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Abstract

In this paper, we introduce a new concept of generalized compatibility for a pair of mappings defined on
a product S-metric and prove certain coupled coincidence point results for mappings satisfying Geraghty-
type contraction by using g-monotone instead of the usually mixed monotone property. We also give
some sufficient conditions for the uniqueness of a coupled coincidence point. Our results generalize the
corresponding results of Zhou and Liu [M. Zhou, X.-L. Liu, J. Funct. Spaces, 2016 (2016), 9 pages],
without mixed weakly monotone property and Kadelburg et al. [Z. Kadelburg, P. Kuman, S. Radenović,
W. Sintunavarat, Fixed Point Theory Appl., 2015 (2015), 14 pages] from usually metric to S-metric. An
illustrative example is presented to support our results. c©2016 All rights reserved.
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1. Introduction

It is well-known that fixed point theory in partially ordered metric spaces are one of the most important
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tools of nonlinear analysis has been widely applied to matrix equations, ordinary differential equations, fuzzy
differential equations, integral equations and intermediate value theorems.

In 2006, Bhaskar and Lakshmikantham [4] introduced the notion of a coupled fixed point and proved
some interesting coupled fixed point theorems for the mappings satisfying a mixed monotone property,
then Lakshmikantham and Ćirić [8] introduced the concept of a mixed g-monotone mapping and proved
coupled coincidence and coupled common fixed point theorems that extended the theorems due to Bhaskar
and Lakshmikantham. Subsequently, many authors obtained coupled coincidence and coupled fixed point
theorems in ordered metric spaces. Recently, in [9–11], the authors established common fixed theorems by
using g-monotone property instead of g-mixed monotone property. These kinds of results can be applied
in another type of situations, so they give an opportunity to widen the field of applications. In particular
the so-called tripled fixed point (and, more generally, n-tuple results) can be more easily handled by using
monotone property instead of mixed monotone property (see for example [1, 2, 7]).

On the other hand, several authors have studied fixed point theory in generalized metric spaces. In
2012, Sedghi et al. [13] have introduced the notion of an S-metric space and proved that this notion is a
generalization of a metric space. Also, they have proved some properties of S-metric spaces and some fixed
point theorems for a self-map on an S-metric space. After that, Sedghi and Dung [12] proved a general
fixed point theorem in S-metric spaces which is a generalization of [13, Theorem 3.1] and obtained many
analogues of fixed point theorems in metric spaces for S-metric spaces. In [5], Gordji et al. have introduced
the concept of a mixed weakly monotone pair of maps and proved some coupled common fixed point theorems
for a contractive-type maps by using the mixed weakly monotone property in partially ordered metric spaces.
These results are of particular interest to state coupled common fixed point theorems for maps with mixed
weakly monotone property in partially ordered S-metric spaces. In 2013, Dung [3] used the notion of a
mixed weakly monotone pair of maps to state a coupled common fixed point theorem for maps on partially
ordered S-metric spaces and generalized the main results of [3–5] into the structure of S-metric spaces.
In 2015, Zhou and Liu [14] established some coupled common fixed point theorems under Geraghty-type
contraction by using mixed weakly monotone property in partially ordered S-metric spaces.

In this manuscript, we firstly employ a new concept of generalized compatibility of a pair of mappings
defined on a product S-metric space, then give some coupled coincidence point results of a pair mappings
under Geraghty-type contraction using g-monotone property instead of mixed monotone property. This
result generalizes the main results of [14] and [6] into the structure of S-metric spaces. Also, an illustrative
example is presented showing the validity of our results.

2. Preliminaries

We now recall some basic definitions and important results for our discussion in the sequel.

Definition 2.1 ([13, Definition 2.1]). Let X be a nonempty set. An S-metric on X is a function S : X3 7→
[0,∞) that satisfies the following conditions for all x, y, z, a ∈ X.

1. S(x, y, z) = 0 if and only if x = y = z = 0;

2. S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

(1) Let X = Rn and ‖ · ‖ a norm on X, then S(x, y, z) = ‖x+ 2y − 3z‖+ ‖x− z‖ is an S-metric on X.

(2) Let R be a real line, then S(x, y, z) = |x− z|+ |y − z| is an S-metric on R.

(3) Let X be a nonempty set, d is ordinary metric on X, the Sd(x, y, z) = d(x, z) + d(y, z) is an S-metric
on X.
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Lemma 2.2 ([13, Lemma 1.4]). Let (X,S) be an S−metric space. Then

S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z)

and
S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y)

for all x, y, z ∈ X.

Lemma 2.3 ([13, Lemma 2.5]). Let (X,S) be an S-metric space. Then S(x, x, y) = S(y, y, x), for all
x, y ∈ X.

Lemma 2.4. Let (X, d) be a metric space. Then X ×X is a metric space with metric Dmax
d given by

Dmax
d ((x, y), (u, v)) = max{d(x, u), d(y, v)}

for all x, y, u, v ∈ X.

Proof. For all x, y, u, v ∈ X, we have Dmax
d ((x, y), (u, v)) ∈ [0,∞) and Dmax

d ((x, y), (u, v))= 0, if and only if
d(x, u) = d(y, v) = 0, if and only if x = u, y = v, that is (x, y) = (u, v), and

Dmax
d ((x, y), (u, v))

= max{d(x, u), d(y, v)}
≤ max{d(x, a), d(u, a)}+ max{d(y, b), d(v, b)}
= Dmax

d ((x, y), (a, b)) +Dmax
d ((u, v), (a, b)).

Therefore, Dmax
d is a metric on X ×X.

Lemma 2.5. Let (X,S) be an S-metric space. Then X×X is an S-metric space with S-metric Dmax
s given

by
Dmax

s ((x, y), (u, v), (w, s)) = max{S(x, u, w), S(y, v, t)}

for all x, y, u, v, w, t ∈ X.

Proof. For all x, y, u, v, w, t ∈ X, we have Dmax
s ((x, y), (u, v), (w, t)) ∈ [0,∞) and Dmax

s ((x, y), (u, v), (w, t))=
0, if and only if S(x, u, w) = S(y, v, t) = 0, if and only if x = u = w, y = v = t, that is, (x, y) = (u, v) = (w, t),
and

Dmax
s ((x, y), (u, v), (w, t))

= max{S(x, u, w), S(y, v, t)}
≤ max{S(x, x, a), S(u, u, a)}+ max{S(w,w, a), S(y, y, b)}+ max{S(v, v, b), S(t, t, b)}
= Dmax

s ((x, y), (x, y), (a, b)) +Dmax
s ((u, v), (u, v), (a, b)) +Dmax

s ((w, t), (w, t), (a, b)).

