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Abstract

In this paper, we present a new proof for the existence and uniqueness of solutions of parabolic quasi-
variational inequalities with impulse control. We prove some properties of the presented algorithm (see [S.
Boulaaras, M. Haiour, Appl. Math. Comput., 217 (2011), 6443-6450], [S. Boulaaras, M. Haiour, Indaga.
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1. Introduction

The aim of this paper is to extend the results of M. Boulbrachene and M. Haiour [7] and P. Cortey-
Dumont [8], who established the existence, uniqueness and error estimates for the solutions of elliptic
variational and quasi-variational inequalities. Here we use a new idea based on the algorithm of Bensoussan
and Lions, which has been given for evolutionary free boundary problems, using the concept of L>°-stability
[7], in order to present a new proof for the existence and uniqueness of the solutions of Parabolic Quasi-
Variational Inequalities (PQVIs) with respect to the right-hand side as a nonlinear source term and an
obstacle defined as an impulse control problem.

Namely, we consider the following PQVIs: find u € L? (O, T H 1) such that

Email address: saleh_boulaares@yahoo.fr (Salah Boulaaras)

Received 2015-07-15



S. Boulaaras, J. Nonlinear Sci. Appl. 9 (2016), 568583 569
(
gu—FAu<f( ) in X,
u < Mu,
(1.1)

(21‘+Au—f(U)> (u— Mu) =0,

u(0,z) =up in Q, u =0 on 09,

where

e X =0Qx[0,7]is aset in R x R™ such that 7' < 400 and 2 is a smooth bounded domain of R™ with

sufficiently smooth boundary I'

e A is an operator defined over H! () by

n

ou
Za —I-Z;bj(x)&vj-i-ao(x)u

=1 J=

and a (+,-) is the bilinear form associated with operator A, given by

a(wo) = [ | Sestorgr g+ Zb S ao ) ur

ij=1

assumed to be noncoercive, and whose coefficients a; ;(x), b (x),

a;j(x) = aji(x), ag(x) > B >0, B €R— constant,

Zaw &E > IE?, €ER? v >0, z €

i j=1

e f(-) is a Lipschitz increasing nonlinear source term such that

feL*(0,T,L>()nC (0,7,H ' (Q)), f=>0,

with rate ¢ satisfying
c<B.

e M is an operator given by

Mu=k+ inf wu(z+Y¢),
£20,2+£€Q

where &k > 0 and
Mu € L* (0, T, W (Q)).

As shown in [14], M is concave, i.e., for u,v € C (),

M (6u+ (1—8)v) > 6M (u) + (1 — 6) M (v).

Additionally, the following holds:
VneR,M (u+mn) =DM (u)+n.

ao(z) € L (Q)NC2 (Q), z € Q,
1 <i,5 < n, are sufficiently smooth and satisfy the following conditions:

(1.3)

(1.10)

(1.11)
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We will use the notation (-, ), for the inner product in L*(Q).

Stationary free boundary problems are encountered in several applications. For example, in stochastic
control, the solution of characterizes the infimum of the cost function associated to an optimally
controlled stochastic switching process without costs for switching and for the calculus of quasi-stationary
states for the simulation of petroleum or gaseous deposits (see [2]). From the mathematical analysis point
of view, the elliptic case of the problem was studied intensively in the late 1980s ([1L [, 10, 1T, 12]; for
the numerical and computational side see [1], [5] 6l [7]). However, as far as finite element approximation is
concerned, only a few works are known in the literature ([6l [7, 12]).

In [7] we applied a new time-space discretization using the semi-implicit time scheme combined with a
finite element spatial approximation. We found that can be transformed into a full-discrete system of
elliptic quasi-variational inequalities, we proposed a new iterative discrete algorithm to show the existence
and uniqueness of the discrete solution, and we gave a simple proof for asymptotic behavior in the L* -norm
using the theta time scheme combined with a finite element spatial approximation. Also, in [3], we analyzed
the stability in the uniform norm for the theta-scheme with respect to the t-variable combined with a finite
element spatial approximation for the evolutionary variational inequalities and quasi-variational inequalities
with an obstacle defined as an impulse control problem.

