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Abstract

The purpose of this paper is to examine the class of functional integral equations of fractional order in
the space of continuous functions on interval [0, a] . Using Darbo’s fixed point theorem associated with
the measure of noncompactness, we present sufficient conditions for existence of nondecreasing solutions of
some functional integral equations of fractional order. These existence results include several obtained from
previous studies. Finally, we establish some examples to show that our results are applicable. c©2015 All
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1. Introduction

Many nonlinear problems arising from areas of the real world, such as natural sciences, can be represented
with operator equations. Especially, integral and differential equations of fractional order play a very
important role in describing these problems. For example, some problems in physics, mechanics and other
fields can be described with the help of integral and differential equations of fractional order. Some of these
problems are theory of neutron transport, the theory of radioactive transfer, the kinetic theory of gases [19],
the traffic theory and so on.

J. Banaś et al. dealt with the following equations,

x(t) = h(t) +
f(t, x(t))

Γ(α)

∫ t

0

v(s, x(s))

(t− s)1−α
ds, t ∈ [0, 1] , (1.1)
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x(t) = h(t) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = f(t, x(t))

(
p(t) +

1

Γ(α)

∫ t

0

u(t, s, (Gx)(s))

(t− s)1−α
ds

)
, t ∈ [0, 1] ,

x(t) = f1(t) +
f2(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = f1(t, x(t)) +
f2(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = f(t, x(α1(t)), ..., x(αn(t))) +

∫ β(t)

0
u(t, s, x(γ1(s)), ..., x(γm(s)))ds, t ∈ [0,∞) ,

in [2]-[7] respectively. On the other hand M. Abdalla Darwish et al. considered the following equations,

x(t) = f(t) +
x(t)

Γ(α)

∫ t

0

u(t, x(t))

(t− s)1−α
ds, t ∈ [0, T ] ,

x(t) = f(t, x(t)) +
g(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s))

(t− s)1−α
ds, t ∈ [0,∞) ,

x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

g(k(t, s))

(t− s)1−α
|x(s)| ds, t ∈ [0, 1] ,

x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, x(s), x(λs))

(t− s)1−α
ds, t ∈ [0,∞) , (1.2)

x(t) = a(t) +
f(t, x(t))

Γ(α)

∫ t

0

k(t, s)u(t, s, x(s), x(λs))

(t− s)1−α
ds, t ∈ [0, 1] ,

x(t) = g(t, x(t)) +
(Tx)(t)

Γ(α)

∫ t

0

h(u(t, s))

(t− s)1−α
(Hx)(s)ds, t ∈ [0, 1] ,

x(t) = g(t, x(t)) +
f(t, x(t))

Γ(α)

∫ t

0

u(t, s, (Hx)(s))

(t− s)1−α
ds, t ∈ [0, 1] ,

in [12]-[18] respectively.
Also, in 2010 K. Blachandran et al. [1], for t ∈ [0,∞), discussed the following equation,

x(t) = g(t, x(α(t))) +
f(t, x(β(t)))

Γ(α)

∫ t

0

u(t, s, x(γ(s)))

(t− s)1−α
ds.

On the other hand, the authors considered the following equation in [10] and [21],

x(t) = g(t, x(β(t))) + f(t, x(α(t)))

∫ ϕ(t)

0
u(t, s, x(γ(s)))ds, t ∈ [0, a] .

Then İ. Özdemir and Ü. Çakan dealt with the following equations,

x(t) = g(t, x(α(t))) + f

(
t,

∫ ϕ(t)

0
u(t, s, x(γ(s)))ds, x(β(t))

)
, t ∈ [0, a] ,

x(t) = g(t, x(β1(t)), ..., x(βs(t)))

+ f(t, x(ξ1(t)), ..., x(ξm(t)))

∫ ϕ(t)

0
u(t, τ, x(γ1(τ)), ..., x(γn(τ)))dτ, t ∈ [0, a] ,

(1.3)

in [22], [11] respectively.
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In this paper, we will consider the following equation for t ∈ [0, a] and 0 < α ≤ 1,

x(t) = g(t, x(β1(t)), ..., x(βs(t))) +
f(t, x(ξ1(t)), ..., x(ξm(t)))

Γ(α)

∫ ϕ(t)

0

u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α
dτ. (1.4)

We present some definitions and preliminary results about the concept of measure of noncompactness and
fractional integral equations in next section. In the last section, we give our main results concerning the
existence of nondecreasing and continuous solutions of integral equation (1.4) by applying Darbo’s fixed
point theorem associated with the measures of noncompactness defined by J. Banaś et al. [8] and [9], as
well as some examples to show that these results are applicable.

2. Notations, definitions and auxiliary facts

First of all we will remind the concept of Riemann–Liouville fractional integral of order α for the function
x(t).

Definition 2.1 ([20]). Let x ∈ C [a, b] and a < t < b, then

Iαa+x(t) =
1

Γ(α)

∫ t

a

x(s)

(t− s)1−α
ds, α ∈ (−∞,∞)

is called the Riemann-Liouville fractional integral of order α, where symbol of Γ denotes the gamma function
defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt.

Let (E, ‖.‖) be an infinite dimensional Banach space with zero element θ. We write B (x, r) to denote the
closed ball centered at x with radius r and especially, we write Br in case of x = θ. We write X and Conv
X to denote the closure of X and convex hull of X, respectively. Moreover, let ME indicate the family of
all nonempty bounded subsets of E and let NE indicate its subfamily of all relatively compact sets. Finally,
the standard algebraic operations on sets are denoted by λX and X + Y , respectively.