Thus, Dmax
s is an S-metric on X ×X.

Remark 2.6. Let (X, d) be a metric space. By using Lemma 2.5 with S = Sd, we get

Dmax
s ((x, y), (x, y), (u, v)) = max{Sd(x, x, u), Sd(y, y, v)}

= 2 max{d(x, u), d(y, v)}
= 2Dmax

d ((x, y), (u, v))

for all x, y, u, v ∈ X.

Definition 2.7 ([13, Definition 2.8]). Let (X,S) be an S-metric space.
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(1) A sequence {xn} ⊂ X is said to be convergent to x ∈ X, if S(xn, xn, x) → 0 as n → ∞. That is, for
each ε > 0, there exists n0 ∈ N such that for all n ≥ n0, we have S(xn, xn, x) < ε.

(2) A sequence {xn} ⊂ X is said to be a Cauchy sequence, if S(xn, xn, xm) → 0 as n,m → ∞. That is,
for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0, we have S(xn, xn, xm) < ε.

(3) The S-metric space (X,S) is said to be complete, if every Cauchy sequence is a convergent sequence.

Lemma 2.8. Let (X,S) be an S-metric space. Then (X,S) is complete, if and only if (X × X,Dmax
s ) is

complete.

Proof. It is obvious to get the conclusion from the definition of completeness on (X,S).

Definition 2.9. Suppose that f, g : X × X 7→ X are two maps. f is said to be g-nondecreasing with a
partial order �, if for all x, y, u, v ∈ X, with g(x, y) � g(u, v), we have f(x, y) � f(u, v).

Example 2.10. Let X = (0,∞) be endowed with the natural ordering of real numbers ≤. Define mappings
f, g : X×X 7→ X by f(x, y) = ex+ y and g(x, y) = x+y, for all (x, y) ∈ X×X. Then f is g-nondecreasing
with respect to ≤.

Example 2.11. Let X = N be endowed with the partial order � defined by x � y, if and only if y divides
x. Define the mappings f, g : X ×X 7→ X by f(x, y) = x2y2 and g(x, y) = xy, for all (x, y) ∈ X ×X. Then
f is g-nondecreasing with respect to �.

Definition 2.12. Let f, g : X ×X 7→ X be two maps. An element (x, y) ∈ X ×X is called a

(1) coupled fixed point of a mapping f : X ×X 7→ X, if x = f(x, y) and y = f(y, x).

(2) coupled coincidence point of two mappings f, g : X×X 7→ X, if f(x, y) = g(x, y) and f(y, x) = g(y, x).

(3) coupled common fixed point of a mapping f, g : X×X 7→ X, if x = f(x, y) = g(x, y) and y = f(y, x) =
g(y, x).

Definition 2.13. Let (X,S) be an S-metric space and let f, g : X ×X 7→ X be two maps. We say that the
pair (f, g) is generalized compatible, if

S(f(g(xn, yn), g(yn, xn)), f(g(xn, yn), g(yn, xn)), g(f(xn, yn), f(yn, xn)))→ 0, as n→∞,
S(f(g(yn, xn), g(xn, yn)), f(g(yn, xn), g(xn, yn)), g(f(yn, xn), f(xn, yn)))→ 0, as n→∞,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

f(xn, yn) = lim
n→∞

g(xn, yn) = t1,

lim
n→∞

f(yn, xn) = lim
n→∞

g(yn, xn) = t2.

Definition 2.14. Let f, g : X ×X 7→ X be two maps. We say the pair (f, g) is commuting, if

f(g(x, y), g(y, x)) = g(f(x, y), f(y, x))

for all x, y ∈ X.

3. Main results

Let Θ denote the set of all functions θ : [0,∞)2 7→ [0, 1) which satisfy the following conditions:

(θ1) θ(s, t) = θ(t, s) for all s, t ∈ [0,∞);
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(θ2) for two sequences {sn} and {tn} of nonnegative real numbers,

θ(sn, tn)→ 1⇒ sn, tn → 0.

Some examples of such a function are as follows:

Example 3.1. Let θ : [0,∞)2 7→ [0, 1) be defined by

θ(x, y) =

{
sin(k1x+k2y)

k1x+k2y
, x > 0 or y > 0, and k1, k2 ∈ (0, 1);

l ∈ [0, 1), x = y = 0.

Example 3.2. Let θ : [0,∞)2 7→ [0, 1) be defined by

θ(x, y) =

{
ln(1+max{k1x,k2y})

max{k1x,k2y} , x > 0 or y > 0, and k1, k2 ∈ (0, 1);

l ∈ [0, 1), x = y = 0.

Example 3.3. Let θ : [0,∞)2 7→ [0, 1) be defined by

θ(x, y) =

{
1− k(x+ y), x+ y > 0, and k(x+ y) ≤ 1;

l ∈ [0, 1), k(x+ y) > 1.

Now we prove our main results.

Theorem 3.4. Let (X,S,�) be a partially ordered S-metric space; f, g : X × X 7→ X be two maps such
that

(1) X is S-complete;

(2) f, g are two generalized compatible maps such that f is g-nondecreasing with respect to �, and there
exist x0, y0 ∈ X such that g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0);

(3) there exists θ ∈ Θ such that

S(f(x, y), f(x, y), f(u, v)) ≤ θ(S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u))) (3.1)

×max{S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u))}

for all x, y, u, v ∈ X with g(x, y) � g(u, v) and g(y, x) � g(v, u);

(4) for any x, y ∈ X, there exist u, v ∈ X such that

f(x, y) = g(u, v), f(y, x) = g(v, u). (3.2)

(5) (a) f and g are continuous; or

(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f and g have a coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be such that g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0).
From (3.2), there exists (x1, y1) ∈ X ×X such that f(x0, y0) = g(x1, y1) and f(y0, x0) = g(y1, x1).
Again by assumption (4), for (x1, y1) there exists (x2, y2) ∈ X ×X such that f(x1, y2) = g(x2, y2) and

f(y1, x1) = g(y2, x2). By continuing this process, we can construct two sequences {xn} and {yn} in X such
that

f(xn, yn) = g(xn+1, yn+1), f(yn, xn) = g(yn+1, xn+1) (3.3)
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for all n ∈ N.
First we show that for all n ∈ N, we have

g(xn, yn) � g(xn+1, yn+1), and g(yn, xn) � g(yn+1, xn+1). (3.4)

As g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0) and as f(x0, y0) = g(x1, y1) and f(y0, x0) = g(y1, x1),
we have g(x0, y0) � g(x1, y1) and g(y0, x0) � g(y1, x1). Thus, (3.4) holds for n = 0. Suppose now that (3.4)
holds for some fixed n ∈ N.

