F (d (Tu, Tfu)) ≤ 0 (2.17)

The inequality (2.17) implies that Tu = Tfu. As, T is one to one we get u ∈ X is a fixed point of f. Adding
the condition (1.1), we show the uniqueness of the fixed point.

Let u′ ∈ X be another fixed point of f . From the (1.1), there exists an element z in X such that z
comparable to u and u′.The monotonicity of f implies that fnz comparable to fnu = u and fnu′ = u′ for
all n ∈ N. As, T ∈ SSC (X) , then Tfnz is comparable to Tu and Tu′. Also, F ∈ Ψ we have

F
(
d
(
Tu, Tu′

))
≤ F

(
d (Tu, Tfnz) + d

(
Tfnz, Tu′

))
= F (d (Tfnu, Tfnz)) + F

(
d
(
Tfnz, Tfnu′

))
≤ βnF (d (u, z)) + βnF

(
d
(
z, u′

))
. (2.18)

Letting n → ∞ in the inequality (2.18),

F
(
d
(
Tu, Tu′

))
≤ 0.

The last inequality implies Tu = Tu′. As T is one to one we get u = u′. Hence, the proof is completed.

Remark 2.9. The case of T ∈ SC (X), the proof of the Theorem 2.8 takes place analogously by replacing
{n} with {n (k)}.

Corollary 2.10. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X). For all x, y ∈ X
with x ≼ y, β ∈

[
0, 12

)
,

d (Tfx, Tfy) ≤ β [d (Tx, Tfx) + d (Ty, Tfy)] .

Also, suppose that
C1) f is continuous or C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Corollary 2.11. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and F ∈ Ψ. For all x, y ∈ X with
x ≼ y, β ∈

[
0, 12

)
,

F (d (fx, fy)) ≤ β [F (d (x, fx)) + F (d (y, fy))] .
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Also, suppose that
C1) f is continuous or
C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Corollary 2.12. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping. For all x, y ∈ X with x ≼ y, β ∈

[
0, 12

)
,

d (fx, fy) ≤ β [d (x, fx) + d (y, fy)] .

Also, suppose that
C1) f is continuous or
C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then xn ≼ z for all n ≥ 0.

If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there
exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Remark 2.13. The Corollary 2.12 is Kannan fixed point theorem in the context of ordered metric space.

Corollary 2.14. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X). For all x, y ∈ X
with x ≼ y, β ∈

[
0, 12

)
, ∫ d(Tfx,Tfy)

0
φ (t) dt ≤ β

∫ d(Tx,Tfx)+d(Ty,Tfy)

0
φ (t) dt, (2.19)

where φ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which summeble ( i.e., with finite integral ) on
each compact subset of [0,∞), nonnegative, and such that for each ϵ > 0,

∫ ϵ
0 φ (t) dt > 0.

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a
fixed point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the
fixed point is unique.

Corollary 2.15. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping. For all x, y ∈ X with x ≼ y, β ∈

[
0, 12

)
,∫ d(fx,fy)

0
φ (t) dt ≤ β

∫ d(x,fx)+d(y,fy)

0
φ (t) dt, (2.20)

where φ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which summeble ( i.e., with finite integral ) on
each compact subset of [0,∞), nonnegative, and such that for each ϵ > 0,

∫ ϵ
0 φ (t) dt > 0.

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a
fixed point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the
fixed point is unique.

Remark 2.16. Also, by taking φ (t) = 1 in Corollary 2.15, we obtain Kannan fixed point theorem in the
context of the ordered metric space.

Theorem 2.17. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X) , F ∈ Ψ. For all
x, y ∈ X with x ≼ y, µ ∈

[
0, 12

)
,

F (d (Tfx, Tfy)) ≤ µ [F (d (Tx, Tfy)) + F (d (Ty, Tfx))] .

