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Abstract

This paper is devoted to the existence of a true solution near a numerical approximate solution of stochas-
tic differential equations. We prove a general shadowing theorem for finite time of stochastic differential
equations under some suitable conditions and provide an estimate of shadowing distance by computable
quantities. The practical use of this theorem is demonstrated in the numerical simulations of chaotic orbits
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1. Introduction

Nowadays shadowing property has an important position in theory and application of random dynamical
systems (RDS), especially in the numerical simulations of chaotic systems of stochastic differential equations
(SDEs). Due to the sensitivity of the initial value and random noise pumped into the systems constantly,
it is difficult to expect that a particular solution of chaotic systems of SDE can be well approximated by
a numerical solution for any given length of time. Numerical computations play a significant role in the
investigations of the dynamical behavior of SDEs whose applications describe many natural phenomena
in meteorology, biology and so on, [1, 11, 14]. In fact, many nice discoveries are derived from numerical
experiments. The reliability and feasibility of numerical computations are paid more and more attentions.
Therefore, we are mainly concerned that whether a numerical approximative solution implies the dynamics
of chaotic systems of SDE.
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There are two main motivations for this work. It follows from the classical shadowing lemma that many
studies about the dynamics of deterministic chaotic systems have been performed by B. A. Coomes and K.
J. Palmer et al., see [11] and references therein. There is few studies, however, in the random case. The
shadowing lemma of random hyperbolic set of RDS ϕ generated by random diffeomorphisms is proved in
[4]. Hong, Li and Wang had completed many nice works on the numerical analysis of RDS [6, 9, 13]. These
numerical techniques are applied to problems that are hyperbolic, i.e., for problems where there is a splitting
into exponential stable and unstable components. To the best of our knowledge, no investigations of the
shadowing theorem for finite time of SDE exist in the literatures. Shadowing is still an interesting method
for studying their dynamic behavior of SDE.

As we know, it is very hard to verify the hyperbolicity assumption in specific systems. We overcome this
shortcoming by the following method. We only need to construct some conditions such that chaotic systems
of SDE possess pseudo hyperbolicity. That is, it only needs to check whether an operator along a sequence
of points on chaotic systems is invertible under these conditions. This is the essence of the shadowing which
has been investigated from such practical point of view. And this brings great convenience to numerical
analysis, so it can be an available method of estimating shadowing distance, i.e. the maximum distance
between an (ω, δ)-pseudo orbit and its corresponding nearest true orbit in mean square sense. Therefore,
the main difference between the existed work and my study is that there is no hyperbolicity assumption of
original systems.

Utilizing generalized Brouwer’s fixed point Theorem and the existence of the modified Newton equation’s
solution, we propose the shadowing theorem for finite time of SDE. The result shows that under some
appropriate conditions the numerical approximative orbits of SDE are close to the true orbits of the original
systems and shadowing distance can be estimated.

The rest of this paper is organized as follows. Section 2 deals with some preliminaries addressed to
clarify the presentation of concepts and norms used later. Section 3 is devoted to the theoretical results
of the finite time shadowing. Section 4 presents the details of the numerical implementations. Illustrative
numerical experiments for the main theorem are included in Section 5. Section 6 is addressed to summarize
the conclusions of the paper.

2. Preliminaries

We consider a class of Stratonovich SDEs of the form

dxt = f(xt)dt+ σxt ◦ dWt, x(0) = ξ0(ω) ∈ Rd, (2.1)

whereW (t), t ∈ R+ = [0,+∞) is a standard one-dimensional Brownian motion defined on a canonical Wiener
space (Ω,F , P ), with {Ft, t ∈ R+} being its natural normal filtration, Ω = {ω ∈ C(R+, R) : ω(0) = 0} which
means that the elements of Ω can be identified with paths of a Wiener process ω(t) = Wt(ω), the random
variable ξ0(ω) is independent of F0 and satisfies the inequality E|ξ0(ω)|2 <∞ and σ is nonzero real number.

2.1. Basic assumptions and notations

It follows from Theorem 2 in [12], i.e., Doss-Sussmann Theorem, that SDE (2.1) can be changed to a
random differential equation (RDE) by the Doss-Sussmann transformation as follows.

