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Abstract

A stochastic three species predator-prey time-delay chain model is proposed and analyzed. Sufficient condi-
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1. Introduction

The most exciting modern application of mathematics is used in biology. The continuing health of
mathematics and the complexity of the biological sciences make interdisciplinary involvement essential. In
the past few decades, mathematical biology research has opened up a new exciting cornucopia of challenging
problems for the mathematicians. On the other hand, mathematical modeling offers another research tool
commensurate with new powerful laboratory techniques for the biologists.

As we know, two species systems such as predator-prey, plant-pest systems et cetera have long been
one of the dominant themes in both ecology and mathematical ecology due to its universal importance.
After that, the predator-prey chain model is the typical representative. To the best of our knowledge, it
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was only in the late 70s that some interest in the mathematics of tritrophic food chain models (composed
of prey, predator and superpredator) emerged [5, 6]. Three-species systems like plant-herbivore-parasitoid,
plant-pest-predator et cetera are emerging in different branches of biology in their own right. One of the
most famous models for population dynamics is the Lotka-Volterra predator-prey system which has received
plenty of attention and has been studied extensively, refer to [3, 10, 18]. Specially persistence and extinction
of this model are interesting topics.

The three species predator-prey chain model is described as follows:
ẋ1(t) = x1(t) (a1 − b11x1(t)− b12x2(t)) ,
ẋ2(t) = x2(t) (−a2 + b21x1(t)− b22x2(t)− b23x3(t)) ,
ẋ3(t) = x3(t) (−a3 + b32x2(t)− b33x3(t)) ,

(1.1)

where xi(t) (i = 1, 2, 3) represents the densities of prey, mid-level predator and top predator species at time
t, respectively. The parameters a1, a2, a3, bii (i = 1, 2, 3) are positive constants that stand for intrinsic
growth rate, predator death rate of the second species, predator death rate of the third species, coefficient
of internal competition respectively. b21, b32 represent saturated rate of the second and the third predator,
b12, b23 represent the decrement rate of predator to prey. System (1.1) describes an three species predator-
prey chain model in which the latter preys on the former. From a biological viewpoint, we not only require
the positive solution of the system but also require its unexploded property in any finite time and stability.

We know that the global asymptotic stability of a positive equilibrium x∗ = (x∗1, x
∗
2, x
∗
3) holds and is

global stability if the following condition holds:

a1 − fb11b21a2 − fb11b22 + b12b21b21b32a3 > 0,

which could refer to [9].
In recent times, it is well understood that many of the processes, both natural and man-made, in

biology, medicine et cetera involve time-delays. Time-delays occur so often, in almost every situation, that
to ignore them is to ignore reality. Kuang [17] mentioned that animals must take time to digest their
food before further activities and responses take place. So, any model of species dynamics without delays
is an approximation at best. Criteria for three classes of models of single-species dynamics with a single
discrete delay to have a globally asymptotically stable positive equilibrium independent of the length of
delay was established by Freedman and Gopalsamy [4]. By constructing appropriate liapunov functionals
for the models, Ma [25] studied the global stability of volterra models with time delay. Hence, we introduce
time-delays in system (1.1) and assume that the mid-level predator species need time τ to possess the ability
of predation after it was born and it captures only the adult prey species with maturation time τ , while
the top predator species need time τ to possess the ability of predation and it captures only adult mid-level
predator species with maturation time τ ([8, 13, 20]). Then we get

ẋ1(t) = x1(t) (a1 − b11x1(t)− b12x2(t− τ)) ,
ẋ2(t) = x2(t) (−a2 + b21x1(t− τ)− b22x2(t)− b23x3(t− τ)) ,
ẋ3(t) = x3(t) (−a3 + b32x2(t− τ)− b33x3(t)) .

(1.2)

However, population dynamics in the real world is inevitably affected by environmental noise(see, e.g. [7, 8]).
Parameters involved in the system are not absolute constants, they always fluctuate around some average
values. The deterministic models assume that parameters in the systems are deterministic irrespective of
environmental fluctuations imposes some limitations in mathematical modeling of ecological systems. So we
can not omit the influence of the noise on the system. Recently many authors have discussed population
systems subject to white noise (see, e.g. [12, 14, 21]). May (see, e.g. [23]) pointed out that due to continuous
fluctuation in the environment, the birth rates, death rates, saturated rate, competition coefficients and all
other parameters involved in the model exhibit random fluctuation to some extent, and as a result the
equilibrium population distribution never attains a steady value, but fluctuates randomly around some
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average value. Sometimes, large amplitude fluctuation in population will lead to the extinction of certain
species, which does not happen in deterministic models.

