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Abstract

In this paper, we present an iterative algorithm with perturbations for Lipschitz pseudocontractive mappings
in Banach spaces. Consequently, we give the convergence analysis of the suggested algorithm. Our result
improves the corresponding results in the literature. c©2015 All rights reserved.
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1. Introduction

Let E be a real Banach space and E∗ be the dual space of E. Let J denote the normalized duality
mapping from E into 2E

∗
defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}, x ∈ E,

where 〈·, ·〉 denote the generalized duality pairing between E and E∗. It is well known that if E is smooth,
then J is single-valued. In the sequel, we shall denote the single-valued normalized duality mapping by j.

Recall that a mapping T with domain D(T ) and range R(T ) in E is called pseudocontractive if the
inequality

‖x− y‖ ≤ ‖x− y + r((I − T )x− (I − T )y)‖ (1.1)
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holds for each x, y ∈ D(T ) and for all r > 0. From a result of Kato [17], we know that (1.1) is equivalent to
(1.2) below there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 (1.2)

for all x, y ∈ D(T ).
The class of pseudocontractive mapping is one of the most important classes of mappings in nonlinear

analysis. Interest in pseudocontractive mappings stems mainly from their firm connection with the class of
accretive mappings, where a mapping A with domain D(A) and range R(A) in E is called accretive if the
inequality

‖x− y‖ ≤ ‖x− y + s(Ax−Ay)‖

holds for every x, y ∈ D(A) and for all s > 0.
Within the past 30 years or so, many authors have been devoted to the existence of zeros of accretive

mappings or fixed points of pseudocontractive mappings and iterative construction of zeros of accretive
mappings, and of fixed points of pseudocontractive mappings (see [9, 13, 19, 21, 22]).

Especially, in 2000, Morales and Jung [20] studied existence of paths for pseudocontractive mappings in
Banach spaces. They proved the following result.

Theorem 1.1. Let E be a Banach space. Suppose that C is a nonempty closed convex subset of E and
T : C → E is a continuous pseudocontractive mapping satisfying the weakly inward condition: T (x) ∈ IC(x)
(IC(x) is the closure of IC(x)) for each x ∈ C, where IC(x) = x + {c(u − x) : u ∈ E and c ≥ 1}. Then for
each z ∈ C, there exists a unique continuous path t 7−→ yt ∈ C, t ∈ [0, 1), satisfying the following equation

yt = tTyt + (1− t)z.

At the same time, several algorithms have been introduced and studied by various authors for approx-
imating fixed points of pseudocontractive mappings in Hilbert spaces and Banach spaces, you may consult
in [3, 4, 5, 23, 27, 29, 30, 32].

In 1953, Mann [18] introduced an iterative algorithm which is now referred to as the Mann iterative
algorithm. Most of the literatures deal with the special case of the general Mann iterative algorithm which
is defined by

x0 ∈ C, xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.3)

where C is a convex subset of a Banach space E, T : C → C is a mapping and {αn} is a sequence of positive
numbers satisfying certain control conditions.

It is well known that the Mann iterative algorithm can be employed to approximate fixed points of
nonexpansive mappings and zeros of strongly accretive mappings in Hilbert spaces or Banach spaces. Many
convergence theorems have been announced and published by a good numbers of authors. For more details,
see [2, 10, 11, 12, 14, 15, 25, 26, 28, 31]. A natural question rises:

Question 1.2. Does the Mann iterative algorithm always converge for continuous pseudocontractive map-
pings or even Lipschitz pseudocontractive mappings?

However in 2001, Chidume and Mutangadura [6] provided an example of a Lipschitz pseudocontractive
mapping with a unique fixed point for which the Mann iterative algorithm failed to converge and they stated
there “This resolves a long standing open problem”. Therefore, it is an interesting topic to construct some
new iterative algorithms for approximating the fixed points of pseudocontractive mappings. Now we recall
some important results in the literature as follows.

