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Abstract

In this paper, we study qualitative topological analysis of spaces of natural images locally. We apply the
techniques of computational topology to the space of 3×3, 4×4, 5×5, 6×6 and 7×7 high-contrast patches.
We show that in each case there is a subspace of the space of all high-contrast patches that is topologically
equivalent to the Klein bottle and we found that the size of the largest subspace having the Klein bottle’s
homology decreases with increasing of the size of patches. The data sets used in this paper are different
from that discussed in the paper ”on the local behavior of spaces of natural images”, we conformed our
findings by applying the same methods to the different sizes patches. c⃝2016 All rights reserved.
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1. Introduction

There have been many successful attempts in statistics of images in the recent years [7, 9, 10]. Lee,
Pedersen, and Mumford [9] studied the distributions of 3 × 3 patches from optical and range images, they
observed that high contrast 3 × 3 range patches are densely clustered around the binary patches and the
majority of the high contrast optical patches concentrate near an annulus. In this paper we analyze the
structure of high-contrast regions of natural images instead of looking at an image as a whole, we are
interested in the topology of the space of n by n high-contrast patches with sufficiently small n. Carlsson,
Ishkanov, de Silva, and Zomorodian [4] apply topological tools to the dataset of optical 3× 3 patches, they
find one high density subset is called the primary circle, and show that there is a large 2-dimensional subset
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having the topology of a Klein bottle that contains the primary circle. In [1], Adams and Carlsson showed
that 5× 5 and 7× 7 range patches have the primary circle behavior.

In this paper, we apply the techniques of the paper [4] to high-contrast regions of natural images, and
study the topological structure of spaces of 3 × 3, 4 × 4, 5 × 5, 6 × 6 and 7 × 7 patches of natural images,
these spaces have many similar properties but they are not identical. In particular, we show that there is
a 2-dimensional subspace in each of the five spaces, whose homology is that of a Klein bottle. The data
sets used here are collected from INRIA Holidays dataset [8], which are different from that discussed in the
paper [4].

2. Persistent homology

For a given finite point set X sampled from an underlying space X ⊆ Rm, together with a parameter ϵ,
we construct from it a simplicial complex, called the Vietoris-Rips complex or Rips complex, denoted Rϵ.
The complex will have X as its vertex set, and a collection {x0, x1, · · · , xk} will determine a k-simplex in
Rϵ if and only if d(xi, xj) ≤ ϵ for all 0 ≤ i, j ≤ k. Here d denotes the metric distance. We can compute
a Rϵ complex at each scale ϵ. It is easy to see that R0 is a 0-complex and R∞ is an (| X | −1)-simplex.
That is, the Rϵ complex may have a much higher dimension than the embedding space X. However, there
is typically a proper range where Rϵ has homology groups isomorphic to those of X, and therefore has
Betti numbers equal to those of X. Since we only have the finite sample and no a priori information about
the underlying space X, it is impossible to make a estimate of a proper range of ϵ. To solve this problem,
persistence was introduced by Edelsbrunner, Letscher, and Zomorodian [6] and refined by Carlsson and
Zomorodian [11]. Edelsbrunner, Letscher, and Zomorodian have made the following observation. Whenever
ϵ ≤ ϵ′, there exists a natural inclusion of simplicial complexes Rϵ ↪→ Rϵ′ , and because of the functoriality
property discussed above, one obtains a linear transformation Hk(Rϵ) −→ Hk(Rϵ′) for any k. To study
the homology of a space using a point cloud sampled from it, one should keep track of the entire system of
vector spaces Hk(Rϵ), together with all the linear transformations described above. This system is called a
persistence vector space, and it is shown in [11] that persistence vector spaces admit a classification similar
to the classification result for finite dimensional vector spaces, which asserts that two vector spaces of the
same dimension are isomorphic. For persistence vector spaces, it shows that attached to each persistence
vector space, there is an invariant called a barcode which is just a finite collection of intervals, and that
any two persistence vector spaces with the same barcodes are isomorphic. The intervals can be explained
intuitively as the life-times of non-trivial cycles in a growing complex. The left endpoint of an interval
signifies the birth of a new topological property, and the right endpoint signals its death. We know that the
kth Betti number of a complex, βk= rankHk, roughly equal to the number of k-dimensional holes, and βk
may be computed from the barcodes, it is the number of intervals in the dimension k plot that intersect the
vertical line through ϵ. Thus an interval starting at time ϵ = ϵ0 and ending at ϵ = ϵ1 can be explained as a
hole that emerges in the complex at ϵ = ϵ0 and gets filled in at ϵ = ϵ1. Long intervals correspond to holes
persisting through a large range of values of the persistence parameter ϵ while short intervals correspond to
holes that get filled in quickly. Hence, long intervals in a barcode represent actual geometric structure of an
underlying space, whereas short intervals are considered to be noise. Figure 1 gives an example of barcode
for a figure ”8”.