Therefore, Lotka-Volterra predator-prey chain models in random environments are becoming more and
more popular. Ji et al. [14, 15] investigated the asymptotic behavior of the stochastic predator-prey system
with perturbation. Liu and Chen introduced periodic constant impulsive immigration of predator into
predator-prey system and gave conditions for the system to be extinct and permanence. Polansky [24]
and Barra et al. [1] have given some special systems of their invariant distribution. After that, Gard [9]
analyzed that under some conditions the stochastic food chain model exists an invariant distribution. Mao
and Yuan[22] have discuss non explosion, persistence, and asymptotic stability of the stochastic differential
delay equations, they reveal that the noise will not only suppress a potential population explosion in the
delay Lotka-Volterra model but will also make the population to be stochastically ultimately bounded.
However, seldom people investigate the persistent and non-persistent of the food chain time-delay model
with stochastic perturbation. I have studied the food chain model with stochastic perturbation in [19], and
this paper is a continuation of the previous article.

In this paper, we introduce the white noise into the intrinsic growth rate of system (1.2), and suppose
ai → ai + σiḂi(t) (i = 1, 2, 3), then we obtain the following stochastic system

dx1(t) = x1(t) (a1 − b11x1(t)− b12x2(t− τ)) dt+ σ1x1(t)dB1(t),
dx2(t) = x2(t) (−a2 + b21x1(t− τ)− b22x2(t)− b23x3(t− τ)) dt− σ2x2(t)dB2(t),
dx3(t) = x3(t) (−a3 + b32x2(t− τ)− b33x3(t)) dt− σ3x3(t)dB3(t),

(1.3)

where Bi(t) (i = 1, 2, 3) are independent white noises with Bi(0) = 0, σ2
i > 0 (i = 1, 2, 3) representing the

intensities of the noise.
The aim of this paper is to discuss the long time behavior of system (1.3) by stochastic comparison

theorem which is different from Mao and Yuan [22]. We have mentioned that x∗ = (x∗1, x
∗
2, x
∗
3) is also the

positive equilibrium of system (1.2). But, when it is suffered stochastic perturbations, there is no positive
equilibrium. Hence, it is impossible that the solution of system (1.3) will tend to a fixed point. In this paper,
we show that system (1.3) is persistent in time average. Furthermore, under certain conditions, we prove
the population of system (1.3) will die out in probability which will not happen in deterministic system and
could reveal that large white noise may lead to extinction.

The rest of this paper is organized as follows. In Section 2, we show that there is a unique non-negative
solution of system (1.3). In Section 3, we show that system (1.3) is persistent in time average. While in
Section 4, we consider three situations when the population of the system will be extinction. In Section 5,
numerical simulations are carried out to support our results.

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t≥0, P ) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null
sets). Let R3

+ denote the positive cone of R3, namely R3
+ = {x ∈ R3 : xi > 0, 1 ≤ i ≤ 3}, R̄3

+ = {x ∈ R3 :
xi ≥ 0, 1 ≤ i ≤ 3}.

2. Existence and uniqueness of the nonnegative solution

To investigate the dynamical behavior, the first concern thing is whether the solution is global existence.
Moreover, for a population model, whether the solution is nonnegative is also considered. Hence, in this
section we show that the solution of system (1.3) is global and nonnegative. As we have known, in order for
a stochastic differential equation to have a unique global (i.e. no explosion at a finite time) solution with
any given initial value, the coefficients of the equation are generally required to satisfy the linear growth
condition and local Lipschitz condition (see, e.g. [20]). It is easy to see that the coefficients of system (1.3)
is locally Lipschitz continuous, so system (1.3) has a local solution. In the following we will show the global
existence of this solution.

Let N(t) be the solution of the non-autonomous logistic equation with random perturbation

dN(t) = N(t)[(a(t)− b(t)N(t))dt+ α(t)dB(t)], (2.1)
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where B(t) is one-dimensional standard Brownian motion, N(0) = N0 > 0 and N0 is independent of B(t).

Lemma 2.1 (see [16]). There exists a unique continuous solution N(t) of (2.1) for any initial value N(0) =
N0 > 0, which is global and represented by

N(t) =
exp{

∫ t
0 [a(s)− σ2(s)

2 ]ds+ σ(s)dB(s)}
1/N0 +

∫ t
0 b(s) exp{

∫ s
0 [a(τ)− σ2(τ)

2 ]dτ + σ(τ)dB(τ)}ds
, t ≥ 0. (2.2)

In order to get the conclusion, we should introduce two systems first.
dΦ1(t) = Φ1(t) (a1 − b11Φ1(t)) dt+ σ1Φ1(t)dB1(t),
dΦ2(t) = Φ2(t) (−a2 + b21Φ1(t− τ)− b22Φ2(t)) dt− σ2Φ2(t)dB2(t),
dΦ3(t) = Φ3(t) (−a3 + b32Φ2(t− τ)− b33Φ3(t)) dt− σ3Φ3(t)dB3(t),
Φi(t) = ξi(t) ∈ C([−τ, 0];R+) i = 1, 2, 3,