In this paper we present a new proof for the existence and uniqueness for PQVIs. It consists of four
steps, and it is based on some properties of the presented discrete iterative algorithm using the semi-implicit
scheme with respect to the ¢-variable combined with a finite element spatial approximation. This paper is
structured as follows. In Sections 2 and 3 we provide some definitions, assumptions, notations and standard
propositions needed throughout the paper, and we associate with the discrete system of EQVIs a fixed
point mapping, which we use to define the discrete algorithm based on the semi-implicit time scheme. We
introduce a monotone iterative scheme based on Bensoussan’s algorithm, and study some of its properties.
These properties together with the subsolutions concepts will play a crucial role in proving the existence
and uniqueness of solutions for the problem introduced in this paper, knowing that the proof is based on
the L*°-stability of the solution with respect to the right-hand side and its characterization as the least
upper bound of the subsolutions set (see also [0} [7]). It is worth mentioning that this approach is entirely
different from the one developed for the evolutionary problem. Also, it is used for the first time in the case
of QVIs. In Section 4 we present the main result, with a new proof for the existence and uniqueness of
solutions of PQVIs with nonlinear source terms. Finally, we provide some conclusions and perspectives for
further studies.

2. Parabolic quasi-variational inequalities

After a few simple computations and by using Green’s formula, (|1.1]) can be transformed into the following
continuous parabolic quasi-variational inequality: find u € (L2 (0, T,H! (Q))) satisfying

(Z‘,v—u) +a(uv—u) > (f(u),v—u),

u < Mu, v<Mu, (21)

L u(0,2) =wup in Q,

where a (+,-) is the bilinear form associated with operator A defined in (|1.2)).

2.1. The time discretization

We discretize the problem (2.1)) with respect to time by using the semi-implicit scheme. Therefore, we
search for a sequence of elements u* € H& (€2) which approaches wu (t;), tp = kAt, with initial data u® = uy.
For k=1,...,n, we have
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k k—1
u —u k k (k)
T—f—Au <f (u ) in X,
u < Mu, v<Mu, (2:2)
u’ (r) = up in Q, u = 0 on ON.
First we define the mapping

T L (Q) — L®(Q), W—>TW:§k:8(Fk(w),Muk),

(2.3)
where L%° () denotes the positive cone of L™ (), such that ¢* is the solution of the following problem:

é-k _ Ek‘fl
AL + AP < f (€F) in X,

&8 < Mu.

(2.4)
2.2. An iterative semi-discrete algorithm
We choose u”

= ug the solution of the semi-discrete equation

A% = ¢°.
¢" is an M regular function.

(2.5)
Now we give the semi-discrete algorithm

=TV k=1,...,n k=1,...,n,
where u"* the solution of the problem (2.2).
Remark 2.1. Let

Q:{wEszogwguo},
where u° is the solution of ([2.5)). Since f¥(-) > 0 and u) = upo
variational inequalities with a simple induction, it follows that u*

(2.7)
Tw > 0. Furthermore, by (2.6) and (2.7) we have

0, combining comparison results in
0, ie, v >0, Vk = 1,...,n and

v IV

ul = Tu® < P,

Similarly as in [6l [7], the mapping 7" is monotone increasing for the stationary free boundary problem with
nonlinear source term. Then it can be easily verified that

u? =Tu' <Tu’ = ut §u0,
thus, inductively,
uFtl = Tk §uk <... Suo, Vk=1,...,n,
and also it can be seen that the sequence (uk) . Stays in Q.

According the assumption (1.6, f (+) is increasing and, by the previous remark, for £ = 1,...,n we have

() <),

Then we can rewrite (2.2) as follows:
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( uk _ uk—l
—Qxy A< (W) i E
¢k < Mu, (2.8)

L €0 (z) =& in Q, £ =0 on 99.

Also, (2.8)) can be transformed into the following system of semi-discrete PQVIs:
( uf — k1
(At’v —uk> +a (uk,v —uk) > (f (uk_l) , U —uk) ,
(2.9)

u < Mu,

u(0,2) = ug in Q.
2.8. The spatial discretization

Let Q be decomposed into triangles and 75, denote the set of all elements with mesh size h > 0. We
assume that the family 73 is regular and quasi-uniform. We consider the usual basis of affine functions
v, L ={1,...,m(h)} defined by ¢; (Ms) = ;s where M, is a vertex of the considered triangulation. We
introduce the following discrete spaces V" of finite element:

vh = {U e L? (O,T,H(} (Q)) nc (O,T,H& (Q)) :v|g€ P, K€, and u(,0) =upin Q, v =0 on 8(2},
(2.10)
where 7, is the usual interpolation operator defined by

m(h)
ve L*(0,T,Hy () NC(0,T,Hy (Q)), mpo= Zv (M;) i () (2.11)

and P; denotes the space of polynomials with degree at most 1.