We use the following definition of the measure of noncompactness given in [8].

Definition 2.2. A mapping µ : ME → R+ is said to be a measure of noncompactness in E if it satisfies
the following conditions:

1. The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

2. X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3. µ(X) = µ(X) = µ(Conv X).

4. µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1] .

5. If (Xn) is a sequence of closed sets from ME such that Xn+1⊂Xn (n = 1, 2, ...) and if limn→∞ µ(Xn)=
0, then the intersection set

⋂∞
n=1Xn is nonempty.

Theorem 2.3 ([8]). Let C be a nonempty, closed, bounded and convex subset of the Banach space E and
let F : C → C be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that

µ(FX) ≤ kµ(X) (2.1)

for any nonempty subset X of C, where µ is a measure of noncompactness in E. Then F has a fixed point
in the set C.
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It is known that the family of all real valued and continuous functions defined on interval [a, b] is a
Banach space with the standard norm

‖x‖ = max {|x(t)| : t ∈ [a, b]} .

Let X be a fixed subset of MC[a,b]. For ε > 0 and x ∈ X, we denote by ω(x, ε) the modulus of continuity
of function x defined by

ω(x, ε) = sup {|x(t1)− x(t2)| : t1, t2 ∈ [a, b] and |t1 − t2| ≤ ε} .

Furthermore, let ω(X, ε) and ω0(X) are defined by

ω(X, ε) = sup {ω(x, ε) : x ∈ X}

and
ω0(X) = lim

ε→0
ω(X, ε). (2.2)

Then, function ω0 is a measure of noncompactness in space C [a, b] , [8]. For x ∈ X let us consider the
following quantities

d(x) = sup {|x(s)− x(t)| − [x(s)− x(t)] : t, s ∈ [a, b] and t ≤ s} ,

i(x) = sup {|x(s)− x(t)| − [x(t)− x(s)] : t, s ∈ [a, b] and t ≤ s} .

The quantity d(x) represents the degree of decrease of the function x while i(x) represents the degree of
increase. Moreover, d(x) = 0 if and only if x is nondecreasing on [a, b] and similarly i(x) = 0 if and only if
x is nonincreasing on [a, b]. Further, let us put

d(X) = sup {d(x) : x ∈ X} ,

i(X) = sup {i(x) : x ∈ X} .

Finally, let us denote
µd(X) = ω0(X) + d(X), (2.3)

µi(X) = ω0(X) + i(X).

The authors have shown in [9] that above functions µd and µi are measures of noncompactness in the space
C [a, b] .

3. The main results

Hereafter we write I to denote the interval [0, a]. We study functional integral equation (1.4) with the
following conditions:

(a1) Functions

βj : I → I, for 1 ≤ j ≤ s,
ξi : I → I, for 1 ≤ i ≤ m,
γη : [0, C]→ I, for 1 ≤ η ≤ n

and
ϕ : I → R+

are continuous.
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(a2) g : I × Rs → R is continuous and there exist nonnegative constants ki for 1 ≤ i ≤ s such that

|g(t, x1, x2, ..., xs)− g(t, y1, y2, ..., ys)| ≤
s∑
i=1

ki |xi − yi| ,

for all t ∈ I and xi, yi ∈ R.
(a3) f : I × Rm → R is continuous and there exist nonnegative constants λi for 1 ≤ i ≤ m such that

|f(t, x1, x2, ..., xm)− f(t, y1, y2, ..., ym)| ≤
m∑
i=1

λi |xi − yi| ,

for all t ∈ I and xi, yi ∈ R.
(a4) Function u : I × I × Rn → R is continuous and there exist functions hj : R+ → R+ for 1 ≤ j ≤ n

which are nondecreasing on R+. Moreover the inequality

|u(t, τ, x1, x2, ..., xn)| ≤
n∑
j=1

hj(|xj |) (3.1)

holds for all t, τ ∈ I and xj ∈ R with 1 ≤ j ≤ n.
(a5) There exists a positive solution r0 of the inequality

s∑
i=1

kir +
Cα

Γ(α+ 1)

(
m∑
i=1

λir +N

)
n∑
j=1

hj(r) +M ≤ r, (3.2)

where C, M and N are the positive constants such that

ϕ(t) ≤ C, |g(t, 0, 0, ..., 0)| ≤M and |f(t, 0, 0, ..., 0)| ≤ N

for all t ∈ I.

Theorem 3.1. Under assumptions (a1)−(a5), Eq. (1.4) has at least one solution x = x(t) which belongs
to Br0 ⊂ C (I) .