(2.3)

and 
dI1(t) = I1(t) (a1 − b11I1(t)− b12Φ2(t− τ)) dt+ σ1I1(t)dB1(t),
dI2(t) = I2(t) (−a2 + b21I1(t− τ)− b22I2(t)− b23Φ3(t− τ)) dt− σ2I2(t)dB2(t),
dI3(t) = I3(t) (−a3 + b32I2(t− τ)− b33I3(t)) dt− σ3I3(t)dB3(t),
Ii(t) = ξi(t) ∈ C([−τ, 0];R+) i = 1, 2, 3,

(2.4)

where
Φ(t) = (Φ1(t),Φ2(t),Φ3(t))ᵀ, I(t) = (I1(t), I2(t), I3(t))ᵀ,

are the solutions of the above stochastic differential equations with time delay.

Theorem 2.2. For any initial data x(t) = {(ξ1(t), ξ2(t), ξ3(t)) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R3
+), the positive

solution of system (1.3) has the property that

I(t) ≤ x(t) ≤ Φ(t),

i.e.,
Ii(t) ≤ xi(t) ≤ Φi(t), i = 1, 2, 3,

where
Φ(t) = (Φ1(t),Φ2(t),Φ3(t))ᵀ, I(t) = (I1(t), I2(t), I3(t))ᵀ,

are solutions of system (2.3) and (2.4).

Proof. Let z1(t) = 1
x1(t) . Then, by Itô’s formula, we have

dz1(t) =d

(
1

x1(t)

)
=−

[(
a1

x1(t)
− b12x2(t− τ)

x1(t)
− b11

)
dt+

σ1

x1(t)
dB1(t)

]
+

σ2
1

x1(t)
dt

=

[
(σ2

1 − a1)z1(t) + b11 +
b12x2(t− τ)

x1(t)

]
dt− σ1z1(t)dB1(t)

=
[
(σ2

1 − a1)dt− σ1dB1(t)
]
z1(t) +

(
b11 +

b12x2(t− τ)

x1(t)

)
dt.

That is

dz1(t) = [(σ2
1 − a1)dt− σ1dB1(t)]z1(t) +

(
b11 +

b12x2(t− τ)

x1(t)

)
dt.
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Then

z1(t) =e

∫ t
0

(
σ21
2
−a1

)
ds−σ1dB1(s)

[
1

x1(0)
+

∫ t

0

(
b11 +

b12x2(t− τ)

x1(t)

)
e
∫ s
0 (a1−

σ21
2

)dτ+σ1dB1(τ)ds

]
=e

(
σ21
2
−a1

)
t−σ1B1(t)

[
1

x1(0)
+

∫ t

0

(
b11 +

b12x2(t− τ)

x1(t)

)
e

(
a1−

σ21
2

)
s+σ1B1(s)

ds

]

≥e

(
σ21
2
−a1

)
t−σ1B1(t)

[
1

x1(0)
+

∫ t

0
b11e

(a1−
σ21
2

)s+σ1B1(s)ds

]
=Φ−1

1 (t).

By Lemma 2.1, we obtain that Φ1(t) is the solution of the following equation

dΦ1(t) = Φ1(t) (a1 − b11Φ1(t)) dt+ σ1Φ1(t)dB1(t).

Hence, we have
x1(t) ≤ Φ1(t), a.s..

On the other hand, let z2(t) = 1
x2(t) . Then, by Itô’s formula, we could derive that

dz2(t) =d

(
1

x2(t)

)
=−

[(
− a2

x2(t)
+
b21x1(t− τ)

x2(t)
− b22 −

b23x3(t− τ)

x2(t)

)
dt− σ2

x2(t)
dB2(t)

]
+

σ2
2

x2(t)
dt

=
[
(σ2

2 + a2)z2(t) + b22 − b21x1(t− τ)z2(t)− b23x3(t− τ)z2(t)
]
dt+ σ2z2(t)dB2(t)

=
[
(σ2

2 + a2 − b21x1(t− τ)− b23x3(t− τ))dt+ σ2dB2(t)
]
z2(t) + b22dt,

then

z2(t) =
1

x2(0)
e

(
σ22
2

+a2

)
t+σ2B2(s)−b21

∫ t
0 x1(s−τ)ds+b23

∫ t
0 x3(s−τ)ds

+ b22

∫ t

0
e

(
a2+

σ22
2

)
(t−s)+σ2(B2(t)−B2(s))−b21

∫ t
s x1(µ−τ)dµ+b23

∫ t
s x3(µ−τ)dµ

ds

≥ 1

x2(0)
e

(
σ22
2

+a2

)
t+σ2B2(s)−b21

∫ t
0 x1(s−τ)ds

+ b22

∫ t

0
e

(
a2+

σ22
2

)
(t−s)+σ2(B2(t)−B2(s))−b21

∫ t
s Φ1(µ−τ)dµ

ds

=Φ−1
2 (t).