In this paper, we shall make use of the discrete maximum principle assumption (dmp). In other words,
we shall assume that the matrices (A4),; = a (¢p, ¢s) are M-matrices ([8]).

We discretize in space the problem ((2.9)), i.e. we approach the space H& by a space discretization of
finite dimension V" C H{, and we get the following discrete PQVIs.

( (b — k1
h k—1
Ath ,vh—uz —l—a(uﬁ,vh—uﬁ)z(f(uh ),vh—ufb),

2.12
uﬁ < rhMuZ, ( )
u® (z) = ug in Q,
which implies
( k—
u—g vy, — uk —i—a(uk vh—uk) > f(uk_l) +uh : Up — uf
At’ h h’ h) = h At ’ h ?
(2.13)

uﬁ < rhMuﬁ,

uf (0) = uf, in Q.
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Then, the problem (2.13) can be reformulated into the following coercive discrete system of elliptic
quasi-variational inequalities (EQVIs):

b (ul;;,vh — uﬁ) > (f (uiil) + Au’f;l,vh — uﬁ) , uﬁ S Vh,
uf < rpMuf, (2.14)

uf (0) = uf, in Q,

such that

b (uﬁ,vh — uﬁ) =\ (u’fl,vh — uﬁ) +a (uﬁ,vh — ulfl) , uﬁ IS Vh,
(2.15)
L T
Atk n

2.4. An iterative discrete algorithm

As we have chosen before in the iterative semi-discrete algorithm, u% = upg is the solution of the following

full-discrete equation
b (U(})L,Uh) = (govvh) , Un € Vh: (216)

where ¢° is a linear and a regular function.
Now we give the full discrete algorithm

uf =T k=1,...,n, (2.17)

where u¥ is the solution of the problem ((2.14).
Let FF¥=! (w) = f (w) + Aw, FF-1 (@) = f (@) + A € L™ (Q) be the corresponding right-hand sides to
the EQVIs.

Lemma 2.2 ([4,6]). Under the previous assumption and the dmp, if
FFt(w) =2 PP (),

then k= 9 (Fk—l (w)> >af =0 (kal (ﬁ))) .

We recall some results regarding coercive quasi-variational inequalities that are necessary to prove some
useful qualitative properties.

Definition 2.3. ¢} is said to be a subsolution for the system of EQVIs (2.14) if
b (CFyps) < (f+/\C',f_1,cps> , Vs, s=1,...,m(h),

¢k < rpMCk.

Theorem 2.4 ([3]). Under the discrete mazimum principle, there exists a constant o > 0 such that

b (ufl, uﬁ) =a (uﬁ,uﬁ) +A (uﬁ,uﬁ) >« HuﬁH

2
A= (Bilse 7)) 0= 2
27y 2 Olleo |7 2

Let X}, be the set of discrete subsolutions. Then, we have the following theorem.

. (2.18)

where
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Theorem 2.5. Under the discrete maximum principle, the solution of the system of EQVIs ([2.14) is the
mazimum element of Xy,.

Proof. We denote ¢t = max(p,0), ¢~ = max(—p,0).
Let wy, € V) be a solution of the following of the full discrete system of parabolic quasi-variational
inequalities using the theta time scheme combined with a finite element spatial approximation ([3} 4]):

b(wh,bh — w) > (f (wh) + Awp, Op — w,’j) , Yop, € Vh,

(2.19)
wyp, < rhMuﬁ, v < rhMuﬁ,
m(h)
where U, = > U5p5. Since 0 is a trial function, we choose 0y, = wy, — vy, and vy, > 0. Thus
s=1
b (wha 905) S (f (wh) + )\wha ()08) ) (220)
that is to say wp € X};. On the other hand, let z;, be a subsolution such that
Wh < Zh- (2.21)
Then we have
b (Zh, (Ps) < (f (wh) + Awy, @s)
zn < rhMqu.
Setting vj, = (2, — wp)t > 0 as a trial function, we obtain
b (2n, (zn — wp) ™) < (f (wn) + Awp, (2, — wp) ™)
zn < rhMufl
and since wy, is a subsolution too, we have
b (w, (2n — wr) ™) < (f (wn) + Awp, (21, — wp) ")
Zh S T’hM’U,Z.
Thus, we deduce that
—b ((Zh — wh)+ s (Zh — wh)+) > 0.
Under the coerciveness of the bilinear form, by using Theorem we get
(zn —wp)" =0,
therefore
Zh < Wp. (2.22)
Thus, from (2.21)) and (2.22)) we obtain
Zp = Wy,
O