Proof. Note that we will use Theorem 2.3 as our main tool. We define operator T as

(Tx)(t) = g(t, x(β1(t)), ..., x(βs(t))) +
f(t, x(ξ1(t)), ..., x(ξm(t)))

Γ(α)

∫ ϕ(t)

0

u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α
dτ,

for any x ∈ C (I) . Firstly we show that Tx is continuous on I. To do this we define operators G,F and U
as

(Gx) (t) = g(t, x(β1(t)), ..., x(βs(t))),

(Fx) (t) =
f(t, x(ξ1(t)), ..., x(ξm(t)))

Γ(α)

and

(Ux)(t) =

∫ ϕ(t)

0

u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α
dτ

for any x ∈ C (I) . Obviously the conditions of Theorem 3.1 guarantee that functions Gx and Fx are
continuous on I. Let us take an arbitrary ε > 0 and t1, t2 ∈ I such that |t1 − t2| ≤ ε. Without loss of
generality we can assume that ϕ(t2) ≤ ϕ(t1). Then, taking into account our assumptions we get



Ü. Çakan, İ. Özdemir, J. Nonlinear Sci. Appl. 8 (2015), 1112–1126 1117

|(Ux)(t1)− (Ux)(t2)|

=

∣∣∣∣∣
∫ ϕ(t1)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α
dτ −

∫ ϕ(t2)

0

u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ

∣∣∣∣∣
≤

∫ ϕ(t2)

0

∣∣∣∣u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α
− u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α

∣∣∣∣ dτ
+

∫ ϕ(t1)

ϕ(t2)

∣∣∣∣u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α

∣∣∣∣ dτ
≤

∫ ϕ(t2)

0

∣∣∣∣u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α
− u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α

∣∣∣∣ dτ
+

∫ ϕ(t2)

0

∣∣∣∣u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
− u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α

∣∣∣∣ dτ
+

∫ ϕ(t1)

ϕ(t2)

∣∣∣∣u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α

∣∣∣∣ dτ
≤

∫ ϕ(t2)

0
|u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))|

[
1

(ϕ(t2)− τ)1−α
− 1

(ϕ(t1)− τ)1−α

]
dτ

+

∫ ϕ(t2)

0

1

(ϕ(t2)− τ)1−α
|u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))− u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))| dτ

+

∫ ϕ(t1)

ϕ(t2)

n∑
j=1

hj(|x(γj(τ))|)

(ϕ(t1)− τ)1−α
dτ

≤
n∑
j=1

hj(‖x‖)
∫ ϕ(t2)

0

[
1

(ϕ(t2)− τ)1−α
− 1

(ϕ(t1)− τ)1−α

]
dτ + ωu1(I, ε)

∫ ϕ(t2)

0

1

(ϕ(t2)− τ)1−α
dτ

+

n∑
j=1

hj(‖x‖)
∫ ϕ(t1)

ϕ(t2)

1

(ϕ(t1)− τ)1−α
dτ

≤
n∑
j=1

hj(‖x‖)
(ϕ(t1)− ϕ(t2))

α − ([ϕ(t1)]
α − [ϕ(t2)]

α)

α
+ ωu1(I, ε)

[ϕ(t2)]
α

α

+
n∑
j=1

hj(‖x‖)
(ϕ(t1)− ϕ(t2))

α

α

≤
n∑
j=1

hj(‖x‖)
(ϕ(t1)− ϕ(t2))

α

α
+ ωu1(I, ε)

[ϕ(t2)]
α

α
+

n∑
j=1

hj(‖x‖)
(ϕ(t1)− ϕ(t2))

α

α

≤ 2

n∑
j=1

hj(‖x‖)
[ω(ϕ, ε)]α

α
+ ωu1(I, ε)

Cα

α
,

where
ω(ϕ, ε) = sup {|ϕ(t1)− ϕ(t2)| : t1, t2 ∈ I and |t1 − t2| ≤ ε}

and

ωu1(I, ε) = sup {|u(t1, τ, x1, ..., xn)− u(t2, τ, x1, ..., xn)| : t1, t2 ∈ I, τ ∈ [0, C] , xi ∈ R for 1 ≤ i ≤ n
and |t1 − t2| ≤ ε}

such that R = [−‖x‖ , ‖x‖] . Hence, taking into account the uniform continuity of function u(t, τ, x1, ..., xn)
on set I× I× [−‖x‖ , ‖x‖]n we infer that function Ux is continuous on I. Thus Tx is continuous on I. Using
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assumptions of Theorem 3.1, for any x ∈ Br0 , we get,

|(Tx)(t)| =

∣∣∣∣∣g(t, x(β1(t)), ..., x(βs(t))) +
f(t, x(ξ1(t)), ..., x(ξm(t)))

Γ(α)

∫ ϕ(t)

0

u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α
dτ

∣∣∣∣∣
≤ |g(t, x(β1(t)), ..., x(βs(t)))− g(t, 0, ..., 0)|+ |g(t, 0, ..., 0)|

+
1

Γ(α)
{|f(t, x(ξ1(t)), ..., x(ξm(t)))− f(t, 0, ..., 0)|+ |f(t, 0, ..., 0)|}

×
∫ ϕ(t)

0

∣∣∣∣u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α

∣∣∣∣ dτ
≤

s∑
i=1

ki |x(βi(t))|+M +
1

Γ(α)

(
m∑
i=1

λi |x(ξi(t))|+N

)∫ ϕ(t)

0

n∑
j=1

hj(|x(γj(τ))|)

(ϕ(t)− τ)1−α
dτ

≤
s∑
i=1

ki ‖x‖+M +
1

Γ(α)

(
m∑
i=1

λi ‖x‖+N

)
n∑
j=1

hj(‖x‖)
∫ ϕ(t)

0

1

(ϕ(t)− τ)1−α
dτ

≤
s∑
i=1

kir0 +M +
1

Γ(α)

(
m∑
i=1

λir0 +N

)
Cα

α

n∑
j=1

hj(r0)

=
s∑
i=1

kir0 +M +
Cα

Γ(α+ 1)

(
m∑
i=1

λir0 +N

)
n∑
j=1

hj(r0)

≤ r0.