The first result was introduced in 1974 by Ishikawa [16] who proved the following theorem.
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Theorem 1.3. If C is a compact convex subset of a Hilbert space H, T : C → C is a Lipschitz pseudocon-
tractive mappings and x0 is any point in C, then the sequence {xn} converges strongly to a fixed point of T,
where {xn} is defined iteratively for each positive integer n ≥ 0 by{

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn,

where {αn} and {βn} are sequences of positive numbers satisfying the following conditions
(i) 0 ≤ αn ≤ βn ≤ 1;
(ii) limn→∞ βn = 0;
(iii)

∑∞
n=0 αnβn =∞.

Since its publication in 1974, the above theorem, as far as we know has never been extended to more
general Banach spaces.

The second result was introduced by Bruck [1] in 1974. He proved the following theorem.

Theorem 1.4. Let U be a maximal monotone operator on H with 0 ∈ R(U). Suppose that {λn} and {θn}
are acceptably paired, z ∈ H and the sequence {xn} ⊂ D(U) satisfies

xn+1 = xn − λn(vn + θn(xn − z)), vn ∈ U(xn) (1.4)

for n ≥ 1. If {xn} and {vn} are bounded, then {xn} converges strongly to x∗, the point of U−1(0) closest to
z.

The recursion formula (1.4) has recently been modified by Chidume and Zegeye [8] and then applied
to approximate fixed points of Lipschitz pseudocontractive mappings in real Banach spaces with uniformly
Gâteaux differentiable norm.

The third result was introduced in 1993 by Schu [24] who proved the following theorem.

Theorem 1.5. Let C be a nonempty closed convex and bounded subset of a Hilbert space H, T : C → C
be a Lipschitz pseudocontractive mapping with Lipschitz constant L ≥ 0, {λn} ⊂ (0, 1) with limn→∞ λn = 1,
{αn} ⊂ (0, 1) with limn→∞ αn = 0 such that ({αn}, {µn}) has property (A), {(1−µn)(1−λn)−1} is bounded

and limn→∞
1−µn
αn

= 0, where kn := (1 + α2
n(1 + L)2)

1
2 and µn := λn

kn
, ∀n ≥ 1. Fix an arbitrary point w ∈ K

and define
zn+1 := µn+1(αnTzn + (1− αn)zn) + (1− µn+1)w. (1.5)

Then the sequence {zn} defined by (1.5) converges strongly to the unique fixed point of T closest to w.

Here the pair of sequences ({αn}, {µn}) ⊂ (0,∞)× (0, 1) is said to have property (A) if and only if the
following conditions hold:

(i) {αn} is decreasing;
(ii) {µn} is strictly increasing;
(iii) there exists a strictly increasing sequence {βn} ⊂ N such that

(a) limn
αn−αn+βn

1−µn = 0;

(b) limn(1− µn+βn)(1− µn)−1 = 1;
(c) limn βn(1− µn) =∞.

Subsequently, Chidume and Udomene [7] extended Theorem 1.5 to real Banach spaces with the following
assumptions on iterative parameters which are simper than the above iterative parameters:

(i)′ {αn} is decreasing and limn→∞ αn = 0;
(ii)′ limn→∞ µn = 1 and

∑∞
n=1(1− µn) =∞;

(iii) (a)′ limn→∞
1−µn
αn

= 0; (b)′ limn→∞
α2
n

1−µn = 0;
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(c)′ limn→∞
µn−µn−1

(1−µn)2 = 0; (d)′ limn→∞
αn−1−αn
αn−1(1−µn) .

On the other hand, there are perturbations always occurring in the iterative processes because the
manipulations are inaccurate. It is no doubt that researching the convergent problems of iterative methods
with perturbations members is a significant job.

In this paper, we present an iterative algorithm with perturbations for Lipschitz pseudocontractive
mappings in Banach spaces. Consequently, we give the convergence analysis of the suggested algorithm.
Our result improves the corresponding results in the literature.

2. Preliminaries

Let S := {x ∈ E : ‖x‖ = 1} denote the unit sphere of a Banach space E. The space E is said to have a
Gâteaux differentiable norm (or E is said to be smooth) if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ S, and E is said to have a uniformly Gâteaux differentiable norm if for each y ∈ S the
limit (2.1) is attained uniformly for x ∈ S.

We need the following lemmas for proof of our main results.