Since f is g-nondecreasing with respect to �, we have

g(xn+1, yn+1) = f(xn, yn) � f(xn+1, yn+1) = g(xn+2, yn+2),

and
g(yn+1, xn+1) = f(yn, xn) � f(yn+1, xn+1) = g(yn+2, xn+2).

Hence (3.4) holds for all n ∈ N.
If g(xn0 , yn0) = g(xn0+1, yn0+1) and g(yn0 , yn0) = g(yn0+1, xn0+1) for some n0 ∈ N, then (xn0 , yn0) is a

coupled coincidence point of f and g.
Therefore, in what follows, we assume that for each n ∈ N, g(xn, yn) 6= g(xn+1, yn+1) or g(yn, xn) 6=

g(yn+1, xn+1) holds.
Since g(xn, yn) � g(xn+1, yn+1) and g(yn, xn) � g(yn+1, xn+1), by using (3.1) and (3.3), we get for all

n ∈ N,

S(g(xn+1,yn+1), g(xn+1, yn+1), g(xn+2, yn+2))

= S(f(xn, yn), f(xn, yn), f(xn+1, yn+1)) (3.5)

≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))},

and

S(g(yn+1,xn+1), g(yn+1, xn+1), g(yn+2, xn+2))

= S(f(yn, xn), f(yn, xn), f(yn+1, xn+1)) (3.6)

≤ θ(S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)), S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)))

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))}.

From (3.5) and (3.6), we get for all n ∈ N,

max{S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2)), S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2))}
≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))}
≤ max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))}.

(3.7)

Thus the sequence

dn := max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))}

is decreasing. It follows that dn → d as n→∞, for some d ≥ 0. Next, we claim that d = 0.
Suppose to the contrary that d > 0, then from (3.7), we obtain that

max{S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2)), S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2))}
max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))}
≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))) < 1.
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On taking the limit as n→∞, we get

θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))→ 1.

Since θ ∈ Θ, we have
S(g(xn, yn), g(xn, yn), g(xn+1, yn+1))→ 0,

and
S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))→ 0,

as n→∞.
Hence, dn → 0 as n→∞, which contradicts the assumption d > 0. Thus d = 0, that is,

dn := max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))} → 0, (3.8)

as n→∞.
We shall prove that {g(xn, yn), g(yn, xn)} is a Cauchy sequence in X ×X endowed with S-metric Dmax

s

defined in Lemma 2.5.
If {g(xn, yn), g(yn, xn)} is not a Cauchy sequence in (X × X,Dmax

s ), then there exists ε > 0 for which
we can find two sequences of positive integers {mk} and {nk} such that for all positive integer k with
nk > mk > k, we have

Dmax
s ((g(xnk

, ynk
), g(ynk

, xnk
)), (g(xnk

, ynk
), g(ynk

, xnk
)), (g(xmk

, ymk
), g(ymk

, xmk
))) ≥ ε,

Dmax
s ((g(xnk−1, ynk−1), g(ynk−1, xnk−1)), (g(xnk−1, ynk−1), g(ynk−1, xnk−1)), (g(xmk

, ymk
), g(ymk

, xmk
))) < ε.

By definition of Dmax
s , we have

rk := max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))} ≥ ε, (3.9)

and

max{S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xmk
, ymk

)),

S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ymk
, xmk

))} < ε.
(3.10)

By using (3.9), (3.10) and Lemma 2.2, we have that

ε ≤ rk := max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≤ max{S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xmk

, ymk
)), S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ymk

, xmk
))}

+ max{2S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xnk
, ynk

)), 2S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ynk
, xnk

))}
< 2 max{S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xnk

, ynk
)), S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ynk

, xnk
))}+ ε.

On taking the limit as k →∞, we have

rk := max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))} → ε. (3.11)

By Lemma 2.2, we have

rk = max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≤ max{2S(g(xnk

, ynk
), g(xnk

, ynk
), g(xnk+1, ynk+1)), 2S(g(ynk

, xnk
), g(ynk

, xnk
), g(ynk+1, xnk+1))}

+ max{S(g(xnk+1, ynk+1), g(xnk+1, ynk+1), g(xmk
, ymk

)), S(g(ynk+1, xnk+1), g(ynk+1, xnk+1), g(ymk
, xmk

))}
< 2dnk

+ max{2S(g(xmk
, ymk

), g(xmk
, ymk

), g(xmk+1, ymk+1)), 2S(g(ymk
, xmk

), g(ymk
, xmk

), g(ymk+1, xmk+1))}
+ max{S(g(xnk+1, ynk+1), g(xnk+1, ynk+1), g(xmk+1, ymk+1)),

S(g(ynk+1, xnk+1), g(ynk+1, xnk+1), g(ymk+1, xmk+1))}
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= 2dnk
+ 2dmk

+ max{S(f(xnk
, ynk

), f(xnk
, ynk

), f(xmk
, ymk

)), S(f(ynk
, xnk

), f(ynk
, xnk

), f(ymk
, xmk

))}
< 2dnk

+ 2dmk
+ θ(S(g(xnk

, ynk
), g(xnk

, ynk
), g(xmk

, ymk
)), S(g(ynk

, xnk
), g(ynk

, xnk
), g(ymk

, xmk
)))

×max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≤ 2dnk

+ 2dmk
+ rk.

On taking the limit as k →∞ and by using (3.8) and (3.11), we get

θ(S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

)))→ 1.

By using the property of θ, we obtain

S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

))→ 0,

and
S(g(ynk

, xnk
), g(ynk

, xnk
), g(ymk

, xmk
))→ 0,

as k →∞, which implies that
lim
k→∞

rk = 0,

which contradicts with ε > 0.
Therefore, {g(xn, yn), g(yn, xn)} is a Cauchy sequence in (X × X,Dmax

s ). Since X is S-complete, by
Lemma 2.8, there exists (u, v) ∈ X ×X such that

lim
n→∞

g(xn, yn) = lim
n→∞

f(xn, yn) = u and lim
n→∞

g(yn, xn) = lim
n→∞

f(yn, xn) = v. (3.12)

Since the pair (f, g) satisfies the generalized compatibility, from (3.12), we get that

lim
n→∞

S(f(g(xn, yn), g(yn, xn)), f(g(xn, yn), g(yn, xn)), g(f(xn, yn), f(yn, xn))) = 0, (3.13)

and
lim
n→∞

S(f(g(yn, xn), g(xn, yn)), f(g(yn, xn), g(xn, yn)), g(f(yn, xn), f(xn, yn))) = 0.