This result shows that Tx ∈ Br0 . Now, we prove that operator T : Br0 → Br0 is continuous. To do this,
consider ε > 0 and any x, y ∈ Br0 such that ‖x− y‖ ≤ ε. Then we obtain the following inequalities by using
the conditions of Theorem 3.1.

|(Tx)(t)− (Ty)(t)|
≤ |g(t, x(β1(t)), ..., x(βs(t)))− g(t, y(β1(t)), ..., y(βs(t)))|

+

∣∣∣∣f(t, x(ξ1(t)), ..., x(ξm(t)))

Γ(α)
− f(t, y(ξ1(t)), ..., y(ξm(t)))

Γ(α)

∣∣∣∣ ∫ ϕ(t)

0

∣∣∣∣u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α

∣∣∣∣ dτ
+

(∣∣∣∣f(t, y(ξ1(t)), ..., y(ξm(t)))

Γ(α)
− f(t, 0, ..., 0)

Γ(α)

∣∣∣∣+

∣∣∣∣f(t, 0, ..., 0)

Γ(α)

∣∣∣∣)×
×
∫ ϕ(t)

0

∣∣∣∣u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α
− u(t, τ, y(γ1(τ)), ..., y(γn(τ)))

(ϕ(t)− τ)1−α

∣∣∣∣ dτ
≤

s∑
i=1

ki |x(βi(t))− y(βi(t))|+
m∑
i=1

λi |x(ξi(t))− y(ξi(t))|
Γ(α)

∫ ϕ(t)

0

n∑
j=1

hj(|x(γj(τ))|)

(ϕ(t)− τ)1−α
dτ

+
1

Γ(α)

(
m∑
i=1

λi |y(ξi(t))|+N

)∫ ϕ(t)

0

|u(t, τ, x(γ1(τ)), ..., x(γn(τ)))− u(t, τ, y(γ1(τ)), ..., y(γn(τ)))|
(ϕ(t)− τ)1−α

dτ

≤
s∑
i=1

ki ‖x− y‖+
1

Γ(α)

m∑
i=1

λi ‖x− y‖
n∑
j=1

hj(‖x‖)
Cα

α
+

1

Γ(α)

(
m∑
i=1

λi ‖y‖+N

)
ωun(I, ε)

Cα

α

≤ ε
s∑
i=1

ki +
εCα

Γ(α+ 1)

m∑
i=1

λi

n∑
j=1

hj(r0) +
Cα

Γ(α+ 1)

(
m∑
i=1

λir0 +N

)
ωun(I, ε), (3.3)
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where

ωun(I, ε) = sup {|u(t, τ, x1, ..., xn)− u(t, τ, y1, ..., yn)| : t ∈ I, τ ∈ [0, C] , xi, yi ∈ R1, 1 ≤ i ≤ n
and |xi − yi| ≤ ε}

with R1 = [−r0, r0] . On the other hand, since the function u = u(t, τ, x1, ..., xn) is uniformly continuous
on I × I × [−r0, r0]n , we infer that ωun(I, ε) → 0 as ε → 0. Hence, the above estimate (3.3) proves that
operator T is continuous on Br0 . Now, we show that operator T satisfies (2.1) with respect to measure of
noncompactness ω0 on Br0 . To do this, fix arbitrary ε > 0. Let X be any nonempty subset of Br0 , x ∈ X
and t1, t2 ∈ I with ϕ(t2) ≤ ϕ(t1) and |t1 − t2| ≤ ε, then we get

|(Tx)(t1)− (Tx)(t2)|
≤ |g(t1, x(β1(t1)), ..., x(βs(t1)))− g(t1, x(β1(t2)), ..., x(βs(t2)))|

+ |g(t1, x(β1(t2)), ..., x(βs(t2)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|

+

{∣∣∣∣f(t1, x(ξ1(t1)), ..., x(ξm(t1)))

Γ(α)
− f(t1, x(ξ1(t2)), ..., x(ξm(t2)))

Γ(α)

∣∣∣∣
+

∣∣∣∣f(t1, x(ξ1(t2)), ..., x(ξm(t2)))

Γ(α)
− f(t2, x(ξ1(t2)), ..., x(ξm(t2)))

Γ(α)

∣∣∣∣}
×
∫ ϕ(t1)

0

∣∣∣∣u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α

∣∣∣∣ dτ +

∣∣∣∣f(t2, x(ξ1(t2)), ..., x(ξm(t2)))

Γ(α)

∣∣∣∣
×
∫ ϕ(t1)

0

|u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))− u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))|
(ϕ(t1)− τ)1−α

dτ

+

∣∣∣∣f(t2, x(ξ1(t2)), ..., x(ξm(t2)))

Γ(α)

∣∣∣∣
×
∫ ϕ(t2)

0
|u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))|

[
1

(ϕ(t2)− τ)1−α
− 1

(ϕ(t1)− τ)1−α

]
dτ

+

∣∣∣∣f(t2, x(ξ1(t2)), ..., x(ξm(t2)))

Γ(α)

∣∣∣∣ ∫ ϕ(t1)

ϕ(t2)

∣∣∣∣u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α

∣∣∣∣ dτ
≤

s∑
i=1

ki |x(βi(t1))− x(βi(t2))|+ ωg(I, ε)