We define
θ : R+ × Ω→ Ω, θtω(s) = ω(t+ s)− ω(t)

and 0 ≤ s ≤ t, s ∈ R+, t ∈ R+. Let Ot(ω) be a one-dimension random stable Ornstein-Uhlenbeck process
which satisfies the following linear SDE

dOt = −Otdt+ dWt.

And let
z(t, ω) := exp(−σOt(ω))xt(ω) ∈ Rd,
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then SDE (2.1) can be changed to a RDE in the form of

dz

dt
= exp(−σOt(ω))f(exp(σOt(ω))z) + σOtz = f1(θtω, z). (2.2)

It follows from Doss-Sussmann Theorem that the solution of RDE (2.2) is the solution of SDE (2.1).
In this paper, we make the following assumptions:
• f1 : Ω×Rd → Rd is a measurable function which is locally bounded, locally Lipschitz continuous with

respect to the first variable and is a C1 vector field on Rd.
It follows from Theorem 2.2.2 in [1] that RDE (2.2) generates a unique RDS ϕ : R+×R+×Ω×Rd → Rd,

which is usually written as ϕ(s, t, ω)z := ϕ(s, t, ω, z) ∈ Rd on the metric dynamical systems (Ω,F , P, θt) and
is C1 with respect to z. The RDS ϕ is given by

ϕ(s, t, ω)z = z +

∫ t

s
f1(θτω, ϕ(s, τ, ω)z)dτ ∈ Rd. (2.3)

We also make use of the following notations.
• Let L2(Ω, P ) be the space of all square-integrable random variables x : Ω→ Rd.
• For any random vector x = (x1, x2, ..., xd) ∈ L2(Ω, P ), we define the norm of x in the form of

‖x‖2 =
[ ∫

Ω
[|x1(ω)|2 + |x2(ω)|2+, ...,+|xd(ω)|2]dP

] 1
2
<∞.

• For a stochastic process x(t, ω) with xt(ω) ∈ L2(Ω, P ) and t ∈ R+, the norm of x(t, ω) is defined as
follows:

‖x(t, ω)‖2 = sup
t∈R+

‖xt(ω)‖2 <∞.

• We define the norm of random matrix in the form of

‖A‖L2(Ω,P ) =
[
E(|A|2)

] 1
2
,

where A is a random matrix and | · | is the operator norm.
• For simplicity in notations, the norm ‖ · ‖2 and ‖ · ‖L2(Ω,P ) are usually written as ‖ · ‖ unless otherwise

stated in sequels.

2.2. Some concepts and lemma

Definition 2.1. For a given positive number δ and P-almost surely ω ∈ Ω, if there is a sequence of times
{tk}Nk=0, 0 ≤ t0 ≤ t1 ≤, ...,≤ tN and a sequence of random variables {(uk(θtkω),Ftk)}Nk=0, which means that
uk(θ

tkω) is Ftk -measurable for k = 0, 1, 2, ..., N and f1(uk(θ
tkω))uk(θ

tkω) 6= 0 almost surely, such that the
following inequalities hold

‖uk+1(θtk+1ω)− ϕ(tk, tk+1, θ
tkω)uk(θ

tkω)‖ ≤ δ, (2.4)

then the random variables {(uk(θtkω),Ftk)}Nk=0 is said to be a (ω, δ)-pseudo orbit of SDE (2.1) in the sense
of mean-square, where ϕ(tk, tk+1, θ

tkω)uk(θ
tkω) denotes the orbit of RDS ϕ at the time tk+1 which starts

from the initial time tk with the initial value uk(θ
tkω) and the sample θtkω.