In Figure 1 there are one long line in dimension 0, two in dimension 1 and no line in dimension 2 which
reflects the fact that figure ”8” has one connected component and two hole in dimensional one.

Since VR complexes may produce simplices in dimensions much higher than the dimension of the un-
derlying space, in practice we use the witness complex defined in [5].

For a point set P and a landmark subset L, let mk(p) be the distance from a point p ∈ P to its (k+1)-th
closest landmark point. The witness complex W (P,L, ϵ) is defined by follows:

(i) the vertex set is L;
(ii) for k > 0 and vertices li, the k-simplex [l0l1 · · · lk] is in W (P,L, ϵ) if all of its faces are, and if there
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is a witness point p ∈ P satisfying

max{d(l0, p), d(l1, p), · · · , d(lk, p)} ≤ ϵ+mk(p).

A lazy witness complex is similar to a witness complex. However, there is an additional parameter v,
typically chosen to be 0, 1, or 2, which helps decide how the lazy witness complexes are builded.

For a point cloud P , a landmark subset L, and a parameter v ∈ N, if v = 0, let m(p) = 0 for all p ∈ P . If
v > 0, let m(p) be the distance p to the v-th closest landmark point. The lazy witness complex LWv(P,L, ϵ)
is defined as follows:

(i) the vertex set is L;
(ii) for vertices a and b, edge [ab] is in LWv(P,L, ϵ) if there is a witness point p ∈ P such that

max{d(a, p), d(b, p)} ≤ ϵ+m(p);

(iii) a higher dimensional simplex is in LWv(P,L, ϵ) if all of its edges are.
The lazy witness complex depends on a parameterv ∈ {0, 1, 2} which we choose to be v = 1: De Silva

and Carlsson in [5] find v = 0 to be generally less effective, and v = 2 has the disadvantage of connecting
every landmark point to at least one other at R = 0. For more information and examples about lazy witness
complexes, please refer to the papers [2, 5].
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Figure 1. The barcodes for the 30 points of figure ”8”

3. The spaces of natural image patches

We collect data sets of high-contrast 3 × 3, 4 × 4, 5 × 5, 6 × 6 and 7 × 7 patches from selected natural
images of INRIA Holidays dataset [8]. Each data set consists of 5 × 105 high-contrast log patches. INRIA
Holidays dataset is available at http://lear.inrialpes.fr/ jegou/data.php. Figure 2 contains two samples.

Our main spaces X3, X4, X5, X6 and X7 are sets of 3× 3, 4× 4, 5× 5, 6× 6 and 7× 7 patches of high
contrast constructed by the following steps, each of the spaces contains 5 × 105 patches. The procedures
used here are similar to [1, 4, 9].

Step 1. Select 500 images from INRIA Holidays dataset.
Step 2. Compute the intensity at each pixel for every selected image by MATLAB function rgb2gray.
Step 3. Extract at random 5000 m×m patches from each image, where m = 3, 4, 5, 6, 7.
Step 4. Considering each patch as an m2-dimensional vector, we take the logarithm of each coordinate.
Step 5. Compute the D-norm: ∥ x ∥D for each vector. This is a measure of the contrast of a patch. Two

coordinates of x are neighbors, denoted i ∼ j, if the corresponding pixels in the m×m patch are adjacent.

We compute the D-norm for a vector by the formula: ∥ x ∥D=
√∑

i∼j
(xi − xj)2.
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Step 6. We choose the patches that have a D-norm in the top T percent of the entire sample. We take
T = 20% , as done in [1, 4, 9].

Step 7. Subtract an average of all coordinates from each coordinate. This produces a new m2-vector.
Step 8. We map the spaces into a unit sphere by dividing each vector with its Euclidean norm, which is

nonzero because the patches are high contrast. We do not change to the DCT basis for convenience.
Step 9. For computational convenience, we randomly choose 50,000 of the above patches in the top 20%

percent, and these spaces are subspaces of X3, X4, X5, X6 and X7, denoted by X̄3, X̄4, X̄5, X̄6 and X̄7

respectively.