Therefore
x2(t) ≤ Φ2(t), a.s..

By Lemma 2.1, we obtain that Φ2(t) is the solution of the following equation

dΦ2(t) = Φ2(t) (−a2 + b21Φ1(t− τ)− b22Φ2(t)) dt− σ2Φ2(t)dB2(t).

At last, let z3(t) = 1
x3(t) . Then, by Itô’s formula, we could derive that

dz3(t) =d

(
1

x3(t)

)
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=−
[(
− a3

x3(t)
+
b32x2(t− τ)

x3(t)
− b33

)
dt− σ3

x3(t)
dB3(t)

]
+

σ2
3

x3(t)
dt

=[(σ2
3 + a3)z2(t) + b33 − b32x2(t− τ)z3(t)]dt+ σ3z3(t)dB3(t)

=[(σ2
3 + a3 − b32x2(t− τ))dt+ σ2dB3(t)]z2(t) + b33dt,

then

z3(t) =
1

x3(0)
e

(
σ23
2

+a3

)
t+σ3B3(s)−b32

∫ t
0 x2(s−τ)ds

+ b33

∫ t

0
e

(
a3+

σ23
2

)
(t−s)+σ3(B3(t)−B3(s))−b32

∫ t
s x2(µ−τ)dµ

ds

≥ 1

x3(0)
e

(
σ23
2

+a3

)
t+σ3B3(s)−b32

∫ t
0 Φ2(s−τ)ds

+ b33

∫ t

0
e

(
a3+

σ23
2

)
(t−s)+σ3(B3(t)−B3(s))−b32

∫ t
s Φ2(µ−τ)dµ

ds

=Φ−1
3 (t),

then, it is easy to see that Φ3(t) is the solution of the following equation

dΦ3(t) = Φ3(t) (−a3 + b32Φ2(t− τ)− b33Φ3(t)) dt− σ3Φ3(t)dB3(t),

and
x3(t) ≤ Φ3(t), a.s..

In the same method, we could derive that

xi(t) ≥ Ii(t) a.s.. i = 1, 2, 3,

where I(t) = (I1(t), I2(t), I3(t))ᵀ is the solution of system (2.4).

Remark 2.3. From Lemma 2.1, we know

1

Φ1(t)
=

1

x1(0)
e

(
σ21
2
−a1

)
t−σ1B1(t)

+ b11

∫ t

0
e

(
σ21
2
−a1

)
(t−s)−σ1(B1(t)−B1(s))

ds,

1

Φ2(t)
=

1

x2(0)
e(
σ22
2

+a2)t+σ2B2(t)−b21
∫ t
0 Φ1(s−τ)ds + b22

∫ t

0
e

(
σ22
2

+a2

)
(t−s)+σ2(B2(t)−B2(s))−b21

∫ t
s Φ1(µ−τ)dµ

ds,

1

Φ3(t)
=

1

x3(0)
e

(
σ23
2

+a3

)
t+σ3B3(t)−b32

∫ t
0 Φ2(s−τ)ds

+ b33

∫ t

0
e

(
σ23
2

+a3

)
(t−s)+σ3(B3(t)−B3(s))−b32

∫ t
s Φ2(µ−τ)dµ

ds;

and

1

I1(t)
=

1

x1(0)
e

(
σ21
2
−a1

)
t−σ1B1(t)+b12

∫ t
0 Φ2(s−τ)ds

+ b11

∫ t

0
e

(
σ21
2
−a1

)
(t−s)−σ1(B1(t)−B1(s))+b12

∫ t
0 Φ2(µ−τ)dµ

ds,

1

I2(t)
=

1

x2(0)
e

(
σ22
2

+a2

)
t+σ2B2(t)−b21

∫ t
0 I1(s−τ)ds+b23

∫ t
0 Φ3(s−τ)ds

+ b22

∫ t

0
e(
σ22
2

+a2)(t−s)+σ2(B2(t)−B2(s))−b21
∫ t
s I1(µ−τ)dµ+b23

∫ t
0 Φ3(µ−τ)dµds,
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1

I3(t)
=

1

x3(0)
e

(
σ23
2

+a3

)
t+σ3B3(t)−b32

∫ t
0 I2(s−τ)ds

+ b33

∫ t

0
e

(
σ23
2

+a3

)
(t−s)+σ3(B3(t)−B3(s))−b32

∫ t
s I2(µ−τ)dµ

ds.

From the representations of Φi(t) and Ii(t), (i=1,2,3), Theorem 2.2 tells us the species will not reach zero
in finite time.

From now on, we denote the unique global positive solution of system (1.3) with the given initial data
ξ = {ξ(t) = (ξ1(t), ξ2(t), ξ3(t)) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+

3 ) by x(t, ξ). In the same way, we define the
solutions of system (2.3) and (2.4) by Φ(t, ξ), I(t, ξ).