Definition 2.2. For a given positive number ε, P-almost surely ω ∈ Ω and a (ω, δ)-pseudo orbit {(uk(θtkω),
Ftk)}Nk=0 of SDE (2.1) with associated times {tk}Nk=0, if there is a sequence of times {hk}Nk=0, 0 ≤ h0 = t0 ≤
h1 ≤, ...,≤ hN , such that the following inequalities hold

‖uk(θtkω)− xk(θhkω)‖ ≤ ε
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and
0 ≤ tk − hk ≤ ε,

where the random variables {(xk(θhkω),Fhk)}Nk=0 are on a true orbits of SDE (2.1), that is

xk+1(θhk+1ω) = ϕ(hk, hk+1, θ
hkω)xk(θ

hkω), (2.5)

then the (ω, δ)-pseudo orbit {(uk(θtkω),Ftk)}Nk=0 is said to be (ω, ε)-shadowed by a true orbit of SDE (2.1)
containing points {(xk(θhkω),Fhk)}Nk=0 in the sense of mean-square, where the true orbit of RDS ϕ is a
stochastic process.

Since the σ-algebra Ftk(tk ≥ 0) is nondecreasing and tk ≥ hk(k = 0, 1, 2, ..., N), the random variables
xk(θ

hkω)(k = 0, 1, 2, ..., N) which are on the true orbit must be Ftk -measurable [1].

Definition 2.3. The RDS ϕ : R+×R+×Ω×Rd → Rd is said to be pseudo hyperbolic in mean square if the
constants κ1, κ2 ≥ 1, ν1, ν2 ≥ 0 exist, such that the following inequalities hold with Rd = Es(ω)⊕ Eu(ω),

E‖ϕ(s, t1, ω)x‖2 ≤ κ1e
−ν1(t1−t2)E‖ϕ(s, t2, ω)x‖2,∀t1 ≥ t2 ≥ s ≥ 0, x ∈ Es(ω), or

E‖ϕ(s, t2, ω)x‖2 ≤ κ2e
−ν2(t1−t2)E‖ϕ(s, t1, ω)x‖2,∀t1 ≥ t2 ≥ s ≥ 0, x ∈ Eu(ω).

This means that there is a splitting into exponentially stable and unstable components. The famous mul-
tiplicative ergodic theorem provides the stochastic analogue of the deterministic spectral theory of matrices
and a method to check the pseudo hyperbolicity.

Lemma 2.4 ([3]). (Multiplicative ergodic theorem) Let φ = φ(0, t, ω)x be a linear RDS in Rd for t ∈ R+ on
the probability spaces (Ω,F , P ) and the metric dynamical systems (Ω,F , P, θt). Assume that the following
integrability conditions are satisfied:

sup
t

ln+ ‖φ(0, t, ω)x‖ ∈ L1(Ω), sup
t

ln+ ‖φ(−t, 0, ω)x‖ ∈ L1(Ω),

where ln+(z) ≡ max{ln(z), 0}, denoting the non-negative part of the natural logarithm and L1(Ω) = {x :
E|x| <∞}.

Then there is a θ-invariant set Ω̃ of full P measure and fixed nonrandom numbers (the Lyapunov expo-
nents of φ)

λ1 > λ2 >, ..., > λp

with corresponding multiplicities d1, d2, ..., dp, where
∑p

i=1 di = d, such that for all ω ∈ Ω̃,

(1) Rd = E1(ω)⊕ ...⊕Ep(ω), where the Ei(ω) are measurable random linear subspaces of Rd of dimension
di which are invariant under φ, i.e.,

φ(0, t, ω)Ei(ω) = Ei(θ
tω)

for i = 1, 2, ..., p.

(2) The Ei(ω) are characterized dynamically by

x ∈ Ei(ω)\{0} ⇔ lim
t→+∞

1

t
ln ‖φ(0, t, ω)x‖ = λi.

(3) The Lyapunov exponents of x

λ(ω, x) := lim
t→+∞

1

t
ln ‖φ(0, t, ω)x‖ = λi

exists for each x 6= 0 and is a random variable which takes only the values λ1, ..., λp.

This lemma assures the existence of the Lyapunov exponents and provides the foundation to the con-
struction of a local theory of nonlinear RDS including pseudo hyperbolicity in mean square. When all
Lyapunov exponents are non-zero, the linear RDS φ(0, t, ω)x is pseudo hyperbolic in mean square.
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3. Theoretical results of finite time shadowing

3.1. Theoretical foundations

Let {(yk(θtkω),Ftk)}Nk=0 be a (ω, δ)-pseudo orbit of SDE (2.1) obtained by RDE (2.2) and yk(θ
hkω) ∈

L2(Ω, P )(k = 0, 1, ..., N). Suppose we have a sequence of d× d random matrices {(Yk(θtkω),Ftk)}N−1
k=0 such

that
‖Yk(θtkω)−Dϕ(tk, tk+1, θ

tkω)yk(θ
tkω)‖ ≤ δ, ∀ k = 0, 1, ..., N − 1.