Figure 2. Samples from INRIA Holidays dataset

4. Results for X̄m(k, p)

The 3 × 3 natural image patches have core subsets with topology of a circle were found by Carlsson,
Ishkanov, de Silva, and Zomorodian in [4]. To detect the circle we need the concept of core subsets. We
estimate the local density of the space at a point x by its the nearest neighbor. For x ∈ X and k > 0 , set
ρk(x) =| x−xk |, where xk is the k-th nearest neighbor of x. Different values of k give rise to different density
estimations at x, larger k-values gives more global estimations, whereas small k-values produce local density
estimates. For a fixed k, we sort the points of X by descending density, we select the points denoted by
X(k, p) whose densities are in the top p percent. The core subset X(k, p) may provide important topological
information, which may be lost for all the points of X.

Here we consider a core subset X̄m(k, p) of X̄m for m = 3, 4, 5, 6, 7. This subset represents appropriate
core for proper values of two parameters k and p.

In [9], A. Lee, K. Pedersen, and D. Mumford observe that the majority of the high contrast optical
patches lie near a 2-dimensional annulus, called the primary circle. In [4], Carlsson, Ishkanov, de Silva, and
Zomorodian apply computational topological tools to identify the topologies of high density subsets of the
optical patch space. they found that according to the reduction of density estimator k, firstly, the topology
of the core sets changes from a circle to a 3-circle space and finally becomes that of the Klein bottle. In
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this paper, we use INRIA Holidays dataset, which are different from that discussed in the paper [4], to show
that various core sets of the dataset have the similar properties as above for different sizes of patches.

Considering the core subsets X̄3(100, 20), X̄4(100, 20), X̄5(100, 20), X̄6(100, 20) and X̄7(100, 20), com-
puting the barcodes, sample Betti barcode plots for these core subsets are given in Figures 3, 4, 5, 6 and
7 respectively. There are a single long Betti0 interval and a single long Betti1 interval in the plots, which
shows that they have the topology of a circle, visible in Figures 8, 9, 10, 11 and 12. Selecting different
landmark points (from 20 to 70), we do many times experiments on X̄3(100, 20), X̄4(100, 20), X̄5(100, 20),
X̄6(100, 20) and X̄7(100, 20), and the results are very stable: in each trial, the circular profile β0 = β1 = 1
is found for nearly whole range of ϵ values, and other Betti plot intervals are very short. For different sizes
of patches, there exist various core subsets of X̄3, X̄4, X̄5, X̄6 and X̄7 with proper values of parameters k
and p, that have the topology of the primary circle. We ran about one thousand trials and found that the
core subsets with following parameters have the topology of circle and the results to be robust. For the case
m=3, k=60, 100, 300, 500, 700, p=20, 30, 40; For the case m=4, k=100, 300, 500, 700, p=20, 30, 40; For
the case m=5, k=100, 300, 500, 700, p=10, 20, 30; For the case m=6, k=100, 300, 500, 700, p=10, 20, 30;
For the case m=7, k=100, 300, 500, 700, p=10, 20, 30.
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Figure 3. Barcodes for X̄3(100, 20)
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Figure 4. Barcodes for X̄4(100, 20)
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Figure 5. Barcodes for X̄5(100, 20)
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Figure 6. Barcodes for X̄6(100, 20)
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Figure 7. Barcodes for X̄7(100, 20)
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Figure 8. Projection
of X̄3(100, 20)

onto linear gradients
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Figure 9. Projection
of X̄4(100, 20)

onto linear gradients
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Figure 10. Projection
of X̄5(100, 20)

onto linear gradients
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Figure 11. Projection
of X̄6(100, 20)

onto linear gradients
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Figure 12. Projection
of X̄7(100, 20)

onto linear gradients

If we take spaces of patches of X̄4, X̄5, X̄6 and X̄7 and extract about 30 percent of the densest points
using the density estimator k = 15 or 30, we obtain spaces whose first Betti number is equal to 5. The
spaces are reasonably described as the three circle model (Figure 13), denoted by C3. Figure 14 shows the
result for the space X̄4(15, 40), we note that the β0 barcode clearly shows the single component nearly on
the whole interval, while the β1 barcode shows five lines from the parameter values 0.05 to 0.15. This gives
that X̄4(15, 40) has the topology of the three circle space C3. Figure 15, 16 and 17 show that X̄5(15, 30),
X̄6(15, 30) and X̄7(30, 30) have the topology of C3.