In this situation, the existence of a unique continuous solution to the stationary system can be handled
in the spirit of [I3], or by adapting the algorithmic approach developed for the coercive and noncoercive
problems using Bensoussan’s algorithm [7]. We provide only a brief description of this approach and skip
over the proofs.
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3. Existence and uniqueness for discrete PQVIs

Now, we shall give proofs for the existence and uniqueness for the solution of the system (2.14)), using
the algorithm based on a semi-implicit time scheme combined with a finite element approximation which
was already used in previous research regarding evolutionary free boundary problems (see [4]).

3.1. A fized point mapping associated with the system of EQVlIs
We define the mapping

Ty L (Q) — VP, — Thu = &8 = 9, (F’“ (u) ,rhMuk) , (3.1)
such that 5}]‘; is the solution of the full discrete problem
b(EF,on—CF) > (FF1u, — &), v e VP
< MUk k=1,...,n, (3.2)

9 (x) =& in Q, £ =0 on 0.

Let f,’i = 0 (F”“‘1 (v) ,rhMuk), éﬁ = 0 (Gk_1 (w) ,rthk) be the corresponding solutions to the
discrete EQVIs defined in (2.14).

Proposition 3.1. Under the above assumptions, the solution Oy (-,-) of (2.14)) is increasing according the
obstacle rp, Mw" and the right hand side F*~1 = f 4+ w1, i.e., if we have

Fk-1 < G and Mo* < ka,

then
Oh (Fkil,rthk) <0y (Gkil,rthk> .

Proof. Suppose that FF1 < GF-1 and Mv* < MuwF. Setting u;y = 0 (kal,rthk) and
wy = Oy, (Gk_l, rthk), we have from the proof of Theorem that

b (ui7908) S (Fkilu(ps) ’

uﬁ < rhMuz,

hence
b(uf,0s) < (FF10s) < (GF 1 0s),

uﬁ < rpMuF < rth,li,

and thus,
b(ujrs) < (G 0s) s

k k
up < rpMuwy.

It follows that uﬁ is a subsolution for the solution w,’i, that is to say that uﬁ < w,’j. Therefore

o, (Fkil, rhMu’k) < 9 (kal,rthk> .

Lemma 3.2 (see [7]). Let 0 be a positive constant. Then

Ooh, (Fk_l, ’I“h]Wu’lC + 5) =0y (Fk_l, rhMuk> + 4.
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Proof. The proof is similar to that in [7] for the noncoercive case with a simple obstacle. O

Proposition 3.3. Under the previous assumptions,
Oy, (Fk_l + GFL r MuF + rthk) > 0y, (Fk_l,rhMuk) + 0O, (Gk_l,rhMuk> ,

where O, (Fk_l, rhMuk) is a solution of the problem (2.14) with the obstacle Mu* and the right hand side
FF=1 and o), (Gk_l, rhMuk) is a solution of the problem ([2.14) with the obstacle Mw* and the right hand
side GF-1.

Proof. We set
uk =y, (Fk rhMuk> (3.3)

and
wh = 0, (Gkil,rthk> .

It is clear that verify the system of EQVIs
b (uh,vh — uh) (Fk Loy, — uh) , vp € VI
(3.4)
uﬁ < rhMuﬁ.
It follows that
b (uf +wp, (v +wp) — (uf +wp)) > (FF1 + GF1 (v + wp) — (uf +wy))
vp + w,’f < rhMuﬁ + rth,li,
uh + wh < 'rhMuh + rthh
Considering the trial function vy, = uf — (), with ¢, > 0, we find
b (up +wy,Cp) < (F*+G*1G) . >0
uh + wh < rhMuh + rthh

Therefore
u’fL + w’ﬁ =0y (Fkil,rhMuk> + Oy, <Gk71,rthk)

is a subsolution for the obstacle rp M uz +rp M w,’j and the right hand side F' k=1 4 Gk=1. However, we know
by Theorem [2.5] that the solution