3. Persistent in time average

There is no equilibrium of system (1.3). Hence we can not show the permanence of the system by proving
the stability of the positive equilibrium as the deterministic system. In this section we first show that this
system is persistent in mean. Before we give the result, we should do some prepare work.

Chen et al. in [2] proposed the definition of persistence in mean for the deterministic system. Here, we
also use this definition for the stochastic system.

Definition 3.1. System (1.3) is said to be persistent in mean, if

lim inf
t→∞

1

t

∫ t

0
x3(s)ds > 0, a.s..

Before give the result, we do some prepare work.

Lemma 3.2 ([26]). Let f ∈ C ([0,+∞)× Ω, (0,+∞)), F ∈ C ([0,+∞)× Ω, R). If there exist positive
constants λ0, λ, such that

logf(t) ≥ λt− λ0

∫ t

0
f(s)ds+ F (t), t ≥ 0 a.s., (3.1)

and lim
t→∞

F (t)
t = 0 a.s., then

lim inf
t→∞

1

t

∫ t

0
f(s)ds ≥ λ

λ0
, a.s.. (3.2)

From Lemma 3.2, it is easy to see that we could get Lemma 3.3 and Lemma 3.4 with the same method.

Lemma 3.3. Let f ∈ C ([0,+∞)× Ω, (0,+∞)), F ∈ C ([0,+∞)× Ω, R). If there exist positive constants
λ0, λ, such that

logf(t) ≤ λt− λ0

∫ t

0
f(s)ds+ F (t), t ≥ 0 a.s., (3.3)

and lim
t→∞

F (t)
t = 0 a.s., then

lim sup
t→∞

1

t

∫ t

0
f(s)ds ≤ λ

λ0
, a.s.. (3.4)

Lemma 3.4. Let f ∈ C ([0,+∞)× Ω, (0,+∞)), F ∈ C ([0,+∞)× Ω, R). If there exist positive constants
λ0, λ, such that

logf(t) = λt− λ0

∫ t

0
f(s)ds+ F (t), t ≥ 0 a.s., (3.5)

and lim
t→∞

F (t)
t = 0 a.s., then

lim
t→∞

1

t

∫ t

0
f(s)ds =

λ

λ0
, a.s.. (3.6)
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Assumption 1.

r1 − fb11b21r2 − fb11b22 + b12b21b21b32r3 > 0, r1 = a1 −
σ2

1

2
> 0, ri = ai +

σ2
i

2
i = 2, 3.

Lemma 3.5. If Assumption 1 is satisfied, the the solution Φ(t, ξ) of system (2.3) has the following property:

lim
t→∞

log Φi(t)

t
= 0, lim

t→∞

1

t

∫ t

0
Φi(s)ds = Mi, a.s., (3.7)

where

M1 =
r1

b11
, M2 =

r1b21 − r2b11

b11
, M3 =

r1b21b32 − r2b11b32 − r3b11b22

b11b22b33
.

Proof. From the result in [15] and Assumption 1 is satisfied, we know

lim
t→∞

log Φ1(t)

t
= 0, lim

t→∞

1

t

∫ t

0
Φ1(s)ds =

a1 −
σ2
1
2

b11
=

r1

b11
= M1, a.s., (3.8)

besides, according to Itô’s formula, the second population of system (2.3) is changed into

d log Φ2(t) = (−r2 + b21Φ1(t− τ)− b22Φ2(t))dt− σ2dB2(t).

It then follows

log Φ2(t) = log Φ2(0)− r2t+ b21

∫ t

0
Φ1(s− τ)ds− b22

∫ t

0
Φ2(s)ds− σ2B2(t). (3.9)

Notice that ∫ t

0
Φ1(s− τ)ds =

∫ t−τ

−τ
Φ1(s)ds =

∫ 0

−τ
ξ1(s)ds+

∫ t

0
Φ1(s)ds−

∫ t

t−τ
Φ1(s)ds, (3.10)

and from the second equation of (3.8), we get lim
t→∞

1
t

∫ t
t−τ Φ1(s)ds = 0, dividing the equation (3.10) both

sides by t, and taking t→∞, yields

lim
t→∞

1

t

∫ t

0
Φ1(s− τ)ds = lim

t→∞

1

t

∫ t

0
Φ1(s)ds = M1,

so

lim
t→0

log Φ2(0)− r2t+ b21

∫ t
0 Φ1(s− τ)ds− σ2B2(t)

t
= −r2 + b21

r1

b11
.

With Lemma 3.4 and Assumption 1 we could get

lim
t→∞

1

t

∫ t

0
Φ2(s)ds =

−r2 + b21
r1
b11

b22
=
r1b21 − r2b11

b11b22
= M2 > 0. (3.11)

Let (3.9) divide t, and t→∞, together with (3.8) and (3.10), consequently

lim
t→∞

log Φ2(t)

t
= 0.