For the case m = 3, we can not find core subsets of X̄3 that have the topology of the three circle model.
The barcodes of the subset X̄3(10, 50) sometimes show its first Betti number is five, but the result is not
stable, we can not conclude that X̄3(10, 50) has the topology of C3. In the section 6 we show that X̄3 has
a subspace with the topology of C3 by another way.

Figure 13. Three circle model
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Figure 14. Barcodes for X̄4(15, 30)
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Figure 15. Barcodes for X̄5(15, 30)
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Figure 16. Barcodes for X̄6(15, 30)
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Figure 17. Barcodes for X̄7(30, 30) Figure 18. Representation of Klein bottle as an
identification space
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5. Klein bottle and a space of degree 2 polynomials

We recall that the Klein bottle can be constructed by an identification space of a square in the plane
as Figure 18. The points on the boundary are identified by identifying opposite sides using the quotient
topology. The three circle model can be embedded in the Klein bottle as shown in Figure 18. The horizontal
segments (black lines) actually form the primary circle (corresponding to Slin) on the surface of the Klein
bottle. The vertical segments form the secondary circles corresponding to Sv and Sh respectively.

To detect the topological features of subspaces of X3, X4, X5, X6 and X7, we discuss another theoretical
version of the Klein bottle. We regard the m × m patches as obtained by sampling a smooth real-valued
function on the xy-plane at m ×m grid points, and we study subspaces of the space of all such functions
which have a rough correspondence with the subspaces of the space of patches we study. We consider the
space F of all two variable polynomials of degree 2 [3], i.e. functions

F (x, y) = a+ bx+ cy + dx2 + exy + fy2.

The set F is a 6-dimensional real vector space. We now consider the subspace P ⊆ F , consisting of all
functions within F which have the form c(ax+ by)2 + d(ax+ by), where a, b, c, d are real numbers satisfying
(a, b) ∈ S1 and (c, d) ∈ S1, where S1 denotes the unit circle in the plane.

We define the map g : S1 × S1 7−→ P by (a, b, c, d) 7−→ c(ax + by)2 + d(ax + by) [4]. It is easy to
see that the map g is onto, but not 1-1, since the points (a, b, c, d) and (−a,−b, c,−d) are mapped to
the same polynomial, which means that (a, b, c, d) ∼ (−a,−b, c,−d) is an equivalent relation. If (a, b, c, d)
is denoted by (cos θ, sin θ, cosϕ, sinϕ), both θ and ϕ vary in [0, 2π], then the relation can be restated by
(θ, ϕ) ∼ (π+ θ, 2π− ϕ). The space P= im(g) is homeomorphic to S1 × S1/(θ, ϕ) ∼ (π+ θ, 2π− ϕ), because
of no other identifications created by g.

The torus has a representation similar to representation of the Klein bottle as identified a square with
the opposite edges, but instead of identifying them with reversal orientation. The effect of the map g on
the torus is shown in Figure 19. The right half, denoted by R in the Figure 19, is identified by g with the
left half, denoted by L, with the identifications on the boundary as shown. Each half is the representation
of the Klein bottle, thus the image of g is homeomorphic to the Klein bottle and so is P [4].

          L         R

Figure 19. Klein bottle, the image of the map g
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Figure 20. Barcodes for K(3, 200)

The three circle space C3 is included in the space P. The primary circle of C3 is the subspace obtained by
setting (c, d) = (0, 1) and (a, b) varying on S1, while the secondary circles are obtained by setting a = 1, b = 0
and a = 0, b = 1 respectively.

Define a map h3 : F 7−→ S8 by a composite of evaluating the polynomial at each point of the plane
grid G3 = {−1, 0, 1} × {−1, 0, 1} subtracting the mean and normalizing. Define a map h4 : F 7−→ S15 by
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a composite of evaluating the polynomial at each point of the plane grid G4 = {−1, 0, 1, 2} × {−1, 0, 1, 2}
subtracting the mean and normalizing. Define a map h5 : F 7−→ S24 by a composite of evaluating the
polynomial at each point of the plane grid G5 = {−2,−1, 0, 1, 2} × {−2,−1, 0, 1, 2} subtracting the mean
and normalizing. Define a map h6 : F 7−→ S35 by a composite of evaluating the polynomial at each
point of the plane grid G6 = {−2,−1, 0, 1, 2, 3} × {−2,−1, 0, 1, 2, 3} subtracting the mean and normalizing.
Define a map h7 : F 7−→ S48 by a composite of evaluating the polynomial at each point of the plane grid
G7 = {−3,−2,−1, 0, 1, 2, 3} × {−3,−2,−1, 0, 1, 2, 3} subtracting the mean and normalizing.