Lemma 2.1 ([20]). Let E be a Banach space. Suppose K is a nonempty closed convex subset of E and
T : K → E is a continuous pseudocontractive mapping satisfying the weakly inward condition. Then for
y0 ∈ K, there exists a unique path t→ yt ∈ K, t ∈ [0, 1), satisfying the following condition:

yt = tTyt + (1− t)y0.

Furthermore, if E is assumed to be a reflexive Banach space possessing a uniformly Gâteaux differentiable
norm and is such that every closed convex and bounded subset of K has the fixed point property for non-
expansive self-mappings, then as t → 1, the path {yt : t ∈ [0, 1)} converges strongly to a fixed point Qu of
T .

Lemma 2.2 ([25]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn =∞;

(2) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a real reflexive Banach space E with a uniformly
Gâteaux differentiable norm. Let T : K → K be a Lipschitz pseudocontractive mapping with Lipschitz
constant L > 0 and F (T ) 6= ∅, where F (T ) is fixed point sets of T . Suppose that every closed convex and
bounded subset of K has the fixed point property for nonexpansive self-mappings. Let {αn} and {βn} be two
real sequences in (0, 1) which satisfy the following conditions:

(C1) limn→∞ βn = 0 and
∑∞

n=0 βn =∞;

(C2) limn→∞
βn
αn

= 0 and limn→∞
α2
n
βn

= 0;

(C3) limn→∞
1
βn

∣∣1−βn−1

1−βn −
αnβn−1

αn−1βn

∣∣ = 0.

For any u ∈ K, let {xn} be a sequence generated from arbitrary x1 ∈ K by

xn+1 = βnun + (1− βn)(αnTxn + (1− αn)xn), ∀n ≥ 0, (3.1)
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where {un} ⊂ K is a perturbation satisfying un → u ∈ K as n → ∞. Then the sequence {xn} defined by
(3.1) converges strongly to a fixed point Qu of T, where Q is the unique sunny nonexpansive retract from K
onto F (T ).

Proof. First we prove that the sequence {xn} is bounded. We will show this fact by induction. According
to conditions (C1) and (C2), there exists a sufficiently large positive integer m such that

1− 2(L+ 1)(L+ 2)

(
βn + 2αn +

α2
n

βn

)
> 0, n ≥ m. (3.2)

Fix a p ∈ F (T ) and take a constant M1 > 0 such that

max{‖x0 − p‖, ‖x1 − p‖, · · · , ‖xm − p‖, 2‖um − p‖} ≤M1. (3.3)

Next, we show that ‖xm+1 − p‖ ≤M1.
Since T is pseudocontractive, we have

〈(I − T )xm+1 − (I − T )p, j(xm+1 − p)〉 ≥ 0. (3.4)

From (3.1) and (3.4), we obtain

‖xm+1 − p‖2 = 〈xm+1 − p, j(xm+1 − p)〉
= βm〈um − p, j(xm+1 − p)〉+ (1− βm)αm〈Txm − p, j(xm+1 − p)〉

+ (1− βm)(1− αm)〈xm − p, j(xm+1 − p)〉
= βm〈um − p, j(xm+1 − p)〉+ (1− βm)αm〈Txm − Txm+1, j(xm+1 − p)〉

+ (1− βm)αm〈Txm+1 − xm+1, j(xm+1 − p)〉
+ (1− βm)αm〈xm+1 − xm, j(xm+1 − p)〉+ 〈xm − p, j(xm+1 − p)〉
− βm〈xm+1 − p, j(xm+1 − p)〉 − βm〈xm − xm+1, j(xm+1 − p)〉
≤ βm‖um − p‖‖xm+1 − p‖+ (1− βm)αm‖Txm − Txm+1‖‖xm+1 − p‖

+ (1− βm)αm‖xm+1 − xm‖‖xm+1 − p‖+ ‖xm − p‖‖xm+1 − p‖
− βm‖xm+1 − p‖2 + βm‖xm − xm+1‖‖xm+1 − p‖
≤ βm‖um − p‖‖xm+1 − p‖+ (αm + βm)(L+ 1)‖xm+1 − xm‖‖xm+1 − p‖

+ ‖xm − p‖‖xm+1 − p‖ − βm‖xm+1 − p‖2.