Oh (Fk*1 + GF e MR+ 7’th,’§>
is the greatest element in the subsolutions set. Then

Oh (Fk_l + GFL e MUk + T'th) > 0p (Fk_l,rhMuk> + Oh (Gk_l, rthk> )

Proposition 3.4. Under the previous assumptions, the result from Lemma [3.2] can be extended as
Oh (Fk_l + dag + N\, rpMuF + 5) = 0 (Fk_l,rhMuk> + 9,

where 0 is a positive constant and X is defined in (2.15)).
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Proof. We can deduce the inequality

o (F’f—1 + Sag + pu, rRMu® + 5) > o, (Fk_l, rhMuk> )
from Proposition 3.3} It remains only to prove that

o, (FI"’_1 + 8ag + p, r MuF + 6) < 0y (Fk_l,rhMuk> =+ 4.

We consider the following system of inequalities:

b (pfm Uh — Pﬁ) > (Fk_l + Gk_la Up — P;CL) >
(3.5)
vh,pﬁ < rhMu],f’; + 0.

It can be verified that
(Fk + dag + w,vp f,oﬁ) = (Fk,vh fpi) + <5a0 + w,op fpk> = (F’k,vh fpk> + ((5(10 + ), (vh fpk>) .
Using we can show that
a (5,vh — pﬁ) = day, (vh — pl,li) , 6>0,
thus
b <5, vp — plfL) = (5@0 + p,vp — pﬁ) )
Consequently,
<Fk_1 + dag + p, v — pﬁ) = (Fk_l, vp, — pﬁ) +5b (5, vp — pl,li) . (3.6)

From and , we have that

b (Phson = k) = (F*1 on = p) + b (0,00 = pf)

vh,pi < rhMui +6, v, € V.

Then
b(pf —6,vn—pf) = (FF1op —pf), vp €V,
(3.7)
vh,pﬁ —0< rhMu'fL.

Taking vy, = pz — &), with @, > 0 in (3.7), we get
b(pk—8,21) < (F*"Y ), g1 =1,...m(h),

pﬁ -6 <ryaM uﬁ
Therefore, pﬁ — ¢ is the subsolution for the obstacle r, M ufl and the right hand side F*. As we know that
Oh, (F k=1 gy M u}f) is the greatest element in the subsolutions set, it follows that

o =6 < o (P maiaf)
ie.,
pﬁ < (Fk_l,rhMqu) + 0.

Thus
9 <Fk_1, +aod + pyraMuy + 5) < 0y (Fk_la ThMUlli) + 0. (3.8)

From the first inequality which was deduced by Proposition and (3.8)), we infer that
0 (Fkil, +apd + i, rhMu]fL + 5) =0 (Fkil, rhMulfl) + 4. (3.9)
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3.2. Some properties of the mapping Tp,

Let 122 be the finite element approximation of the discrete equation ([2.5]).

Proposition 3.5. Under the above assumptions, the mapping Ty, satisfies the following relations for all
v, we L¥(Q):

(i) Thv < Thw whenever V.< W,
(i) Thw >0,
(iil) Thw < @).

Proof. (i) Let v, w € L% () such that v < w. Then, since 0y, is increasing in two cases (the coercive and
noncoercive cases [0l [7]), it follows that

O, <fk (v) + )\v,rthk> < 0O, <f (w) + )\w,rthk> ,

that is to say,
Tho < Thw.

(ii) This follows directly from the fact that f > 0 and M wk > 0. Thus, we have Tj,w > 0.
(iii) The fact that both the solutions 55 of (2.14]) and 112 of (2.5) belong to V" readily implies that

+

g - (eh+a) eL=(@.
Moreover, as (f + ﬂ0)+ > 0, it follows that

k ko 0\ ck k

§h—(§h+u) <& < Mw”.
Therefore, we can take v, = 55 — (g’g + 120)+ as a trial function in (2.14]). This gives
+ +
b <§’g, &k +a) ) > (f(w)+)\w, (&h +a) ) .

Also, for vy, = (§ﬁ + ﬂO)Jr as trial function in (2.5)), we obtain

b <u0, (5’; + u0>+) - <f’°, (g,’j + u0)+> o, € Vh, (3.10)
so, by addition, we find that
—b <(£;’§ + ﬂ°)+ , (5;’5 + a°)+) > 0.