Also, suppose that
C1) f is continuous or C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.
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Proof. Let x0 ∈ X be an arbitrary point such that xn = fxn−1 = fnx0, n = 1, 2, 3, .... As f is nondecreasing
and x0 ≼ fx0, we have

Tx0 ≼ Tfx0 ≼ Tf2x0 ≼ Tf3x0 ≼ · · · ≼ Tfnx0 ≼ · · · (2.21)

Considering F ∈ Ψ and Txn ≼ Txn+1

F (d (Txn, Txn+1)) = F (d (Tfxn−1, T fxn))

≤ µ [F (d (Txn−1, Txn+1)) + F (d (Txn, Txn))]

≤ µ [F (d (Txn−1, Txn)) + F (d (Txn, Txn+1))] . (2.22)

From inequality (2.22), we have

F (d (Txn, Txn+1)) ≤
µ

1− µ
F (d (Txn−1, Txn)) ,

and we get

F (d (Txn, Txn+1)) ≤
(

µ

1− µ

)n

F (d (Tx0, Tx1)) . (2.23)

Letting n → ∞ in (2.23), we obtain that

F (d (Txn, Txn+1)) → 0+, ( as n → ∞ ).

Also, using (2.23), for all m,n ∈ N, taking m > n, we have

F (d (Txn, Txm)) = F (d (Tfnx0, T f
mx0))

≤
(

µ

1− µ

)n

F
(
d
(
Tx0, T f

m−nx0
))

(2.24)

Letting m,n → ∞ in (2.24), we have

F (d (Txn, Txm)) → 0+ as m,n → ∞.

The last inequality implies d (Txn, Txm) → 0 as, m,n → ∞. we obtain that {Txn} is Cauchy sequence
in complete metric space (X, d) and there exist u ∈ X such that {Txn} converges to Tu ∈ X. In the next
stage, by using similar methods in Theorem 2.1 or Theorem 2.8, the proof can be completed.

Corollary 2.18. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X). For all x, y ∈ X
with x ≼ y, µ ∈

[
0, 12

)
,

d (Tfx, Tfy) ≤ µ [d (Tx, Tfy) + d (Ty, Tfx)] .

Also, suppose that
C1) f is continuous or C2) assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Corollary 2.19. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and F ∈ Ψ. For all x, y ∈ X with
x ≼ y, µ ∈

[
0, 12

)
,

F (d (fx, fy)) ≤ µ [F (d (x, fy)) + F (d (y, fx))] .
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Also, suppose that
C1) f is continuous or C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X. Moreover, if for all (x, y) ∈ X ×X

there exists a z ∈ X such that x ≼ z and y ≼ z, then the fixed point is unique.

Corollary 2.20. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping. For all x, y ∈ X with x ≼ y, µ ∈

[
0, 12

)
,

d (fx, fy) ≤ µ [d (x, fy) + d (y, fx)] .

Also, suppose that
C1) f is continuous or C2) Assume that if any nondecreasing sequence {xn} in X converges to z, then

xn ≼ z for all n ≥ 0.
If there exists x0 ∈ X with x0 ≼ fx0, then f has a fixed point in X.Moreover, if for each x, y ∈ X there

exists z ∈ X which is comparable to x and y, then the fixed point is unique.

Remark 2.21. The Corollary 2.20 is Chatterjea fixed point theorem in the context of ordered metric space.

Corollary 2.22. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ SSC (X). For all x, y ∈ X
with x ≼ y, µ ∈

[
0, 12

)
, ∫ d(Tfx,Tfy)

0
φ (t) dt ≤ µ

∫ d(Tx,Tfy)+d(Ty,Tfx)

0
φ (t) dt, (2.25)

where φ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which summeble ( i.e., with finite integral ) on
each compact subset of [0,∞), nonnegative, and such that for each ϵ > 0,

∫ ϵ
0 φ (t) dt > 0.

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a
fixed point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the
fixed point is unique.

Corollary 2.23. Let (X,≼) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping. For all x, y ∈ X with x ≼ y, µ ∈

[
0, 12

)
,∫ d(fx,fy)

0
φ (t) dt ≤ µ

∫ d(x,fy)+d(y,fx)

0
φ (t) dt, (2.26)

where φ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping which summeble ( i.e., with finite integral ) on
each compact subset of [0,∞), nonnegative, and such that for each ϵ > 0,

∫ ϵ
0 φ (t) dt > 0.

Also, suppose that the condition C1) or C2) holds. If there exists x0 ∈ X with x0 ≼ fx0, then f has a
fixed point in X. Moreover, if for each x, y ∈ X there exists z ∈ X which is comparable to x and y, then the
fixed point is unique.

Remark 2.24. Also, taking φ (t) = 1 in Corollary 2.23, we get Chatterjea fixed point theorem in the context
of ordered metric space.
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