It follows that

(1 + βm)‖xm+1 − p‖ ≤ ‖xm − p‖+ βm‖um − p‖+ (L+ 1)(αm + βm)‖xm+1 − xm‖. (3.5)

By (3.1) and (3.3), we have

‖xm+1 − xm‖ = ‖βm(um − p) + (1− βm)αm(Txm − p)
+ αm(βm − 1)(xm − p)− βm(xm − p)‖
≤ βm‖um − p‖+ (1− βm)αmL‖xm − p‖+ [αm(1− βm) + βm]‖xm − p‖
≤ (L+ 2)(αm + βm)M1.

(3.6)

Substitute (3.6) into (3.5) to obtain

(1 + βm)‖xm+1 − p‖ ≤ ‖xm − p‖+ βm‖um − p‖+ (L+ 1)(L+ 2)(αm + βm)2M1

≤
(

1 +
1

2
βm

)
M1 + (L+ 1)(L+ 2)(αm + βm)2M1,
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that is,

‖xm+1 − p‖ ≤
[
1− (βm/2)− (L+ 1)(L+ 2)(αm + βm)2

1 + βm

]
M1

=

{
1−

(βm/2)[1− 2(L+ 1)(L+ 2)
(
βm + 2αm + (α2

m/βm)
)
]

1 + βm

}
M1

≤M1.

By induction, we get
‖xn − p‖ ≤M1, ∀n ≥ 0, (3.7)

which implies that {xn} is bounded and so is {Txn}.

Set γn = βn
αn+βn−αnβn =

βn
αn

1+ βn
αn
−βn

for all n ≥ 0. Noting that limn→∞
βn
αn

= limn→∞ βn = 0, thus we

deduce γn → 0 as n→∞. It follows from Lemma 2.1 that there exists a unique sequence zn ∈ K satisfying

zn = γnu+ (1− γn)Tzn. (3.8)

We note that (3.8) can be rewritten as the follows

zn = βnu+ (1− βn)(αnTzn + (1− αn)zn).

From (3.1) and (3.2), we have

‖xn+1 − zn‖2 = βn〈un − u, j(xn+1 − zn)〉+ (1− βn)(1− αn)〈xn − zn, j(xn+1 − zn)〉
+ (1− βn)αn〈Txn − Tzn, j(xn+1 − zn)〉

= βn〈un − u, j(xn+1 − zn)〉+ (1− βn)(1− αn)〈xn − zn, j(xn+1 − zn)〉
+ (1− βn)αn〈Txn+1 − Tzn, j(xn+1 − zn)〉
+ (1− βn)αn〈Txn − Txn+1, j(xn+1 − zn)〉
≤ βn‖un − u‖‖xn+1 − zn‖+ (1− βn)(1− αn)‖xn − zn‖‖xn+1 − zn‖

+ (1− βn)αn‖xn+1 − zn‖2 + (1− βn)αnL‖xn+1 − xn‖‖xn+1 − zn‖.

It follows that

‖xn+1 − zn‖ ≤
βn

1− (1− βn)αn
‖un − u‖+

(1− βn)(1− αn)

1− (1− βn)αn
‖xn − zn‖

+
(1− βn)αnL

1− (1− βn)αn
‖xn+1 − xn‖

≤ βn
1− (1− βn)αn

‖un − u‖+
(1− βn)(1− αn)

1− (1− βn)αn
‖xn − zn−1‖

+
(1− βn)(1− αn)

1− (1− βn)αn
‖zn − zn−1‖+

(1− βn)αnL

1− (1− βn)αn
‖xn+1 − xn‖.