Proposition 5.1. Each restriction of hm(m = 3, 4, 5, 6, 7) to the subspace P of F is one-to-one.

The proof is same as the proof in [4].
Since continuous one-to-one map on a compact space is a homeomorphism onto its image, it follows from

the Proposition 5.1 that the image im(hm | P)(m = 3, 4, 5, 6, 7) is homeomorphic to the Klein bottle.
To embed the Klein bottle into a unit sphere, firstly, we uniformly select 200 points ({x1, · · · , x200})

from the unite circle, all possible tuples (xi, xj) form a point set on the torus S1×S1. Next, we map each of
the 40000 points into S8, S15, S24, S35 and S48 by maps h3 ◦ g, h4 ◦ g, h5 ◦ g, h6 ◦ g and h7 ◦ g respectively,
the image of each map is denoted by K(3, 200), K(4, 200), K(5, 200), K(6, 200) and K(7, 200) separately.
Figure 20 shows the PLEX results for the homology of the spaces K(3, 200), it gives β0 = 1, β1 = 2 and
β2 = 1, which are the mod 2 Betti numbers of the Klein bottle. Hence, K(3, 200) is an proper approach of
the Klein bottle in S8.

As the first step for embedding of the space C3 into the unit sphere S8, we randomly choose 500 points
{(x1, y1), · · · , (x500, y500)} from S1. Next, setting c = 0, d = 1; a = 1, b = 0; a = 0, b = 1 respectively, to
each point of the 500 points, we evaluate its image under the map h3◦g, denoting the collection of all images
as C3(500).

6. Results for X3, X4, X5, X6 and X7

To find the subspace of X3 whose homology is that of a C3, for each point x of C3(500) we calculate the
Euclidean distance from x to every point of X3, then take the closest point to the point x. The subspace
of X3 is obtained by collecting all the closest point to any x ∈ C3(500), denoted by CC3(500). One sample
PLEX Betti barcode plot for CC3(500) is shown in Figure 21, which reveals that CC3(500) has first Betti
number five. Doing many trials we find the results are robust.

Remark 6.1. If we replace X3 by X̄3 in the process of collecting points of CC3(500), then CC3(500), as a
subspace of X̄3, also has the topology of C3.

We know that S8, S15, S24, S35 and S48 has subspaces K(3, 200), K(4, 200), K(5, 200), K(6, 200) and
K(7, 200) separately, whose homology is that of a Klein bottle, by using them subspaces of X3, X4, X5, X6

and X7 can be found, and these subspaces have the topology of the Klein bottle shown by experimentation.
We describe two ways to obtain the subspaces of X3, X4, X5, X6 and X7 as follows.

(i) For each point x of K(3, 200) we calculate the Euclidean distance from x to every point of X3, then
take t closest points to the point x. The subspace of X3 is obtained by collecting all t closest points to any
x ∈ K(3, 200), denoted by Knt(3, 200, t). The subspaces Knt(4, 200, t), Knt(5, 200, t), Knt(6, 200, t) and
Knt(7, 200, t) of X4, X5, X6 and X7 are obtained respectively by a similar way.

(ii) For each point of X3, we calculate the Euclidean distance from this point to the closest point of
K(3, 200), the subspace Xp(3, 200, r) of X3 is obtained by taking the top r percent of the points for which
this distance is smallest. The subspaces Xp(4, 200, r), Xp(5, 200, r), Xp(6, 200, r) and Xp(7, 200, r) of X4,
X5, X6 and X7 are obtained separately by a similar way.