Now, consider the assumption (5) that (a) holds, that is, f and g are continuous. By using Lemma 2.2,
we get that

S(g(u, v), g(u, v), f(g(xn, yn), g(yn, xn)))

≤ 2S(g(u, v), g(u, v), g(f(xn, yn), f(yn, xn)))

+ S(f(g(xn, yn), g(yn, xn)), f(g(xn, yn), g(yn, xn)), g(f(xn, yn), f(yn, xn))).

By passing to the limit as n→∞ and using (3.12), (3.13) and the continuity of f , we get that

S(g(u, v), g(u, v), f(u, v)) = 0.

Hence, g(u, v) = f(u, v). In similar way, g(v, u) = f(v, u) is obtained.
Now, consider the assumption 5 that (b) holds. By (3.4) and (3.12), we have {g(xn, yn)} and {g(yn, xn)}

are nondecreasing sequences, g(xn, yn)→ u and g(yn, xn)→ v as n→∞. Thus for all n ∈ N, we have

g(xn, yn) � u, g(yn, xn) � v.

By using (3.1) and Lemma 2.2, we get

S(f(u, v), f(u, v), g(u, v)) ≤ 2S(f(u, v), f(u, v), g(xn+1, yn+1)) + S(g(xn+1, yn+1), g(xn+1, yn+1), g(u, v))

= 2S(f(u, v), f(u, v), f(xn, yn)) + S(g(xn+1, yn+1), g(xn+1, yn+1), g(u, v))

→ 0,

as n→∞. Hence, g(u, v) = f(u, v). In similar way, we get g(v, u) = f(v, u).
Note that in the case (b), continuity and generalized compatibility assumptions are not necessary in the

proof.
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Remark 3.5. In Theorem 3.4, the condition that f has g-nondecreasing property is a substitution for the
mixed weakly monotone property of the pair of (f, g) that was used in [5]-[14].

In Theorem 3.4, the following contractive condition was studied:

S(f(x, y), f(x, y), f(u, v)) ≤ θ(S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u)))

×max{S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u))}.

The above condition is, in some sense, an extension of the contractive condition:

d(F (x, y), F (u, v)) ≤ θ(d(gx, gu), d(gy, gv)×max{d(gx, gu), d(gy, gv)},

of Kadelburg et al. [6] from metric to S-metric spaces.
Now, we give a more general contractive condition to extend Theorem 3.4.

Theorem 3.6. Let (X,S,�) be a partially ordered S-metric space; f, g : X × X 7→ X be two maps such
that

1. X is S-complete;

2. f, g are two generalized compatible maps such that f is g-nondecreasing with respect to � and there
exist x0, y0 ∈ X such that g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0);

3. there exists θ ∈ Θ such that

S(f(x, y), f(x, y), f(u, v)) ≤ θ(S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u)))

×max{S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u)), (3.14)

S(g(x, y), g(x, y), f(x, y)), S(g(y, x), g(y, x), f(y, x)),

S(g(u, v), g(u, v), f(u, v)), S(g(v, u), g(v, u), f(v, u))}

for all x, y, u, v ∈ X with g(x, y) � g(u, v) and g(y, x) � g(v, u);

4. for any x, y ∈ X, there exist u, v ∈ X such that

f(x, y) = g(u, v), f(y, x) = g(v, u); (3.15)

5. (a) f and g are continuous; or

(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f and g have a coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be such that g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0).
From (3.15), there exists (x1, y1) ∈ X ×X such that f(x0, y0) = g(x1, y1) and f(y0, x0) = g(y1, x1).
Again by assumption 4, for (x1, y1) there exists (x2, y2) ∈ X × X such that f(x1, y2) = g(x2, y2) and

f(y1, x1) = g(y2, x2). By continuing this process, we can construct two sequences {xn} and {yn} in X such
that

f(xn, yn) = g(xn+1, yn+1), f(yn, xn) = g(yn+1, xn+1) (3.16)

for all n ∈ N.
First we show that for all n ∈ N, we have

g(xn, yn) � g(xn+1, yn+1) and g(yn, xn) � g(yn+1, xn+1). (3.17)
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As g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0) and as f(x0, y0) = g(x1, y1) and f(y0, x0) = g(y1, x1),
we have g(x0, y0) � g(x1, y1) and g(y0, x0) � g(y1, x1). Thus (3.17) holds for n = 0. Suppose now that
(3.17) holds for some fixed n ∈ N.

Since f is g-nondecreasing with respect to �, we have

g(xn+1, yn+1) = f(xn, yn) � f(xn+1, yn+1) = g(xn+2, yn+2),

and
g(yn+1, xn+1) = f(yn, xn) � f(yn+1, xn+1) = g(yn+2, xn+2).

Hence (3.17) holds for all n ∈ N.
If g(xn0 , yn0) = g(xn0+1, yn0+1) and g(yn0 , yn0) = g(yn0+1, xn0+1) for some n0 ∈ N, then (xn0 , yn0) is a

coupled coincidence point of f and g.
Therefore, in what follows, we assume that for each n ∈ N, g(xn, yn) 6= g(xn+1, yn+1) or g(yn, xn) 6=

g(yn+1, xn+1) holds.
Since g(xn, yn) � g(xn+1, yn+1) and g(yn, xn) � g(yn+1, xn+1), by using (3.14) and (3.16) with x = xn,

y = yn, u = xn+1, v = yn+1 we get for all n ∈ N,

S(g(xn+1,yn+1), g(xn+1, yn+1), g(xn+2, yn+2))

= S(f(xn, yn), f(xn, yn), f(xn+1, yn+1))

≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)),

S(g(xn, yn), g(xn, yn), f(xn, yn)), S(g(yn, xn), g(yn, xn), f(yn, xn)),

S(g(xn+1, yn+1), g(xn+1, yn+1), f(xn+1, yn+1)), S(g(yn+1, xn+1), g(yn+1, xn+1), f(yn+1, xn+1))}
= θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)),

S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)),

S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2)), S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2))}.

Hence

S(g(xn+1,yn+1), g(xn+1, yn+1), g(xn+2, yn+2))

≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)), (3.18)

S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2)), S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2))}.