+
1

Γ(α)

(
m∑
i=1

λi |x(ξi(t1))− x(ξi(t2))|+ ωf (I, ε)

)∫ ϕ(t1)

0

n∑
j=1

hj(|x(γj(τ))|)

(ϕ(t1)− τ)1−α
dτ

+
1

Γ(α)
{|f(t2, x(ξ1(t2)), ..., x(ξm(t2)))− f(t2, 0, ..., 0)|+ |f(t2, 0, ..., 0)|}

×

(
ωu1(I, ε)

∫ ϕ(t1)

0

1

(ϕ(t1)− τ)1−α
dτ

+

∫ ϕ(t2)

0

n∑
j=1

hj(|x(γj(τ))|)
[

1

(ϕ(t2)− τ)1−α
− 1

(ϕ(t1)− τ)1−α

]
dτ +

∫ ϕ(t1)

ϕ(t2)

n∑
j=1

hj(|x(γj(τ))|)

(ϕ(t1)− τ)1−α
dτ


≤

s∑
i=1

kiω(x, ω(βi, ε)) + ωg(I, ε) +
1

Γ(α)

(
m∑
i=1

λiω(x, ω(ξi, ε)) + ωf (I, ε)

)
n∑
j=1

hj(r0)
Cα

α
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+
1

Γ(α)

(
m∑
i=1

λi |x(ξi(t2))|+N

)
×

×

ωu1(I, ε)
Cα

α
+

n∑
j=1

hj(r0)
(ϕ(t1)− ϕ(t2))

α − ([ϕ(t1)]
α − [ϕ(t2)]

α)

α
+

n∑
j=1

hj(r0)
(ϕ(t1)− ϕ(t2))

α

α


≤

s∑
i=1

kiω(x, ω(βi, ε)) + ωg(I, ε) +
Cα

Γ(α+ 1)

(
m∑
i=1

λiω(x, ω(ξi, ε)) + ωf (I, ε)

)
n∑
j=1

hj(r0)

+
1

Γ(α+ 1)

(
m∑
i=1

λir0 +N

)Cαωu1(I, ε) + 2 [ω(ϕ, ε)]α
n∑
j=1

hj(r0)

 , (3.4)

where

ωg(I, ε) = sup {|g(t1, x1, ..., xs)− g(t2, x1, ..., xs)| : t1, t2 ∈ I, xi ∈ R1 for 1 ≤ i ≤ s and |t1 − t2| ≤ ε} ,

ωf (I, ε) = sup {|f(t1, x1, ..., xm)− f(t2, x1, ..., xm)| : t1, t2 ∈ I, xj ∈ R1 for 1 ≤ j ≤ m
and |t1 − t2| ≤ ε} ,

also,
ω(ϕ, ε) = sup {|ϕ(t1)− ϕ(t2)| : t1, t2 ∈ I and |t1 − t2| ≤ ε} ,
ω(ξj , ε) = sup {|ξj(t1)− ξj(t2)| : t1, t2 ∈ I and |t1 − t2| ≤ ε} ,
ω(βi, ε) = sup {|βi(t1)− βi(t2)| : t1, t2 ∈ I and |t1 − t2| ≤ ε} ,

for 1 ≤ j ≤ m and 1 ≤ i ≤ s. Thus, by using the above estimate (3.4) , we get

ω(TX, ε) ≤
s∑
i=1

kiω(X,ω(βi, ε)) + ωg(I, ε) +
Cα

Γ(α+ 1)

(
m∑
i=1

λiω(X,ω(ξi, ε)) + ωf (I, ε)

)
n∑
j=1

hj(r0)

+
1

Γ(α+ 1)

(
m∑
i=1

λir0 +N

)Cαωu1(I, ε) + 2 [ω(ϕ, ε)]α
n∑
j=1

hj(r0)

 . (3.5)

We obtain that ω(ϕ, ε)→ 0, ω(βj , ε)→ 0 and ω(ξi, ε)→ 0 for 1 ≤ j ≤ s, 1 ≤ i ≤ m as ε→ 0 since functions
ϕ, βj and ξi are uniformly continuous on set I. Similarly, we get ωg(I, ε), ωf (I, ε) → 0 and ωu1(I, ε) → 0
as ε → 0 because of the fact that functions g, f and u are uniformly continuous on sets I × [−r0, r0]s ,
I × [−r0, r0]m and I × I × [−r0, r0]n, respectively. Hence, we conclude from (3.5) that

ω0(TX) ≤ Qω0(X), (3.6)

where

Q =
s∑
i=1

ki +
Cα

Γ(α+ 1)

m∑
i=1

λi

n∑
j=1

hj(r0).

Since Q < 1, from inequality (3.2) we obtain that operator T is a contraction on ball Br0 with respect to
measure of noncompactness ω0 in (2.2). Hence, from Theorem 2.3 we get that T has at least one fixed point
in Br0 . Consequently, the nonlinear functional integral equation (1.4) has at least one continuous solution
in Br0 ⊂ C (I) . This completes the proof.

Theorem 3.2. Let ϕ, βj , ξi, γη (1 ≤ j ≤ s, 1 ≤ i ≤ m, 1 ≤ η ≤ n) , restriction of f to I ×Rm+ , restriction
of g to I × Rs+ and restriction of u to I × I × Rn+ are nonnegative and nondecreasing functions for each
variable separately, in addition to asumptions (a1)− (a5). Then Eq.(1.4) has at least one nondecreasing
positive solution x = x(t) which belongs to Br0 ⊂ C (I) .
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Before starting the proof of the theorem, we present the following lemma.