By Theorem [2.4] it follows that
+
(éﬁ + ﬂo) =0,

and thus
e <ab

Proposition 3.6. The mapping Ty, is concave on LY (§2), i.e.,
Ty (nv+ (1 —n)w) > 0Ty (v) + (1 —n) Thw, Yo,w € LT ().

Proof. Let v, w € L (), and let Fk = k4 ok, GF = f* 4+ pw*~1 be the right hand sides of the systems
of inequalities ([2.14)). We have
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Th (nv+ (1 —n)w) =0 (anil + (1 =) G* L Mol + 7, (1= 1) Mwﬁ) .
Then, by using Proposition [3.4] we get
Ty (nv+ (1 —n)w) > n.0n (Fkil,rth@ +(1—n).0n <Gk*1, rhMU;]§> ,
and thus
Ty (nv+ (L =n)w) = 0T (v) + (1 = n) Thw,

which shows that T}, is concave. O

Proposition 3.7. Under the results of Propositions and [3:5] and using the properties of the operator
Mu (cf. [14]) the mapping Ty, is Lipschitz on LS (Q2) i.e.,

|Thv — Thw| o < v —w| o, Yv,w e LT ().

Proof. We clearly have
HThv — TthL"O(Q) = H&h (Fkil, 7’th1§> — 0 (Gkil, T‘thh) H

o0

Setting

¢ = max <H7“thh—Tthh|| Fh-1 —GkilH ) ,
x

1
SET
we find that

rMop, < rpMwp, + [[rpMup, — rpMuwp|| o < rthﬁ + .
On the other hand, we have

1
k—1 K\ k-1 < k=1,\ _ k-1
H@h (F (v) ,rthh> Op, (G (w) ,rthh) HOO S T HF (v) — G (w)Hoo
Atc
< —
S
1+ (At)c
< — — .
This finally yields
1+ (At)c
Ty — T, <|——— .
T = Tl < (1 amg ) o= wll

By Proposition it follows that
o, (Fkil, ThMU}Ii> < 9y (Gkil + agp + A\, rpMwy, + ¢) < 9 (kaa ?”hM’wh> + @,

whence
Thv < Thw + ¢.
Similarly, interchanging the roles of v, and wy,, we also get
Thw < Thv + .

Knowing that M is Lipschitz ([I4]), we can easily deduce that
1 k=1 _ k-1
| Tho — Thw||,, < max ( ||r,Mvop — rpMwy|| , —— HF -G H

1+ (At)c

< (1 1 a0

)|%—wwmsnw—wwm-



S. Boulaaras, J. Nonlinear Sci. Appl. 9 (2016), 568583 580

4. The main result

k
Lemma 4.1. For 0 <y <inf <M, 1>, where k is defined in (1.8)), we have
u o0

Ty (0) > A ||a°

| - (4.1)
Proof. From (2.19), T}, (0) = u!, where %! is a solution of the following system of quasi-variational inequal-
ities:
b (@h,on — @) > (f + pitf),vn — @) , v € V"
‘ (4.2)
ail <M ay’.

We can take the trial functions

in the EQVIs (4.2)), and

— (@, — Aip)
in the problem (2.5). Using the fact that F° > 0, by adding (2.8)) and (3.1)) we get
b (ﬂi — piy, (@, — uﬁ%)_) > (FO — pF°, (i, - ufég)_) > (1-p) (FO, (), - ufég)_) >0,

where FO = f + @Y. Thus, by using Theorem it follows that

ie.,

Then

which completes the proof. OJ

Proposition 4.2. Let w € [0,1] be such that
w—v < ww, Yw,v € Q. (4.3)
Then, under Propositions and Proposition the following holds:
Tho —Thw < w (1 — \) Tho. (4.4)

Proof. By (4.3]), we have

(1-—ww<w,

thus, using the fact that T}, is increasing and concave, it follows that
(1 —w)Thv 4+ wTy (0) < Tp ((1 —w) v+ w.0) < Thw.

Finally, using Lemma we get (4.4]). O
From Propositions and we derive our main result.