Similarly, by using (3.14) and (3.16), we get

S(g(yn+1,xn+1), g(yn+1, xn+1), g(yn+2, xn+2))

= S(f(yn, xn), f(yn, xn), f(yn+1, xn+1))

≤ θ(S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)), S(g(xn, yn), g(xn, yn), g(xn+1, yn+1))) (3.19)

×max{S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)), S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)),

S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2)), S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2))}.

From (3.18) and (3.19), as θ(s, t) = θ(t, s), we get for all n ∈ N,

max{S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2)), S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2))}
≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))) (3.20)

×max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)),

S(g(xn+1, yn+1), g(xn+1, yn+1), g(xn+2, yn+2)), S(g(yn+1, xn+1), g(yn+1, xn+1), g(yn+2, xn+2))}.
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Put

dn = max{S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)}. (3.21)

Then from (3.20) we have, as θ(s, t) = θ(t, s) < 1 for all s, t > 0.

dn+1 ≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))) max{dn, dn+1}
< max{dn, dn+1}.

Since dn+1 < dn+1 is impossible, hence we have

dn+1 ≤ θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))dn. (3.22)

Hence we get dn+1 < dn for all n ∈ N. Therefore, there is some d ≥ 0 such that

lim
n→∞

dn = d.

Then from (3.22) we have

d ≤ lim
n→∞

θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1)))d,

and hence, if suppose that d > 0, then

lim
n→∞

θ(S(g(xn, yn), g(xn, yn), g(xn+1, yn+1)), S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))) = 1.

Since θ ∈ Θ, we have

S(g(xn, yn), g(xn, yn), g(xn+1, yn+1))→ 0 and S(g(yn, xn), g(yn, xn), g(yn+1, xn+1))→ 0.

Hence, by (3.21), dn → 0. Therefore, our supposition d > 0 was wrong, that is,

lim
n→∞

dn = d = 0. (3.23)

Now, we prove that {g(xn, yn), g(yn, xn)} is a Cauchy sequence in X ×X endowed with S-metric Dmax
s

defined in Lemma 2.5.
If {g(xn, yn), g(yn, xn)} is not a Cauchy sequence in (X × X,Dmax

s ), then there exists ε > 0 for which
we can find two sequences of positive integers {mk} and {nk} such that for all positive integer k with
nk > mk > k, we have

Dmax
s ((g(xnk

, ynk
), g(ynk

, xnk
)), (g(xnk

, ynk
), g(ynk

, xnk
)), (g(xmk

, ymk
), g(ymk

, xmk
))) ≥ ε,

Dmax
s ((g(xnk−1, ynk−1), g(ynk−1, xnk−1)), (g(xnk−1, ynk−1), g(ynk−1, xnk−1)), (g(xmk

, ymk
), g(ymk

, xmk
))) < ε.

By definition of Dmax
s , we have

rk := max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)),

S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≥ε,

(3.24)

and
max{S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xmk

, ymk
)),

S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ymk
, xmk

))} < ε.
(3.25)
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By using (3.24), (3.25) and Lemma 2.2, we have that

ε ≤ rk := max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≤ max{S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xmk

, ymk
)), S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ymk

, xmk
))}

+ max{2S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xnk
, ynk

)), 2S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ynk
, xnk

))}
< 2 max{S(g(xnk−1, ynk−1), g(xnk−1, ynk−1), g(xnk

, ynk
)), S(g(ynk−1, xnk−1), g(ynk−1, xnk−1), g(ynk

, xnk
))}+ ε.

On taking the limit as k →∞, we have

rk := max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))} → ε. (3.26)

By Lemma 2.2, we have

rk = max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≤ max{2S(g(xnk

, ynk
), g(xnk

, ynk
), g(xnk+1, ynk+1)), 2S(g(ynk

, xnk
), g(ynk

, xnk
), g(ynk+1, xnk+1))}

+ max{S(g(xnk+1, ynk+1), g(xnk+1, ynk+1), g(xmk
, ymk

)), S(g(ynk+1, xnk+1), g(ynk+1, xnk+1), g(ymk
, xmk

))}
< 2dnk

+ max{2S(g(xmk
, ymk

), g(xmk
, ymk

), g(xmk+1, ymk+1)), 2S(g(ymk
, xmk

), g(ymk
, xmk

), g(ymk+1, xmk+1))}
+ max{S(g(xnk+1, ynk+1), g(xnk+1, ynk+1), g(xmk+1, ymk+1)),

S(g(ynk+1, xnk+1), g(ynk+1, xnk+1), g(ymk+1, xmk+1))}
= 2dnk

+ 2dmk
+ max{S(f(xnk

, ynk
), f(xnk

, ynk
), f(xmk

, ymk
)), S(f(ynk

, xnk
), f(ynk

, xnk
), f(ymk

, xmk
))}

< 2dnk
+ 2dmk

+ θ(S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

)))

×max{S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

))}
≤ 2dnk

+ 2dmk
+ rk.

On taking the limit as k →∞ and using (3.23) and (3.26), we get

θ(S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

)), S(g(ynk
, xnk

), g(ynk
, xnk

), g(ymk
, xmk

)))→ 1.

By using the property of θ, we obtain

S(g(xnk
, ynk

), g(xnk
, ynk

), g(xmk
, ymk

))→ 0,

and
S(g(ynk

, xnk
), g(ynk

, xnk
), g(ymk

, xmk
))→ 0,

as k →∞, which implies that
lim
k→∞

rk = 0,

which contradicts with ε > 0.
Therefore, {g(xn, yn), g(yn, xn)} is a Cauchy sequence in (X × X,Dmax

s ). Since X is S-complete, by
Lemma 2.8, there exists (u, v) ∈ X ×X such that

lim
n→∞

g(xn, yn) = lim
n→∞

f(xn, yn) = u and lim
n→∞

g(yn, xn) = lim
n→∞

f(yn, xn) = v. (3.27)

Since the pair (f, g) satisfies the generalized compatibility, from (3.27), we get that

lim
n→∞

S(f(g(xn, yn), g(yn, xn)), f(g(xn, yn), g(yn, xn)), g(f(xn, yn), f(yn, xn))) = 0. (3.28)

and
lim
n→∞

S(f(g(yn, xn), g(xn, yn)), f(g(yn, xn), g(xn, yn)), g(f(yn, xn), f(xn, yn))) = 0.
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Now, consider the assumption 5 that (a) holds, that is, f and g are continuous. By using Lemma 2.2,
we get that

S(g(u, v), g(u, v), f(g(xn, yn), g(yn, xn))) ≤ 2S(g(u, v), g(u, v), g(f(xn, yn), f(yn, xn)))

+ S(f(g(xn, yn), g(yn, xn)), f(g(xn, yn),

g(yn, xn)), g(f(xn, yn), f(yn, xn))).