For k = 0, 1, ..., N , we choose d × (d − 1) random matrices (Sk(θ
tkω),Ftk) such that its columns form

an approximate orthogonal basis for the subspace orthogonal to T (xk), where T (xk) = f1(θtkω, xk), the
approximate orthogonal means that the following inequality holds

‖Sk(θtkω)S∗k(θtkω)− I‖ ≤ δ1,

for some positive number δ1 ∈ (0, δ), where ∗ denotes the transpose of matrix.
Now we choose (d− 1)× (d− 1) random matrices Ak(θ

tkω) satisfying

‖Ak(θtkω)− S∗k+1(θtk+1ω)Yk(θ
tkω)Sk(θ

tkω)‖ ≤ δ.

Next, we define a linear operator L in the following way. If the value of random variables ξ =
{ξk(θtkω)}Nk=0 is in (Rd−1)N+1, then we let Lξ = {[Lξ]k}N−1

k=0 to be

[Lξ]k = ξk+1(θtk+1ω)−Ak(θtkω)ξk(θ
tkω), ∀ k = 0, 1, ..., N − 1.

It follows from Subsection 4.2 that the operator L has right inverses and we choose one such right inverse
L−1.

At last, we define various constants. Let U be a convex subset of Rd containing the value of the (ω, δ)-
pseudo orbit {(yk(θtkω),Ftk)}Nk=0. Therefore, we define

∆hmin = inf
0≤k≤N−1

∆hk+1.

Next, we choose a positive number 0 < ε0 ≤ ∆hmin such that ‖x − yk(θtkω)‖ ≤ ε0, then the solution
ϕ(s, t, ω)x(0 ≤ s ≤ t) is defined and remains in U for 0 < t ≤ hk + ε0 P-almost surely.

Finally, we define

M0 = sup
x∈U
‖f1(θtω, x(t))‖,M1 = sup

x∈U
‖Df1(θtω, x(t))‖,M2 = sup

x∈U
‖D2f1(θtω, x(t))‖

and
Θ = sup

0≤k≤N−1
‖ Yk(θtkω) ‖,

where

Df1 =
[∂f1(θtω, x(t))

∂xi

]
.

We first prove the following lemma which will be applied to the main theorem [7].

Lemma 3.1. Let X and Y be convex sets in finite-dimensional random vector spaces and B be an open
subset of X . Let v0 be a given element of B and ε̄ be a given positive number. Assume that G : B → Y be
a C2 function satisfying the following properties:

(i) the derivative DG(v0) at v0 ∈ B has a right inverse K;

(ii) the closed ball about v0 with radius ε̄ is contained in B, where ε̄ = 2‖K‖‖G(v0)‖;



Q. Zhan, J. Nonlinear Sci. Appl. 9 (2016), 2006–2018 2011

(iii) the inequality 2M‖K‖2‖G(v0)‖ ≤ 1 holds, where

M = sup
{
‖D2G(v)‖ : v ∈ B, ‖v − v0‖ ≤ ε̄

}
.

Then there is a solution v̄ of the equation G(v̄) = 0 satisfying ‖ v̄ − v0 ‖≤ ε̄.

Proof. We apply generalized Brouwer’s fixed point Theorem to this case. Let the operator F : B → X be
defined in the form

F (v) = v0 −K[G(v)−DG(v)(v − v0)].

We conclude that if F (v) = v, then the equality G(v) = 0 holds. In fact, if ‖v − v0‖ ≤ ε̄, we have

‖F (v)− v0‖ = ‖K[G(v)−G(v0)−DG(v)(v − v0) +G(v0)]‖
≤ ‖K‖‖[G(v)−G(v0)−DG(v)(v − v0) +G(v0)]‖

≤ ‖K‖‖1

2
D2G(v)(v − v0)2‖+ ‖K‖‖G(v0)‖ ≤ 1

2
M‖K‖ε̄2 +

1

2
ε̄.