For finding subspaces of X3, X4, X5, X6 and X7 with the topology of the Klein bottle, we use the
subspaces Knt(3, 200, 1), Knt(4, 200, 5), Knt(5, 200, 4), Knt(6, 200, 9) and Knt(7, 200, 11) respectively. Fig-
ure 22 shows that Knt(3, 200, 1) has the topology of the Klein bottle from the parameter values 0.10 to
0.30. Figures 23, 24, 25, 26 show the PLEX results for Knt(4, 200, 5), Knt(5, 200, 4), Knt(6, 200, 9) and
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Knt(7, 200, 11) separately. We ran more than 300 trials on Knt(3, 200, t) for t = 1, · · · , 5, by selecting dif-
ferent landmark points, we find that the results are very stable. Similarly, the results for Knt(4, 200, t) (for
t = 1, · · · , 7), Knt(5, 200, t) (for t=1, 2, 3, 4, 5, 7), Knt(6, 200, t) (for t=1, 2, 3, 5, 7, 9) and Knt(7, 200, t)
(for t = 2, · · · , 11) are also very stable.
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Figure 21. Barcodes for CC3(500)
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Figure 22. Barcodes for Knt(3, 200, 1)
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Figure 23. PLEX results for Knt(4, 200, 5)
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Figure 24. PLEX results for Knt(5, 200, 4)
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Figure 25. PLEX results for Knt(6, 200, 9)
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Figure 26. PLEX results for Knt(7, 200, 11)
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Remark 6.2. If we replace X3 by X̄3 in collecting points of Knt(3, 200, 1) (denoted K̄nt(3, 200, 1)), then
K̄nt(3, 200, 1), as a subspace of X̄3, may have no the topology of the Klein bottle. We ran 100 trials on
K̄nt(3, 200, 1), where there are 79 trials whose PLEX barcodes giving the topology of the Klein bottle, but
some barcode intervals with the topology of the Klein bottle are very short, the other 21 trials show no the
topology of the Klein bottle.

Remark 6.3. We note that there exist many same points in X7 and Knt(7, 200, t), thus, it is very difficult
to find the largest subspace of X7 by using Knt(7, 200, t) that still has the homology of the Klein bottle.

Figure 27 shows the result for the space Xp(3, 200, 40), which is the largest subspace of X3 we found
giving a true topological approximation toK(3, 200), we ran many experiments onXp(3, 200, 40) for different
parameters and find that the result is robust. At value of r about 45 the space Xp(3, 200, r) undergoes a
topological change. Indeed, we ran 100 trials on Xp(3, 200, 45) for different parameters, where there are 56
trials whose PLEX barcodes giving the topology of the Klein bottle and some barcode intervals with the
topology of the Klein bottle are very short, the other 44 trials show no the topology of the Klein bottle,
Figure 28, 29 shows two PLEX results. Similarly, we ran many trials on Xp(4, 200, 35), Xp(5, 200, 30),
Xp(6, 200, 25) and Xp(7, 200, 20) respectively, we found that they are the largest subspaces of X4, X5, X6

and X7 giving a true topological approximation to K(4, 200), K(5, 200), K(6, 200) and K(7, 200) separately,
and at values of r about 40, 35, 30, 25 respectively the spaces Xp(4, 200, 40), Xp(5, 200, 35), Xp(6, 200, 30)
and Xp(7, 200, 25) undergo a topological change.
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Figure 27. PLEX results for Xp(3, 20, 40)
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Figure 28. PLEX results for Xp(3, 200, 45)

7. Conclusions

In this paper we use persistent homology to study qualitative topological analysis of spaces of different
size natural image patches, the database used in this paper is different from that of paper [4], and we get
similar results to the paper [4], which shows that the results obtained in this paper and [4] are intrinsic
properties of natural image patches, they do not depend on databases. We show that the spaces of high-
contrast 3× 3, 4× 4, 5× 5, 6× 6 and 7× 7 patches have core subsets modeled as the primary circle. By the
relation between the spaces of natural patches and the space of polynomials in two variables, it is shown
that there exist subspaces of 3× 3, 4× 4, 5× 5, 6× 6 and 7× 7 , whose homology is that of a Klein bottle.
Applying the same methods to the different sizes patches, we found many similar properties for different
sizes patches, but they also have their own characteristics. The size of the largest subspace of X3 (X4, X5,
X6 and X7) having the Klein bottle’s homology depend on the size of patches. Our results show that it is
essential to study different sizes patches in natural images.



Sh. Xia, J. Nonlinear Sci. Appl. 9 (2016), 126–138 138

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

lazyRange (dimension 0)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

lazyRange (dimension 1)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

lazyRange (dimension 2)

Figure 29. PLEX results for Xp(3, 200, 45)
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