Lemma 3.3. Assume that the hypothesis of Theorem 3.2 is satisfied. Then

d(Gx) ≤
s∑
i=1

kid(x)

and

d(Fx) ≤ 1

Γ(α)

m∑
i=1

λid(x).

Proof. If t1 = t2, then d(Gx) = d(Fx) = 0.
Let t1 6= t2. Without loss of the generality we can assume that t2 < t1. Now let us define sets A and B by

A = {(t2, t1) ∈ I × I : t2 < t1 and x(βi(t1)) = x(βi(t2)), for some 1 ≤ i ≤ s}

and
B = {(t2, t1) ∈ I × I : t2 < t1 and x(ξi(t1)) = x(ξi(t2)), for some 1 ≤ i ≤ m} .

If (t2, t1) /∈ A. Then we get

|(Gx) (t1)− (Gx) (t2)| − [(Gx) (t1)− (Gx) (t2)]

= |g(t1, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
− [g(t1, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))]

≤ |g(t1, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t1)), ..., x(βs(t1)))|
+ |g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
− [g(t1, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t1)), ..., x(βs(t1)))]

− [g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))]

= |g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
− [g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))]

≤ |g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))|
+ |g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))|
+ · · ·+ |g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
− [g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))]

− [g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))]

− · · · − [g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))]

=
|g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))|

|x(β1(t1))− x(β1(t2))|
|x(β1(t1))− x(β1(t2))|

+
|g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))|

|x(β2(t1))− x(β2(t2))|
×

× |x(β2(t1))− x(β2(t2))|

+ · · ·+ |g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
|x(βs(t1))− x(βs(t2))|

×

× |x(βs(t1))− x(βs(t2))|

− [g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))]

[x(β1(t1))− x(β1(t2))]
[x(β1(t1))− x(β1(t2))]

− [g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))]

[x(β2(t1))− x(β2(t2))]
×
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× [x(β2(t1))− x(β2(t2))]

− · · · − [g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))]

[x(βs(t1))− x(βs(t2))]
×

× [x(βs(t1))− x(βs(t2))]

=
|g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))|

|x(β1(t1))− x(β1(t2))|
|x(β1(t1))− x(β1(t2))|

+
|g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))|

|x(β2(t1))− x(β2(t2))|
×

× |x(β2(t1))− x(β2(t2))|

+ · · ·+ |g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
|x(βs(t1))− x(βs(t2))|

×

× |x(βs(t1))− x(βs(t2))|

−|g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))|
|x(β1(t1))− x(β1(t2))|

[x(β1(t1))− x(β1(t2))]

−|g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))|
|x(β2(t1))− x(β2(t2))|

×

× [x(β2(t1))− x(β2(t2))]

− · · · −|g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
|x(βs(t1))− x(βs(t2))|

×

× [x(βs(t1))− x(βs(t2))]

=
|g(t2, x(β1(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))|

|x(β1(t1))− x(β1(t2))|
×

×{|x(β1(t1))− x(β1(t2))| − [x(β1(t1))− x(β1(t2))]}

+
|g(t2, x(β1(t2)), x(β2(t1)), ..., x(βs(t1)))− g(t2, x(β1(t2)), x(β2(t2)), x(β3(t1)), ..., x(βs(t1)))|

|x(β2(t1))− x(β2(t2))|
×

×{|x(β2(t1))− x(β2(t2))| − [x(β2(t1))− x(β2(t2))]}

+ · · ·+ |g(t2, x(β1(t2)), ..., x(βs−1(t2)), x(βs(t1)))− g(t2, x(β1(t2)), ..., x(βs(t2)))|
|x(βs(t1))− x(βs(t2))|

×

×{|x(βs(t1))− x(βs(t2))| − [x(βs(t1))− x(βs(t2))]}

≤ k1 |x(β1(t1))− x(β1(t2))|
|x(β1(t1))− x(β1(t2))|

{|x(β1(t1))− x(β1(t2))| − [x(β1(t1))− x(β1(t2))]}

+
k2 |x(β2(t1))− x(β2(t2))|
|x(β2(t1))− x(β2(t2))|

{|x(β2(t1))− x(β2(t2))| − [x(β2(t1))− x(β2(t2))]}

+ · · ·+ks |x(βs(t1))− x(βs(t2))|
|x(βs(t1))− x(βs(t2))|

{|x(βs(t1))− x(βs(t2))| − [x(βs(t1))− x(βs(t2))]}

≤ k1d(x) + k2d(x) + · · ·+ ksd(x)

=
s∑
i=1

kid(x). (3.7)

Then, we conclude that d(Gx) ≤
s∑
i=1

kid(x) from (3.7) .

On the other hand, in the case of (t2, t1) ∈ A, if we define

A′(t2,t1) = {i : 1 ≤ i ≤ s and x(βi(t2)) 6= x(βi(t1))}

for every fixed (t2, t1) then there are the following two cases.

• Case of A′(t2,t1) = ∅ : In this case, obviously d(Gx) = 0, so the claim is clear.
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• Case of A′(t2,t1) 6= ∅ : In this case, if the above process (multiplication and division with

|x(βi(t1))− x(βi(t2))| and [x(βi(t1))− x(βi(t2))] ) is applied only for i ∈ A′(t2,t1), then

d(Gx) ≤
∑

i∈A′
(t2,t1)

kid(x).