By passing to the limit as n→∞ and using (3.27), (3.28) and the continuity of f , we get that

S(g(u, v), g(u, v), f(u, v)) = 0.

Hence, g(u, v) = f(u, v). In similar way g(v, u) = f(v, u) is obtained.
Now, consider the assumption 5 that (b) holds. By (3.17) and (3.27), we have {g(xn, yn)} and {g(yn, xn)}

are nondecreasing sequences, g(xn, yn)→ u and g(yn, xn)→ v, as n→∞. Thus, for all n ∈ N, we have

g(xn, yn) � u, g(yn, xn) � v.

By using (3.14) and Lemma 2.2, we get

S(f(u, v), f(u, v), g(u, v)) ≤ 2S(f(u, v), f(u, v), g(xn+1, yn+1)) + S(g(xn+1, yn+1), g(xn+1, yn+1), g(u, v))

= 2S(f(u, v), f(u, v), f(xn, yn)) + S(g(xn+1, yn+1), g(xn+1, yn+1), g(u, v))

→ 0, as n→∞.

Hence, g(u, v) = f(u, v). In similar way, we get g(v, u) = f(v, u).

The commuting maps (f, g) are obviously generalized compatible, then we obtain the following corollary.

Corollary 3.7. Let (X,S,�) be a partially ordered S-metric space, f, g : X × X 7→ X be two maps such
that

1. X is S-complete;

2. f, g are two commuting maps such that f is g-nondecreasing with respect to � and there exist x0, y0 ∈ X
such that g(x0, y0) � f(x0, y0) and g(y0, x0) � f(y0, x0);

3. there exists θ ∈ Θ such that

S(f(x, y), f(x, y), f(u, v)) ≤ θ(S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u)))

×max{S(g(x, y), g(x, y), g(u, v)), S(g(y, x), g(y, x), g(v, u))}

for all x, y, u, v ∈ X with g(x, y) � g(u, v) and g(y, x) � g(v, u);

4. for any x, y ∈ X, there exist u, v ∈ X such that

f(x, y) = g(u, v), f(y, x) = g(v, u);

5. (a) f and g are continuous; or

(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f and g have a coupled coincidence point in X.

Definition 3.8 ([11, Definition 1.1]). Let (X,�) be a partially ordered set and let f : X × X → X and
g : X → X be two mappings. The mapping f is said to have the g-monotone property, if f is monotone
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g-nondecreasing in both of its arguments, that is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 ⇒ f(x1, y) � f(x2, y),

and
y1, y2 ∈ X, gy1 � gy2 ⇒ f(x, y1) � f(x, y2).

If we take g = IX (an identity mapping on X ), then f is a monotone mapping on X.

Definition 3.9. Let (X,S) be an S-metric space and let f : X ×X 7→ X and g : X 7→ X be two maps. We
say the pair (f, g) is compatible, if

S(f(g(xn), g(yn)), f(g(xn), g(yn)), g(f(xn, yn)))→ 0, as n→∞,
S(f(g(yn), g(xn)), f(g(yn), g(xn)), g(f(yn, xn)))→ 0, as n→∞,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

f(xn, yn) = lim
n→∞

g(xn) = t1,

lim
n→∞

f(yn, xn) = lim
n→∞

g(yn) = t2.

Definition 3.10. Let f : X ×X 7→ X and g : X 7→ X be two maps. We say the pair (f, g) is commuting
if, f(gx, gy) = g(f(x, y), f(y, x)) for all x, y ∈ X.

Now, we deduce some analogous results to Kadelburg et al. [6] in partially ordered S-metric spaces.

Corollary 3.11. Let (X,S,�) be a partially ordered complete S-metric space, f : X × X 7→ X and
g : X 7→ X be such that f has g-monotone property. Suppose that the following hold:

1. g is continuous and g(X) is closed;

2. f(X ×X) ⊂ g(X) and f and g are compatible;

3. there exist x0, y0 ∈ X such that gx0 � f(x0, y0) and gy0 � f(y0, x0);

4. there exists θ ∈ Θ such that for all x, y, u, v ∈ X

S(f(x, y), f(x, y), f(u, v)) ≤ θ(S(gx, gx, gu), S(gy, gy, gv))×max{S(gx, gx, gu), S(gy, gy, gv)},

with gx � gu and gy � gv;

5. (a) f is continuous; or

(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f and g have a coupled coincidence point in X.

Proof. By starting from x0, y0 in assumption 3 and using f(X × X) ⊂ g(X) in assumption 2, we can
construct sequences {xn} and {yn} in X such that

gxn = f(xn−1, yn−1), gyn = f(yn−1, xn−1), for n = 1, 2, · · · .

Then, proceeding the proof of Theorem 3.4 by using the two sequences mentioned above, we can draw
the conclusion.

Remark 3.12. Since commuting maps (f, g) are necessarily compatible, then the conclusion of Corollary 3.11
holds true by using (f, g) is commuting instead of compatibility of f and g.
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By putting g = Ix, where Ix is an identity mapping on X in Corollary 3.11, we obtain the following
corollary.

Corollary 3.13. Let (X,S,�) be a partially ordered S-metric space and let f : X × X 7→ X have the
monotone property. Suppose that the following hold:

1. there exist x0, y0 ∈ X such that x0 � f(x0, y0) and y0 � f(y0, x0);

2. there exists θ ∈ Θ such that for all x, y, u, v ∈ X,

S(f(x, y), f(x, y), f(u, v)) ≤ θ(S(x, x, u), S(y, y, v))×max{S(x, x, u), S(y, y, v)},

with x � u and y � v;

3. (a) f is continuous; or

(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f has a fixed point in X.

By taking θ(t1, t2) = k with k ∈ [0, 1) for all t1, t2 ∈ [0,∞) in Corollary 3.11 and Corollary 3.13, we
obtain the following corollaries.