It follows from the hypothesis (ii) that

‖F (v)− v0‖ ≤M‖K‖2‖G(v0)‖ε̄+
1

2
ε̄ ≤ 1

2
ε̄+

1

2
ε̄ = ε̄,

where the last inequality follows from the hypothesis (iii).
Therefore, the conclusion of Lemma 3.1 follows from generalized Brouwer’s fixed point Theorem. This

completes the proof.

3.2. Main results

Now we are in the position of the statement and proof of the main theorem in this paper.

Theorem 3.2. Let {(yk(θtkω),Ftk)}Nk=0 be a bounded (ω, δ)-pseudo orbit of SDE (2.1) obtained by RDE
(2.2) and let

C = max{M−1
0 (1 + Θ‖L−1‖), ‖L−1‖}. (3.1)

If the parameters δ, ε0 and these quantities shown in Subsection 3.1 satisfy the following inequalities

(i) C1 = Cδ < 1
3 ;

(ii) C2 = 3Cδ < min(ε0,∆hmin);

(iii) C3 = 9
2C

2δ(M0M1 + 2M1 exp(M1∆h) +M2∆h · exp(2M1∆h)) ≤ 1.

Then there exists a sequence of times {hk}Nk=0(0 ≤ h0 ≤ h1 ≤, ...,≤ hN ) such that the (ω, δ)-pseudo orbit
{(yk(θtkω),Ftk)}Nk=0 is (ω, ε)-shadowed by a true orbit of SDE (2.1) containing points {(xk(θhkω),Fhk)}Nk=0

in mean-square. Moreover, shadowing distance satisfies ε ≤ 3Cδ.

Proof. Given a (ω, δ)-pseudo orbit {(yk(θtkω),Ftk)}Nk=0 of SDE (2.1) obtained by RDE (2.2), we wish to
show that {(yk(θtkω),Ftk)}Nk=0 is shadowed by a true orbit containing {(xk(θhkω),Fhk)}Nk=0, where xk(θ

hkω)
lies in the random hyperplane Hk(θtkω) through yk(θ

tkω).
And we assume the random hyperplane Hk(θtkω) is normal to T (yk) = f1(θtkω, yk) at the point yk(θ

tkω).
In fact, we will find a sequence of times {hk}Nk=0 = {tk}Nk=0, 0 ≤ h0 ≤ h1 ≤, ...,≤ hN and a sequence of points
{(xk(θtkω),Ftk)}Nk=0 with xk(θ

tkω) ∈ Hk(θtkω) being contained in the ε-neighborhood of yk(θ
tkω) such that

xk+1(θtk+1ω) = ϕ(tk, tk+1, θ
tkω)xk(θ

tkω).
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The random hyperplaneHk(θtkω) can be viewed as a subspace of the tangent space at yk(θ
tkω). It follows

from the assumption that Sk(θ
tkω) is a d × (d − 1) random matrix whose columns form an approximate

orthogonal basis for Hk(θtkω). Thus we may identify Hk(θtkω) via the map z 7−→ yk(θ
tkω) + Sk(θ

tkω)z.
The problem of finding appropriate sequences of tk and xk becomes that of finding a sequence of times

{tk}N−1
k=0 and a sequence of points {(zk(θtkω),Ftk)}Nk=0 such that

yk+1(θtk+1ω) + Sk+1(θtk+1ω)zk+1(θtk+1ω) = ϕ(tk, tk+1, θ
tkω)(yk(θ

tkω) + Sk(θ
tkω)zk(θ

tkω)).