Similarly, according to Ito’s formula, the third population of system (2.3) is changed into

d log Φ3(t) = (−r3 + b32Φ2(t− τ)− b33Φ3(t))dt− σ3dB3(t),
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it then follows

log Φ3(t) = log Φ3(0)− r3t+ b32

∫ t

0
Φ2(s− τ)ds− b33

∫ t

0
Φ3(s)ds− σ3B3(t),

and

lim
t→∞

1

t

∫ t

0
Φ3(s)ds =

−r3 + b32
r1b21−r2b11

b11b22

b33
= M3 > 0, , lim

t→∞

log Φ3(t)

t
= 0.

From this, together with Theorem 2.2 and Lemma 3.5, the following result is obviously true.

Theorem 3.6. If Assumption 1 is satisfied, the the solution x(t, ξ) of system (1.3) has the following property:

lim sup
t→∞

log xi(t)

t
≤ 0, i = 1, 2, 3. (3.12)

Above all, we could get

Theorem 3.7. If Assumption 1 is satisfied, the the solution x(t, ξ) of system (1.3) has the following property:

lim inf
t→∞

1

t

∫ t

0
x3(s)ds ≥ x̃∗3, a.s., (3.13)

where x̃∗ = (x̃∗1, x̃
∗
2, x̃
∗
3) is the only nonnegative solution of the following equation,

r1 − b11x1 − b12x2 = 0,
−r2 + b21x1 − b22x2 − b23x3 = 0,
−r3 + b32x2 − b33x3 = 0.

Proof. From system (1.3), such that

log x1(t)− log x1(0)

t
= r1 − b11

1

t

∫ t

0
x1(s)ds− b12

1

t

∫ t

0
x2(s− τ)ds+

σ1B1(t)

t

= r1 − b11
1

t

∫ t

0
x1(s)ds− b12

1

t

(∫ 0

−τ
ξ2(s)ds−

∫ t

t−τ
x2(s)ds

)
− b12

1

t

∫ t

0
x2(s)ds+

σ1B1(t)

t
,

Similarly,

log x2(t)− log x2(0)

t
= −r2 + b21

1

t

∫ t

0
x1(s)ds+ b21

(
1

t

∫ 0

−τ
ξ1(s)ds− 1

t

∫ t

t−τ
x1(s)ds

)
− b22

1

t

∫ t

0
x2(s)ds

− b23
1

t

∫ t

0
x3(s)ds− b23

(
1

t

∫ 0

−τ
ξ3(s)ds− 1

t

∫ t

t−τ
x3(s)ds

)
− σ2B2(t)

t
,

and

log x3(t)− log x3(0)

t
=− r3 + b32

1

t

∫ t

0
x2(s)ds+ b32

(
1

t

∫ 0

−τ
ξ2(s)ds− 1

t

∫ t

t−τ
x2(s)ds

)
− b33

1

t

∫ t

0
x3(s)ds− σ3B3(t)

t
.
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Hence

c1(log x1(t)− log x1(0)) + c2(log x2(t)− log x2(0)) + c3(log x3(t)− log x3(0))

t

=

[
(r1c1 − r2c2 − r3c3) + (−b11c1 + b21c2)

1

t

∫ t

0
x1(s)ds

+ (−b12c1 − b22c2 + b32c3)
1

t

∫ t

0
x2(s)ds− (b23c2 + b33c3)

1

t

∫ t

0
x3(s)ds

− c1b12
1

t

(∫ 0

−τ
ξ2(s)ds−

∫ t

t−τ
x2(s)ds

)
+ c2b21

(
1

t

∫ 0

−τ
ξ1(s)ds− 1

t

∫ t

t−τ
x1(s)ds

)
− c2b23

(
1

t

∫ 0

−τ
ξ3(s)ds− 1

t

∫ t

t−τ
x3(s)ds

)
+ c3b32

(
1

t

∫ 0

−τ
ξ2(s)ds− 1

t

∫ t

t−τ
x2(s)ds

)
c1σ1B1(t)

t
− c2σ2B2(t)

t
− c3σ3B3(t)

t

]
.

(3.14)

From Theorem 2.2, we get
xi(t) ≤ Φi(t) (i = 1, 2, 3),

then

lim
t→∞

1

t

∫ t

t−τ
xi(s)ds = 0. (3.15)

Let c1 = b21, c2 = b11, c3 = fb11b22 + b12b21b32, together with Assumption 1, we know

r1c1 − r2c2 − r3c3 > 0.

According to Theorem 3.6 and equation (3.15), together with lim
t→∞

Bi(t)
t = 0, (i = 1, 2, 3), we could get

lim sup
t→∞

c1(log x1(t)− log x1(0)) + c2(log x2(t)− log x2(0)) + c3(log x3(t)− log x3(0))

t

= (r1c1 − r2c2 − r3c3)− (c2b23 + c3b33) lim inf
t→∞

1

t

∫ t

0
x3(s)ds ≤ 0.