Theorem 4.3. The sequences (&ﬁ) and (a’,ﬁ;) are well defined in Q and converge, respectively, from above

and below, to the unique solution of system of inequalities (2.14]).
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Proof. The proof consists of four steps.
Step 1. We show that the sequence (ﬂk) is monotone decreasing. From (4.1 and (3.4)), it is easy to see
that, for all £ > 1, @* is a solution to

b(af,vp —af) > (FFY o —af), v, e VP
(4.5)
ﬁi S ThMﬁi.

Since F*Y and 4° are positive, combining comparison results in variational inequalities with a simple induc-
tion, it follows that

a* > 0. (4.6)
Furthermore, by Proposition (3.5
0<a' =1, (a%) < @,
thus we can deduce that
at > 0. (4.7)

For k > 2, we know by Proposition [£.2] that T}, increasing. Thus, inductively,

ogak+1:Th(ak>gakg...galgao. (4.8)
Step 2. We show that (@) converges to the solution of the system (2.14). From (4.6)) and (£.38), it is clear
that
lim @* =@, 2€Q, uec H(Q). (4.9)
k—> o0
Moreover, from (4.6 we have
raMa* > 0.

Then we can take v, = 0 as a trial function in (4.5)), which yields

2
> <b<Ak Ak> < <Fk71 k) < HFk‘ >
Q|| Up vh = Up, Up | = yUp ) = 12(9) Up, vh
Lk—1 ok ok

= (f (uh )+)\ Hh ‘L%Q)) Huh vh
Therefore

ik, = 7 (k) i

aHuh vh Hh L2(Q)+'u Uhlyn

or more simply
~k
Huthh < Cran <G

1
where C' is a constant independent of £ and we choose At such that AL < «. Hence, QZ stays bounded in
Vh C H' (Q) and consequently we can complete (3.8) by

lim 4% = @ weakly in H' (Q). (4.10)

k—o0

Step 3. We prove that @* coincides with the solution of system (2.5)). Indeed, since

relation (4.10) implies
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Now, let vy, < rhMah Then vy, < rhMﬁh, for all k =1,...,n. We can, therefore, take vy, as a trial function
for the system (4.5)). Consequently, combining (4.9 and we have
lim b (uh,ui) < lim [b <ﬂﬁ,vh> - (Fkil,vh - ﬁﬁ)} o € VI
k—o0 k— o0
The continuous system of b (vp, v,) is a weak lower semicontinuity, then

lim b (uh,uh) < b(up,vp) — (Fk_l,vh — ﬂh) ,up € VI

k—o0

But

(y<b(h—ug af, — af) < b (af, af —bGﬁJﬁ)——bQﬁ, )+bQ%,2) (4.11)

b (ak,af) = b (af,af) + o (af,af ) - o (afaf) (4.12)
Passing to the limit in problem (4.12)), we obtain

b (uh,uh) < lim b (uh,uh) <b (ﬂi,vh> — (Fkil,vh - ﬂk) ,

k—so00

whence

which yields
b(af,vp —af) > (F*=1 v, —af), v, € VP

k —k
uy < rhMuh.

Thus Uh is the solution of system (4
Step 4. The monotonicity of the sequence (uh) can be shown smularly to that of sequence (uh) Let us
prove its convergence to the solution of system (4.5). Indeed, we use (4.4) together with

~0 o
v=1dp, U=1uy, ¥=1,

and obtain
Tyl — Tj,a® < (1 — \) Tpa°,

SO

Applying (4.4) again, this yields
and generally

or
0

‘oo ’
We can prove that uh —> uy, similarly as in the case of sequence ( ],"’L) in Step 3. Since (1 — )\)k — 0,

after passing to the hmlt We get

Up, < Up,
Interchanging the roles of a’,; and aﬁ we also get
ap, < Uy
Finally, we deduce that
Gp, = Up, = Up,
i.e. the solution of is unique. O

Remark 4.4. From the above proposition, one can see that the solution of system ([2.14) or (4.5)) is a fixed
point of T},. i.e.,
Thu = Up-
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5. Conclusion

In this paper, we presented a new proof for the existence and uniqueness of solutions of PQVIs, based
on some properties of the discrete iterative algorithm using the semi-implicit scheme with respect to the
t-variable combined with a finite element spatial approximation, and which has been used for proving the
asymptotic behavior in uniform norm in the previous paper [4]. As further development of this work, the
convergence of discrete iterative schemes for the sequences defined in Theorem will be proved, and we
will see that this result plays a major role in the finite element error analysis section.
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