Corollary 3.14. Let (X,S,�) be a partially ordered complete S-metric space, f : X × X 7→ X and
g : X 7→ X be such that f has g-monotone property. Suppose that the following hold:

1. g is continuous and g(X) is closed;

2. f(X ×X) ⊂ g(X) and f and g are compatible;

3. there exist x0, y0 ∈ X such that gx0 � f(x0, y0) and gy0 � f(y0, x0);

4. there exists k ∈ [0, 1) such that for all x, y, u, v ∈ X,

S(f(x, y), f(x, y), f(u, v)) ≤ k ×max{S(gx, gx, gu), S(gy, gy, gv)},

with gx � gu and gy � gv;

5. (a) f is continuous; or

(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f and g have a coupled coincidence point in X.

Corollary 3.15. Let (X,S,�) be a partially ordered S-metric space and let f : X × X 7→ X have the
monotone property. Suppose that the following hold:

1. there exist x0, y0 ∈ X such that x0 � f(x0, y0) and y0 � f(y0, x0);

2. there exists k ∈ [0, 1) such that for all x, y, u, v ∈ X,

S(f(x, y), f(x, y), f(u, v)) ≤ k ×max{S(x, x, u), S(y, y, v)},

with x � u and y � v;

3. (a) f is continuous; or
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(b) X has the following property:
if a nondecreasing sequence {xn} → x as n→∞, then xn � x for all n ∈ N.

Then f has a fixed point in X.

Remark 3.16. Since, for k, l ≥ 0, k + l ≤ 1,

kS(gx, gx, gu) + lS(gy, gy, gv) ≤ max{S(gx, gx, gu), S(gy, gy, gv)},

Corollary 3.14 (resp. Corollary 3.15) remains valid, if the right-hand side of assumption 5 of Corollary 3.14
(resp. assumption 2 of Corollary 3.15) is replaced by

kS(gx, gx, gu) + lS(gy, gy, gv) (resp. kS(x, x, u) + lS(y, y, v))

for some k, l ≥ 0, k + l < 1.

Now, we prove the uniqueness of the coupled coincidence point. Note that if (X,�) is a partially ordered
set, then we endow the product X×X with the following partial order relation, for all (x, y), (u, v) ∈ X×X

(x, y) � (u, v)⇔ g(x, y) � g(u, v) ∧ g(y, x) � g(v, u),

where g : X ×X 7→ X ×X is one-one.

Theorem 3.17. In addition to the hypotheses of Theorem 3.4, suppose the following condition holds:

(∗) for every (x, y), (z, t) ∈ X ×X, there exists another (u, v) ∈ X ×X which is comparable to (x, y) and
(z, t).

Then f and g have a unique coupled coincidence point.

Proof. From Theorem 3.4, the set of coupled coincidence points of f and g is nonempty.
Suppose (x, y) and (z, t) are coupled coincidence points of f and g, that is,

f(x, y) = g(x, y), f(y, x) = g(y, x);

f(z, t) = g(z, t), f(t, z) = g(t, z).

Now we prove that g(x, y) = g(z, t) and g(y, x) = g(t, z). By assumption, there exists (u, v) ∈ X × X
that is comparable to (x, y) and (z, t). We define sequences {g(un, vn)} and {g(vn, un)} as follows, with
u0 = u, v0 = v:

f(un, vn) = g(un+1, vn+1), f(vn, un) = g(vn+1, un+1), for all n ∈ N.

Since (u, v) is comparable to (x, y), we assume that (x, y) � (u, v) = (u0, v0), which implies that g(x, y) �
g(u0, v0) and g(y, x) � g(v0, u0). We suppose that (x, y) � (un, vn) for some n.

We will prove that
(x, y) ≤ (un+1, vn+1).

Since f is g-monotone, we have that g(x, y) � g(un, vn) implies f(x, y) � f(un, vn) and g(y, x) � g(vn, un)
implies f(y, x) � f(vn, un). Now

g(x, y) = f(x, y) � f(un, vn) = g(un+1, vn+1),

g(y, x) = f(y, x) � f(vn, un) = g(vn+1, un+1).

Thus we have
(x, y) � (un, vn), for all n ∈ N. (3.29)
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By using (3.1) and (3.29), we have

S(g(x, y), g(x, y), g(un+1, vn+1)) = S(f(x, y), f(x, y), f(un, vn)

≤ θ(S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un)))

×max{S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un))}.

Similarly

S(g(y, x), g(y, x), g(vn+1, un+1)) = S(f(y, x), f(y, x), f(vn, un)

≤ θ(S(g(y, x), g(y, x), g(un, vn)), S(g(y, x), g(y, x), g(vn, un)))

×max{S(g(y, x), g(y, x), g(un, vn)), S(g(y, x), g(y, x), g(vn, un))}.

This implies that

max{S(g(x, y), g(x, y),g(un+1, vn+1)), S(g(y, x), g(y, x), g(vn+1, un+1))}
≤ θ(S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un)))

×max{S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un))}
< max{S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un))}.

Therefore, we get that dn := max{S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un))} is decreasing
and hence dn → d as n → ∞, for some d ≥ 0. Now, we claim that d = 0. Assume to the contrary that
d > 0, from above inequality, we get

max{S(g(x, y), g(x, y), g(un+1, vn+1)), S(g(y, x), g(y, x), g(vn+1, un+1))}
max{S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un))}

≤ θ(S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un)))

< 1.

By taking the limit as n→∞ in the above inequality, we have

θ(S(g(x, y), g(x, y), g(un, vn)), S(g(y, x), g(y, x), g(vn, un)))→ 1, as n→∞.

By the property (θ2) of θ ∈ Θ, we have

S(g(x, y), g(x, y), g(un, vn))→ 0, S(g(y, x), g(y, x), g(vn, un))→ 0, as n→∞.

Now we have dn → 0 as n→∞, which contradicts with d > 0. Therefore, we conclude that dn → 0, as
n→∞ and then

lim
n→∞

S(g(x, y), g(x, y), g(un, vn)) = 0, lim
n→∞

S(g(y, x), g(y, x), g(vn, un)) = 0. (3.30)

Similarly, we have

lim
n→∞

S(g(z, t), g(z, t), g(un, vn)) = 0, lim
n→∞

S(g(t, z), g(t, z), g(vn, un)) = 0. (3.31)

By using (3.30) and (3.31), we have g(x, y) = g(z, t) and g(y, x) = g(t, z).

Corollary 3.18. In addition to the hypotheses of Corollary 3.14, assume that for any (x, y), (z, t) ∈ X×X,
there exists another (u, v) ∈ X × X which is comparable to (x, y) and (z, t), then f and g have a unique
coupled fixed point.
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Theorem 3.19. In addition to the hypotheses of Corollary 3.13, let the condition (∗) of Theorem 3.17 be
satisfied. Then the coupled fixed point of f is unique. Moreover, if for the terms of sequences {xn} and
{yn} defined by xn = f(xn−1, yn−1) and yn = f(yn−1, xn−1), xn � yn holds for n sufficiently large, then the
coupled fixed point of f has the form (x, x).