Such that,

lim inf
t→∞

1

t

∫ t

0
x3(s)ds ≥ r1c1 − r2c2 − r3c3

c2b23 + c3b33
= x̃∗3,

where x̃∗ = (x̃∗1, x̃
∗
2, x̃
∗
3) is the only nonnegative solution of the following equation when Assumption 1 is

satisfied, 
r1 − b11x1 − b12x2 = 0,
−r2 + b21x1 − b22x2 − b23x3 = 0,
−r3 + b32x2 − b33x3 = 0.

4. Non-persistence

In the previous section, we show the solution x(t, ξ) of system (1.3) is stable in time average, and in
this section, we discuss the dynamics of system (1.3) when the white noise is getting larger. we show the
situation when the population of system (1.3) will be non-persistent of the white noise is large, which does
not happen in the deterministic system in three cases.
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Definition 4.1. System (1.3) is said to be non-persistent, if there are positive constants ci, (i = 1, 2, 3) such
that

lim
t→∞

3∏
i=1

xcii (t) = 0 a.s..

Now we present conditions for all species or some species of (1.3) to be extinct. Consider the case

case (i): r1 < 0.

According to Itô’s formula, the first population of system (2.3) is changed into

d log Φ1(t) ≤ (r1 − b11Φ1(t))dt− σ1dB1(t).

If r1 < 0, we could get

lim sup
t→∞

log Φ1(t)

t
= r1 < 0 a.s.,

from the stochastic comparison theorem, we have

lim sup
t→∞

log x1(t)

t
< 0 a.s.,

hence
lim
t→∞

x1(t) = 0, a.s..

From the second population of system (2.3) and equation (3.10), we have

log Φ2(t)− log Φ2(0)

t
≤ −r2 + b21

1

t

∫ t

0
Φ1(s− τ)ds− σ2dB2(t)

t
a.s., (4.1)

hence

lim sup
t→∞

log Φ2(t)

t
≤ −r2 + b21 lim sup

t→∞

1

t

∫ t

0
Φ1(s− τ)ds

= −r2 + b21 lim sup
t→∞

1

t

∫ t

0
Φ1(s)ds = −r2 ≤ 0 a.s..

Similarly,

lim sup
t→∞

log Φ3(t)

t
= −r3 ≤ 0 a.s.,

and
lim
t→∞

xi(t) = 0 a.s.. i = 2, 3.

case (ii): r1 > 0, r1 − b11
b21
r2 < 0.

It is clear that from the equation (4.1) and (3.8), we get

lim sup
t→∞

log Φ2(t)

t
≤ −r2 + b21

r1

b11
< 0 a.s..

Similarly

lim sup
t→∞

log Φ3(t)

t
≤ −r3 + b32 lim sup

t→∞

1

t

∫ t

0
Φ2(s)ds = −r3 < 0 a.s.,

thus,
lim
t→∞

xi(t) = 0 a.s., i = 2, 3.
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Above all, and from the conclusion in [13], we could easily know that the distribution of x1(t) converges
weekly to the probability measure with density

f∗(ζ) = C0ζ
2r1/σ2

1−1e−2b11ζ/σ2
1 ,

where C0 = (2b11/σ
2
1)2r1/σ2

1/Γ(2r1/σ
2
1), and

lim
t→∞

1

t

∫ t

0
x1(s)ds =

r1

b11
, a.s..

case (iii): r1 − fb11b21r2 − fb11b22 + b12b21b21b32r3 < 0.

It is clear that from (3.14), let c1 = b21, c2 = b11, c3 = fb11b22 + b12b21b32, with lim
t→∞

Bi(t)
t = 0, i = 1, 2, 3,

we get

lim sup
t→∞

c1(log x1(t)− log x1(0)) + c2(log x2(t)− log x2(0)) + c3(log x3(t)− log x3(0))

t

= (r1c1 − r2c2 − r3c3)− (c2b23 + c3b33) lim inf
t→∞

1

t

∫ t

0
x3(s)ds

≤ r1c1 − r2c2 − r3c3,

(4.2)

moreover,

lim sup
t→∞

log xc11 (t)xc22 (t)xc33 (t)

t
≤ r1c1 − r2c2 − r3c3 < 0,

then
lim
t→∞

xc11 (t)xc22 (t)xc33 (t) = 0 a.s..

Therefore, by the above arguments, we get the follow conclusion.

Theorem 4.2. Let x(t, ξ) be the solution of system (1.3), the following conclusion is founded:

(1) If r1 < 0, then
lim
t→∞

xi(t) = 0 a.s., i = 1, 2, 3 (4.3)

(2) If r1 > 0, r1 − b11
b21
r2 < 0, then

lim
t→∞

xi(t) = 0 a.s., i = 2, 3, (4.4)

and the distribution of x1(t) converges weekly to the probability measure with density

f∗(ζ) = C0ζ
2r1/σ2

1−1e−2b11ζ/σ2
1 ,

where C0 = (2b11/σ
2
1)2r1/σ2

1/Γ(2r1/σ
2
1), and

lim
t→∞

1

t

∫ t

0
x1(s)ds =

r1

b11
, a.s.