Next, we introduce the set X = (R+)N × (Rd−1)N+1 with norm

‖({sk}N−1
k=0 , {ζk}

N
k=0)‖ = max

{
sup

0≤k≤N−1
|sk|, sup

0≤k≤N
‖ζk‖

}
and the space Y = (Rd)N with norm

‖{gk}N−1
k=0 ‖ = max

0≤k≤N−1
‖gk‖,

where sk ∈ R+, ζk ∈ Rd−1 and gk ∈ Rd.
Now we let B be a properly chosen ε-open neighborhood of v0 = ({hk}N−1

k=0 , 0) in X which contain the

point v = ({sk}N−1
k=0 , {ζk}

N
k=0) and we introduce the function G : B → Y given by

[G(v)]k = yk+1(θsk+1ω)+Sk+1(θsk+1ω)ζk+1(θsk+1ω)−ϕ(sk, sk+1, θ
skω)(yk(θ

skω)+Sk(θ
skω)ζk(θ

skω)). (3.2)

We find that Theorem 3.2 will be proved if we find a solution v̄ = ({tk}N−1
k=0 , {zk(θ

tkω)}Nk=0) of the equation

G(v̄) = 0, a.s.

in the closed ball of radius ε about v0 = ({hk}N−1
k=0 , 0).

Therefore, we now only need to verify that the map G as (3.2) does indeed satisfy the hypotheses (i)−(iii)
of Lemma 3.1.

Verification of hypothesis (i) of Lemma 3.1:
First note that ‖G(v0)‖ ≤ δ. Secondly note that the Gateaux derivative of G at v0 is given for u =

({τk}N−1
k=0 , {ξk(θ

tkω)}Nk=0) ∈ X by

[DG(v0)u]k = lim
ε→0

[G(v0 + εu)−G(v0)]k
ε

= −τkT (yk+1) + Sk+1(θtk+1ω) · ξk+1(θtk+1ω)

−Dϕ(hk, hk+1, θ
hkω)yk(θ

tkω) · Sk(θtkω) · ξk(θtkω).

(3.3)

Let Tku be the approximation of [DG(v0)u]k and T be the approximation of DG(v0) [5], we have

Tku = −τkT (yk+1) + Sk+1(θtk+1ω) · ξk+1(θtk+1ω)− Yk(θtkω) · Sk(θtkω) · ξk(θtkω). (3.4)

Now we need to prove that Tk is invertible. Therefore, we must show that for all g = {gk}N−1
k=0 ∈ Y, there

is a solution of the following equation
Tku = gk,

that is,
− τkT (yk+1) + Sk+1(θtk+1ω)ξk+1(θtk+1ω)− Yk(θtkω)Sk(θ

tkω)ξk(θ
tkω) = gk(θ

tkω). (3.5)

As we know, the matrix [ T (yk)

‖T (yk)‖

∣∣∣Sk(θtkω)
]



Q. Zhan, J. Nonlinear Sci. Appl. 9 (2016), 2006–2018 2013

is orthogonal for each k. Then this set of equations is equivalent to the following two sets of equations, one set
obtained by premultiplying the kth member in (3.5) by T ∗(yk+1), the other set obtained by premultiplying
the kth member in (3.5) by S∗k+1(θtk+1ω). Therefore, we obtain

− τk‖T (yk+1)‖2 − T (yk+1)∗Yk(θ
tkω)Sk(θ

tkω)ξk(θ
tkω) = T (yk+1)∗gk(θ

tkω), (3.6)

ξk+1(θtk+1ω)−Ak(θtkω)ξk(θ
tkω) = S∗k(θtk+1ω)gk(θ

tkω). (3.7)

If we write ḡ = {S∗k+1(θtk+1ω)gk(θ
tkω)}N−1

k=0 , it follows from the condition (3.1) that the solution of Eq.(3.7)
is

ξk = (L−1ḡ)k. (3.8)

If (3.8) is substituted into Eq.(3.6), we obtain

τk = − T (yk+1)∗

‖T (yk+1)‖2
·
[
Yk(θ

tkω)Sk(θ
tkω)L−1Sk+1(θtk+1ω) + 1

]
gk(θ

tkω). (3.9)

Taking into account (3.8) and (3.9), we define the right inverse of Tk in the form of

T −1
k g =

[
{τk}N−1

k=0 , {ξk(θ
tkω)}Nk=0

]
.

It follows from (3.1) that T is invertible and the following inequality holds

‖T −1‖ ≤ C. (3.10)

Therefore, we can construct the invertibility of DG(v0). By the operator theory, we obtain

K =
[
I + T −1(DG(v0)− T )

]−1
T −1. (3.11)

It follows from (3.3), (3.4) and the assumption (i) of Theorem 3.2 that

T −1(DG(v0)− T ) ≤ ‖T −1‖‖DG(v0)− T ‖

≤ ‖T −1‖ ·
[

sup ‖(Dϕ(tk, tk+1, θ
tkω)yk(θ

tkω)− Yk(θtkω)Sk(θ
tkω)ξk(θ

tkω)‖
]

≤ Cδ < 1

3
.