Similarly, if (t2, t1) /∈ B we have

d(Fx) ≤ 1

Γ(α)

m∑
i=1

λid(x),

if (t2, t1) ∈ B, we get d(Fx) = 0 or

d(Fx) ≤ 1

Γ(α)

∑
i∈B′

(t2,t1)

λid(x),

where B′(t2,t1) is defined as

B′(t2,t1) = {i : 1 ≤ i ≤ m and x(ξi(t2)) 6= x(ξi(t1))}

for every fixed (t2, t1) ∈ B.

Proof of Theorem 3.2. We will use measure of noncompactness µd defined by (2.3) as an application of
Theorem 2.3. We know from the proof of Theorem 3.1 that operator T defined as

(Tx)(t) = g(t, x(β1(t)), ..., x(βs(t))) +
f(t, x(ξ1(t)), ..., x(ξm(t)))

Γ(α)

∫ ϕ(t)

0

u(t, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t)− τ)1−α
dτ

transforms Br0 into itself and is continuous on Br0 . Assume that X is any nonempty subset of Br0 and t1,
t2 are arbitrarily fixed in I with t2 ≤ t1. Then, for any x ∈ X, we get

|(Tx)(t1)− (Tx)(t2)| − [(Tx)(t1)− (Tx)(t2)]

≤ |(Gx) (t1)− (Gx) (t2)| − [(Gx) (t1)− (Gx) (t2)]

+ |(Fx)(t1)(Ux)(t1)− (Fx)(t2)(Ux)(t1)|+ |(Fx)(t2)(Ux)(t1)− (Fx)(t2)(Ux)(t2)|
− [(Fx)(t1)(Ux)(t1)− (Fx)(t2)(Ux)(t1)]− [(Fx)(t2)(Ux)(t1)− (Fx)(t2)(Ux)(t2)]

= |(Gx) (t1)− (Gx) (t2)| − [(Gx) (t1)− (Gx) (t2)]

+ {|(Fx)(t1)− (Fx)(t2)| − [(Fx)(t1)− (Fx)(t2)]} (Ux)(t1)

+ {|(Ux)(t1)− (Ux)(t2)| − [(Ux)(t1)− (Ux)(t2)]} (Fx)(t2)

≤ d(Gx) + d(Fx)(Ux)(t1) + d(Ux)(Fx)(t2)

≤ d(Gx) +
Cα

α

n∑
i=1

hi(r0)d(Fx) +


m∑
i=1

λir0 +N

Γ(α)

 d(Ux). (3.8)

On the other hand, for any x ∈ X,

(Ux)(t1)− (Ux)(t2)

=

∫ ϕ(t1)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α
dτ −

∫ ϕ(t2)

0

u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ
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=

∫ ϕ(t2)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α
dτ +

∫ ϕ(t1)

ϕ(t2)

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t1)− τ)1−α
dτ

−
∫ ϕ(t2)

0

u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ +

∫ ϕ(t2)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ

−
∫ ϕ(t2)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ

≥ p

{∫ ϕ(t2)

0

(
1

(ϕ(t1)− τ)1−α
− 1

(ϕ(t2)− τ)1−α

)
dτ +

∫ ϕ(t1)

ϕ(t2)

dτ

(ϕ(t1)− τ)1−α

}

+

∫ ϕ(t2)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))− u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ

≥ p
[ϕ(t1)]

α − [ϕ(t2)]
α

α
+

∫ ϕ(t2)

0

u(t1, τ, x(γ1(τ)), ..., x(γn(τ)))− u(t2, τ, x(γ1(τ)), ..., x(γn(τ)))

(ϕ(t2)− τ)1−α
dτ,

(3.9)

where
p = min {u(t, τ, x1, ..., xn) : t ∈ I, τ ∈ [0, C] , xi ∈ [−r0, r0] and 1 ≤ i ≤ n} .

Since function t→ u(t, τ, x1, ..., xn) is nondecreasing on I, (3.9) implies that

(Ux)(t1)− (Ux)(t2) ≥ 0

and so
d(Ux) = 0. (3.10)

Hence, taking into account Lemma 3.3, (3.8) and (3.10) , we can write

d(Tx) ≤

 s∑
i=1

ki +
Cα

Γ(α+ 1)

m∑
i=1

λi

n∑
j=1

hj(r0)

 d(x) = Qd(x)

for any x ∈ X. Thus we get
d(TX) ≤ Qd(X). (3.11)

So, we conclude from (3.6) and (3.11) that

µd(TX) ≤ Qµd(X). (3.12)

Since Q < 1, from inequality (3.2) we obtain that operator T is a contraction on ball Br0 with respect
to measure of noncompactness µd. Then, from Theorem 2.3 we get that T has at least one fixed point
in Br0 . Consequently, nonlinear functional integral equation (1.4) has at least one positive and continuous
solution in Br0 ⊂ C (I) . Finally, we prove that these solutions are nondecreasing on I. Assume that
D = {x ∈ Br0 : Tx = x} . Since D is nonempty subset of Br0 , taking into account (3.12) , then we can write
µd(D) = 0. This means that d(x) = 0, for every x ∈ D. So x is nondecreasing on I.