(3.9)

Next, we will estimate ‖xn+1 − xn‖ and ‖zn − zn−1‖.
First, from (3.1), we have

‖xn+1 − xn‖ = ‖βn(un − xn) + (1− βn)αn(Txn − xn)‖
≤ βn‖un − xn‖+ (1− βn)αn‖Txn − xn‖
≤ (αn + βn)M,

(3.10)

where M > 0 is some constant such that supn≥0{‖un − xn‖, ‖Txn − xn‖}.
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From (3.2), we have the following estimation

‖zn − zn−1‖2 = γn〈u− zn−1, j(zn − zn−1)〉
+ (1− γn)〈Tzn − Tzn−1 + Tzn−1 − zn−1, j(zn − zn−1)〉

= γn〈u− zn−1, j(zn − zn−1)〉+ (1− γn)〈Tzn − Tzn−1, j(zn − zn−1)〉
+ (1− γn)〈Tzn−1 − zn−1, j(zn − zn−1)〉

= γn〈u− zn−1, j(zn − zn−1)〉+ (1− γn)〈Tzn − Tzn−1, j(zn − zn−1)〉

− (1− γn)
γn−1

1− γn−1
〈u− zn−1, j(zn − zn−1)〉

≤
∣∣∣∣γn − (1− γn)

γn−1
1− γn−1

∣∣∣∣‖u− zn−1‖‖zn − zn−1‖
+ (1− γn)‖zn − zn−1‖2,

which implies that

‖zn − zn−1‖ ≤

∣∣γn − (1− γn) γn−1

1−γn−1

∣∣
γn

‖u− zn−1‖. (3.11)

Hence, from (3.9)-(3.11), we have

‖xn+1 − zn‖ ≤
βn

1− (1− βn)αn
‖un − u‖+

(1− βn)(1− αn)

1− (1− βn)αn
‖xn − zn−1‖

+
(1− βn)(1− αn)

1− (1− βn)αn
×

∣∣γn − (1− γn) γn−1

1−γn−1

∣∣
γn

‖u− zn−1‖

+
(1− βn)αnL

1− (1− βn)αn
(αn + βn)M

≤
[
1− βn

1− (1− βn)αn

]
‖xn − zn−1‖

+
βn

1− (1− βn)αn

{∣∣γn − (1− γn) γn−1

1−γn−1

∣∣
βnγn

‖u− zn−1‖

+
(1− βn)αnL

βn
(αn + βn)M + ‖un − u‖

}
..

We note that
|γn − (1− γn) γn−1

1−γn−1
|

βnγn
=

1− βn
1− βn−1

1

βn

∣∣∣∣1− βn−11− βn
− αnβn−1
αn−1βn

∣∣∣∣
→ 0,

and (1−βn)αnL
βn

(αn+βn) = (1−βn)Lα
2
n
βn

+(1−βn)αnL→ 0. Hence, by Lemma 2.2, we have ‖xn+1−zn‖ → 0.
By Lemma 2.1, the sequence {zn} given by (3.8) converges strongly to Qu. Hence, {xn} strongly converges
to some fixed point Qu of T . This completes the proof.

Remark 3.2. We can choose αn = 1

(n+1)
1
3

and βn = 1

(n+1)
1
2

. It is clear that {αn} and {βn} satisfy conditions

(C1) and (C2). Now, we validate that {αn} and {βn} satisfy condition (C3). As a matter of fact, from (C3),
we get

1

βn

∣∣∣∣1− βn−11− βn
− αnβn−1
αn−1βn

∣∣∣∣ ≤ 1

βn

∣∣∣∣1− βn−11− βn
− 1
∣∣∣+

1

βn

∣∣∣∣1− αnβn−1
αn−1βn

∣∣∣∣
=

1

1− βn

∣∣∣∣βn − βn−1βn

∣∣∣∣+
1

βn

∣∣∣∣1− αnβn−1
αn−1βn

∣∣∣∣.
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Note that
βn − βn−1

βn
= 1− βn−1

βn
= 1−

(
n+ 1

n

) 1
2

→ 0,

and
1

βn

∣∣∣∣1− αnβn−1
αn−1βn

∣∣∣∣ = (n+ 1)
1
2

∣∣∣∣(1 +
1

n

) 1
6

− 1

∣∣∣∣
≤ (n+ 1)

1
2

1

n
→ 0.

Therefore, {αn} and {βn} satisfy all conditions.

Remark 3.3. The assumptions in Theorem 3.1 imposed on iterative parameters are simper than the corre-
sponding assumptions imposed on iterative parameters in [7].
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