Then the inverse [I + T−1(DG(v0)− T )]−1 exits and K is a right inverse of DG(v0). Furthermore,

‖[I + T −1(DG(v0)− T )]−1‖ ≤ 3

2
. (3.12)

Therefore, this satisfies the assumption (i) of Lemma 3.1.
Verification of hypothesis (ii) of Lemma 3.1:
Taking into account (3.10), (3.11) and (3.12), we obtain

‖K‖ ≤ 3

2
C.

and
‖G(v0)‖ = sup

k
‖yk+1(θtk+1ω)− ϕ(tk, tk+1, θ

tkω)yk(θ
tkω)‖ ≤ δ.

It follows from the assumption (ii) of Theorem 3.2 that

ε = 2‖K‖‖G(v0)‖ ≤ 3Cδ < ε0.
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Therefore, this satisfies the assumption (ii) of Lemma 3.1.
Verification of hypothesis (iii) of Lemma 3.1:
We only need to estimate ‖D2G(v)‖. Then we choose ū = ({rk}N−1

k=0 , {ηk}
N
k=0) and calculate the second

order Gateaux differential of G(v) as follows

[DG(v)uū]k := lim
t→0

[DG(v + tū)u−DG(v)u]k
|t|

=− τkrkDT [yk(θ
tkω) + Sk(θ

tkω)ζk(θ
tkω)] · T [yk(θ

tkω) + Sk(θ
tkω)ζk(θ

tkω)]

− τkDT [yk(θ
tkω) + Sk(θ

tkω)ζk(θ
tkω)]·

Dϕ(tk, tk+1, θ
tkω)(yk(θ

tkω) + Sk(θ
tkω)ζk(θ

tkω)) · Sk(θtkω)ηk(θ
tkω)

− rkDT [yk(θ
tkω) + Sk(θ

tkω)ζk(θ
tkω)]·

Dϕ(tk, tk+1, θ
tkω)(yk(θ

tkω) + Sk(θ
tkω)ζk(θ

tkω)) · Sk(θtkω)ξk(θ
tkω)

−D2ϕ(tk, tk+1, θ
tkω)(yk(θ

tkω) + Sk(θ
tkω)ζk(θ

tkω))

· [Sk(θtkω)ξk(θ
tkω)] · [Sk(θtkω)ηk(θ

tkω)].

By the norm property, i.e., sub-additivity, we obtain

M = sup
k
‖D2G(v)‖ ≤M0M1 + 2M1 exp(M1∆h) +M2∆h exp(2M1∆h).

It follows from the assumption (iii) of Theorem 3.2 and

‖G(v0)‖ ≤ δ, ‖K‖2 ≤ 9

4
C2,

that
2M‖K‖2‖G(v0)‖ ≤ 1.

Then this satisfies the assumption (iii) of Lemma 3.1. Therefore, the conclusion follows from Lemma
3.1. The proof is completed.

4. Numerical implementation methods

In the computation we approximate the local error δ using the local error control mechanism of the
numerical scheme. We only pay attention to the magnification of the local error, C, that gives shadowing
distance.

4.1. Basic methods

Step 1. Utilizing the one-step numerical scheme (eg. Taylor-like scheme [10]) to simultaneously solve
the following equations from tk to tk+1 with the initial values z(0) = yk(θ

tkω) and v(0) = I,{ dz = f1(θtω, z)dt

dvt = Df1(θtω, z)vtdt,

then we obtain the approximations of zk+1(θtk+1ω) and Dϕ(tk, tk+1, θ
tkω)yk(θ

tkω) respectively,

zk+1(θtk+1ω) ≈ ϕ(tk, tk+1, θ
tkω)yk(θ

tkω),

Dϕ(tk, tk+1, θ
tkω)yk(θ

tkω) ≈ vk+1(θtk+1ω).