(3) If r1 − fb11b21r2 − fb11b22 + b12b21b21b32r3 < 0, then

lim
t→∞

xc11 (t)xc22 (t)xc33 (t) = 0, a.s., (4.5)

where c1 = b21, c2 = b11, c3 = fb11b22 + b12b21b32.

That is to say, the large white noise will lead to the population system non-persistent.
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5. Numerical simulation

In this section, we give out the numerical experiment to support our results. Consider the equation
dx1(t) = x1(t) (a1 − b11x1(t)− b12x2(t− τ)) dt+ σ1x1(t)dB1(t),
dx2(t) = x2(t) (−a2 + b21x1(t− τ)− b22x2(t)− b23x3(t− τ)) dt− σ2x2(t)dB2(t),
dx3(t) = x3(t) (−a3 + b32x2(t− τ)− b33x3(t)) dt− σ3x3(t)dB3(t).

(5.1)

By the method in [11], we have the difference equation
x1,k+1 = x1,k + x1,k

[
(a1 − b11x1,k − b12x2,k−m)∆t+ σ1ε1,k

√
∆t+

σ2
1
2 (ε21,k∆t−∆t)

]
,

x2,k+1 = x2,k + x2,k

[
(−a2 + b21x1,k−m − b22x2,k − b23x3,k−m)∆t− σ2ε2,k

√
∆t+

σ2
2
2 (ε22,k∆t−∆t)

]
,

x3,k+1 = x3,k + x3,k

[
(−a3 + b32x2,k−m − b33x3,k)∆t− σ3ε3,k

√
∆t+

σ2
3
2 (ε23,k∆t−∆t)

]
,

where ε1,k, ε2,k and ε3,k, i = 1, 2, 3 are the Gaussian random variables N(0, 1), r1 = a1 −
σ2
1
2 > 0, ri =

ai +
σ2
i
2 (i = 2, 3), m represents the integer part τ/4t− 1. Choose (x1(0), x2(0), x3(0)) ∈ R3

+, t ∈ [−τ, 0],
and suitable parameters, by Matlab, we get Figure 1 , Figure 2 and Figure 3.

In Figure 1, when the noise is small, choose parameters satisfying the condition of Theorem 3.7, the
solution of system (1.3) will persist in time average.

In Figure 2, we observe case (iii) in Theorem 4.2 and choose parameters r1 > 0, r1 − b11
b21
r2 < 0. As

Theorem 4.2 indicated that two predators will die out in probability. The prey solution of system (1.3) will
persist in time average.

In Figure 3, we observe case (i) in Theorem 4.2 and choose parameters r1 < 0. As Theorem 4.2 indicated
that not only predators but also prey will die out in probability when the noise of the prey is large, and it
does not happen in the deterministic system. These simulated results are consistent with our theorems.
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Figure 1: The solution of system (1.2) and system (1.3) with (x1(0), x2(0), x3(0)) = (0.9, 0.3, 0.2), t ∈ [−τ, 0], a1 = 0.7, a2 =
0.3, a3 = 0.1, b11 = 0.3, b12 = 0.2, b21 = 0.3, b22 = 0.5, b23 = 0.3, b32 = 0.4, b33 = 0.8. The blue lines represent the solution
of system (1.2), while the red lines represents the solution of system (1.3) with σ1 = 0.02, σ2 = 0.01, σ3 = 0.01.
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Figure 2: Two of the species will die out in probability. The solution of system (1.2) and system (1.3) with (x1(0), x2(0), x3(0)) =
(0.9, 0.3, 0.2), t ∈ [−τ, 0], a1 = 0.5, a2 = 0.3, a3 = 0.1, b11 = 0.6, b12 = 0.2, b21 = 0.3, b22 = 0.5, b23 = 0.3, b32 = 0.4, b33 = 0.8.
The blue lines represent the solution of system (1.2), while the red lines represents the solution of system (1.3) with σ1 =
0.02, σ2 = 0.01, σ3 = 0.01.
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Figure 3: One of the species or both species will die out in probability. The solution of system (1.2) and system (1.3) with
(x1(0), x2(0), x3(0)) = (0.9, 0.3, 0.2), t ∈ [−τ, 0], a1 = −0.7 a2 = 0.3, a3 = 0.1, b11 = 0.3, b12 = 0.2, b21 = 0.3, b22 = 0.5, b23 =
0.3, b32 = 0.4, b33 = 0.8. The blue lines represent the solution of system (1.2), while the red lines represents the solution of
system (1.3) with σ1 = 0.02, σ2 = 0.01, σ3 = 0.01.
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