4. Examples

Example 4.1. Consider the following nonlinear functional integral equation in C [0, 1] :

x(t) =
x(t2)

5
+
x(t)

13
+

1 + t

8
+
t3 + x(sin t)

18Γ(2)

∫ t2

0

(
2t2 + τ3

9
+ 3
√
x(τ) + ln

(
1 +

∣∣x(τ2)
∣∣)+

x2(τ)

6

)
dτ. (4.1)
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Put
β1(t) = t, β2(t) = ϕ(t) = t2, ξ1(t) = sin t, γ1(τ) = γ3(τ) = τ, γ2(τ) = τ2,

g(t, x1, x2) =
5x1 + 13x2

65
+

1 + t

8
, f(t, x1) =

x1 + t3

18
,

u(t, τ, x1, x2, x3) =
2t2 + τ3

9
+ 3
√
x1 + ln(1 + |x2|) +

x23
6

and

h1(r) =
1

3
+ 3
√
r, h2(r) = ln(1 + |r|), h3(r) =

r2

6
.

Moreover it is easy to see that

α = a = m = C = 1, λ1 = N =
1

18
, M =

1

4
, k1 =

1

13
, k2 =

1

5
, s = 2, n = 3.

In order to verify assumption (a5) observe that the inequality appearing in this assumption has the form

18r

65
+
r + 1

108

(
2 + 6 3

√
r + 6 ln(1 + |r|) + r2

)
+

1

4
≤ r.

It is easy to verify that the number r0 ∈ [0.538, 6.216] satisfies the above inequality. On the other hand, it
is easy to verify that the other assumptions of Theorem 3.1 hold. Therefore, Theorem 3.1 guarantees that
Eq. (4.1) has at least one solution x = x(t) ∈ Br0 ⊂ C [0, 1] for any r0 ∈ [0.538, 6.216].

Example 4.2. Consider the following nonlinear functional integral equation in C
[
0, π2

]
:

x(t) =
tx(
√
t) + x(t)

7 + cos t
+

exp t+ x(t)

12Γ(14)

∫ t

0

tx(
√
τ) sin t+ ln (1 + |x(τ)|)

3 4

√
(t− τ)3

dτ. (4.2)

Put
ϕ(t) = ξ1(t) = β2(t) = t, β1(t) =

√
t, γ1(τ) =

√
τ , γ2(τ) = τ,

g(t, x1, x2) =
tx1 + x2
7 + cos t

, f(t, x1) =
exp t+ x1

12
,

u(t, τ, x1, x2) =
tx1 sin t+ τ ln (1 + |x2|)

3

and

h1(r) =
π

6
r, h2(r) =

π

6
ln (1 + |r|) , n = s = 2, m = 1, α =

1

4
, a = C =

π

2
,

k1 =
π

14
, k2 =

1

7
, λ1 =

1

12
, M = 0, N =

exp
(
π
2

)
12

.

In order to verify assumption (a5) observe that the inequality appearing in this assumption has the form

r (π + 2)

14
+
π
(
π
2

) 1
4

6Γ(54)

(
r + exp

(
π
2

)
12

)
(r + ln (1 + |r|)) ≤ r.

It is easy to verify that number r0 ∈ (0, 3.34906] satisfies the above inequality. On the other hand, it is easy
to show that the other assumptions of Theorem 3.2 hold. Therefore, Theorem 3.2 guarantees that Eq. (4.2)
has at least one nondecreasing positive solution x = x(t) ∈ Br0 ⊂ C

[
0, π2

]
for r0 ∈ (0, 3.34906] .
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5. Conclusion

It should be noted that Eq. (1.4) is the more general than some equations considered in previous studies.
For example, if n = m = 1, g(t, x2, ..., xs) = h(t), ϕ(t) = t, γ1(τ) = τ , ξ1(t) = t, and u(t, τ, x1) = v(t, x1)
then Eq. (1.1) is obtained from Eq. (1.4) . If n = 2, m = 1, g(t, x2, ..., xs) = a(t), γ1(τ) = τ and γ2(τ) = λτ
then Eq. (1.4) can be reduced to Eq. (1.2) .
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[11] Ü. Çakan, İ. Özdemir, An application of Darbo fixed point theorem to a class of functional integral equations,
Numer. Funct. Anal. Optim., 36 (2015), 29–40.1

[12] M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311 (2005), 112–119.1
[13] M. A. Darwish, J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional

integral equation, Fract. Calc. Appl. Anal., 12 (2009), 71–86.
[14] M. A. Darwish, On monotonic solutions of an integral equation of Abel type, Math. Bohem., 133 (2008), 407–420.
[15] M. A. Darwish, On existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal.,

88 (2009), 169–181.
[16] M. A. Darwish, S. K. Ntouyas, On a quadratic fractional Hammerstein–Volterra integral equation with linear

modification of the argument, Nonlinear Anal., 74 (2011), 3510–3517.
[17] M. A. Darwish, On a perturbed quadratic fractional integral equation of Abel type, Comput. Math. Appli., 61

(2011), 182–190.
[18] M. A. Darwish, Nondecreasing solutions of a fractional quadratic integral equation of Urysohn-Volterra type,

Dynam. Systems Appl., 20 (2011), 423–437.1
[19] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989),

261–266.1
[20] J. D. Munkhammar, Riemann-Liouville fractional derivatives and the Taylor-Riemann series, UUDM project

report, 7 (2004), 1–18.2.1
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