Proof. We only prove the last assertion. Suppose that for n sufficiently large, xn � yn. Then by (3.1) of
Theorem 3.4 (with g = Ix), we get

S(xn+1, xn+1, yn+1) = S(f(xn, yn), f(xn, yn), f(yn, xn))

≤ θ(S(xn, xn, yn), S(yn, yn, xn))×max{S(xn, xn, yn), S(yn, yn, xn)}
= θ(S(xn, xn, yn), S(yn, yn, xn))× S(xn, xn, yn)

< S(xn, xn, yn).

Therefore, we get that dn := S(xn, xn, yn) is decreasing. Hence, dn → d as n→∞ for some d ≥ 0.
Next, we prove that d = 0. Assume to the contrary that d > 0, then from above inequality, we have

S(xn+1, xn+1, yn+1)

S(xn, xn, yn)
≤ θ(S(xn, xn, yn), S(yn, yn, xn)) < 1.

By letting n → ∞, we get θ(S(xn, xn, yn), S(yn, yn, xn)) → 1. Since θ ∈ Θ, we have S(xn, xn, yn) → 0,
which contradicts with d > 0. Therefore, we have dn → 0 as n→∞.

By Lemma 2.2,

S(x, x, y) ≤ 2S(x, x, xn+1) + S(xn+1, xn+1, y)

≤ 2S(x, x, xn+1) + 2S(xn+1, xn+1, yn+1) + S(yn+1, yn+1, y)

≤ 2S(x, x, xn+1) + 2S(xn, xn, yn) + S(yn+1, yn+1, y).

By passing to the limit as n→∞, since xn → x, yn → y and S(xn, xn, yn)→ 0, we get that S(x, x, y) ≤ 0
and thus x = y.

Corollary 3.20. In addition to the hypotheses of Corollary 3.15, let the condition (∗) of Theorem 3.17 be
satisfied. Then the coupled fixed point of f is unique. Moreover, if for the terms of sequences {xn} and
{yn} defined by xn = f(xn−1, yn−1) and yn = f(yn−1, xn−1), xn � yn holds for n sufficiently large, then the
coupled fixed point of f has the form (x, x).

At last, we present an example to show that our result can be used when many results in this field
cannot.

Example 3.21. Let X = [0, 1] endowed with the natural ordering of real numbers and S-metric defined by
S(x, y, z) = 1

16(|x− z|+ |y − z|), for any x, y, z ∈ X. Then (X,S) is a complete S-metric space.
Define the mappings f, g : X ×X 7→ X as follows:

f(x, y) =

{
x2 − y2, x ≥ y,
0, x < y.

and

g(x, y) =

{
x2−y2

4 , x ≥ y,
0, x < y.

First of all, we prove that f is g-monotone with respect to the natural ordering of real numbers.
Let (x, y), (u, v) ∈ X ×X with g(x, y) ≤ g(u, v). We consider the following cases.

Case1: If x < y, then f(x, y) = 0 ≤ f(u, v).
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Case2: If x ≥ y and if u ≥ v, then

g(x, y) ≤ g(u, v)⇒ x2 − y2

4
≤ u2 − v2

4
⇒ x2 − y2 ≤ u2 − v2 ⇒ f(x, y) ≤ f(u, v).

But if u < v, then

g(x, y) ≤ g(u, v)⇒ 0 ≤ x2 − y2

4
≤ 0⇒ x2 = y2 ⇒ f(x, y) = 0 ≤ f(u, v).

Thus we see that f is g-monotone.
Now we prove that for any x, y ∈ X there exist u, v ∈ X such that

f(x, y) = g(u, v),

f(y, x) = g(v, u).

Let (x, y) ∈ X ×X be fixed. We consider the following cases.
Case1: If x = y, then we have f(x, y) = 0 = g(x, y) and f(y, x) = 0 = g(y, x).

Case2: If x > y, then we have f(x, y) = x2 − y2 = g(2x, 2y) and f(y, x) = 0 = g(2y, 2x).

Case3: If x < y, then we have f(x, y) = 0 = g(2x, 2y) and f(y, x) = y2 − x2 = g(2y, 2x).

Clearly, f and g are continuous.
Now, we prove that the pair (f, g) satisfies the generalized compatibility hypothesis.
Let {xn} and {yn} be two sequences in X such that

lim
n→∞

f(xn, yn) = lim
n→∞

g(xn, yn) = t1,

lim
n→∞

f(yn, xn) = lim
n→∞

g(yn, xn) = t2.

Then we must have that t1 = t2 = 0 and one can easily check that

lim
n→∞

S(f(g(xn, yn), g(yn, xn)), f(g(xn, yn), g(yn, xn)), g(f(xn, yn), f(yn, xn))) = 0, as n→∞,

lim
n→∞

S(f(g(yn, xn), g(xn, yn)), f(g(yn, xn), g(xn, yn)), g(f(yn, xn), f(xn, yn))) = 0, as n→∞.

Next, we prove that there exist two x0, y0 ∈ X with g(x0, y0) ≤ f(x0, y0) and g(y0, x0) ≤ f(y0, x0).
Since we have g(0, 12) = 0 = f(0, 12) and g(12 , 0) = 1

16 < f(12 , 0)) = 1
4 .

Finally, we verify the contraction condition (3) of Theorem 3.4, for all x, y, u, v ∈ X with g(x, y) ≤ g(u, v)
and g(y, x) ≤ g(v, u).

Let θ ∈ Θ be defined by θ(s, t) = 1
2 , for s, t ∈ [0,∞).

S(f(x, y), f(x, y), f(u, v)) =
1

16
(|f(x, y)− f(u, v)|+ |f(x, y)− f(u, v)|)

=
1

8
|f(x, y)− f(u, v)|

=
1

2
|g(x, y)− g(u, v)|

≤ θ(S(g(x, y), g(x, y), g(u, v), S(g(y, x), g(y, x), g(v, u)))

×max{S(g(x, y), g(x, y), g(u, v), S(g(y, x), g(y, x), g(v, u))}.

Hence, the condition (3) of Theorem 3.4 is satisfied.
All requirements of Theorem 3.4 are satisfied and (0, 0) is a coupled coincidence point of f and g.

Moreover, (0, 0) is a unique coupled common fixed point of f and g.
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