Step 2. Using the methods shown in Subsection 3.1 and 4.2, we can find C such that (3.1) holds.
Step 3. If all inequalities in Section 3 hold and the time hk can be constructed by hk = tk − ε′ for

k = 0, 1, ..., N , where 0 < ε′ < ε, then the shadowing distance is ε = 3Cδ.
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4.2. Choice of the operator L−1

We are going to verify that the linear operator L along the obtained (ω, δ)-pseudo orbit
{(yk(θtkω),Ftk)}Nk=0 is invertible for P-almost surely ω ∈ Ω.

Let g = {gk(θtkω)}N−1
k=0 be in Y. To find ξ = L−1g, we have to solve the random difference equation

ξk+1(θtk+1ω) = Ak(θ
tkω)ξk(θ

tkω) + gk(θ
tkω).

Now as chosen in Section 3, the random matrix Ak(θ
tkω) is upper triangular with positive diagonal entries.

Therefore, we expect there to be an integer l such that for most k the first l diagonal entries of Ak(θ
tkω)

exceed 1 and the rest are less than 1 in mean square for P-almost surely ω ∈ Ω. We can partition the
random matrix Ak(θ

tkω) in the form

Ak(θ
tkω) =

[
Pk(θ

tkω) Qk(θ
tkω)

0 Rk(θ
tkω)

]
, k = 0, 1, ..., N − 1,

where Pk(θ
tkω) is l × l random matrix, Qk(θ

tkω) is l × (d− l − 1) random matrix and Rk(θ
tkω) is (d− l −

1)× (d− l − 1) random matrix.
It follows from Lemma 2.4 that the Lyapunov exponents of Ak(θ

tkω) are non-zero. Then it suggests that
the RDS ϕ generated by SDE (2.1) along the obtained (ω, δ)-pseudo orbit {(yk(θtkω),Ftk)}Nk=0 is pseudo
hyperbolicity in mean square for P-almost surely ω ∈ Ω. It can be written as{

ξ
(1)
k+1 = Pk(θ

tkω)ξ
(1)
k +Qk(θ

tkω)ξ
(2)
k + g

(1)
k

ξ
(2)
k+1 = Rk(θ

tkω)ξ
(2)
k + g

(2)
k ,

k = 0, 1, ..., N − 1.

In the second equation above, we set ξ
(2)
2 = 0 and solve forwards, then we substitute the resulting solution

ξ
(2)
k into the first equation above, set ξ

(2)
N = 0 and solve it backwards, obtaining the solutions ξ

(1)
k . Therefore,

we obtain the right inverse L−1 by

[L−1g]k = [ξ
(1)
k , ξ

(2)
k ]T , k = 0, 1, ..., N.

Therefore, the operator L is invertible. And this verify the important assumption of the invertibility of
the operator L.

5. Numerical experiments

5.1. Experimental preparation

We consider the Stratonovich stochastic Lorenz systems (SLS)
ẋ = σ(−x+ y) + λx ◦ dWt

ẏ = −xz + ρx− y + λy ◦ dWt

ż = xy − βz + λz ◦ dWt.

Therefore, its Itô SLS is the form of
dx = (σ(−x+ y) + λ2

2 x)dt+ λxdWt

dy = (−xz + ρy + (λ
2

2 − 1)y)dt+ λydWt

dz = (xy − βz + λ2

2 z)dt+ λzdWt.

Make the following transformation 
x̄(t, ω) = exp(−λOt(ω))x
ȳ(t, ω) = exp(−λOt(ω))y
z̄(t, ω) = exp(−λOt(ω))z,

where Ot(ω) is a one-dimension stable Ornstein-Uhlenbeck stochastic process and statisfies

dOt = −Otdt+ dWt.
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It follows from the transformation that Itô SLS can be transformed to the RDE in the form of
dx̄
dt = σ(−x̄+ ȳ) + λOt(ω)x̄
dȳ
dt = −x̄z̄ + ρx̄− ȳ + λOt(ω)ȳ
dz̄
dt = x̄ȳ − βz̄ + λOt(ω)z̄.

(5.1)

It follows from Theorem 4.4 and Lemma 6.3 in [8] that although Eq. (5.1) does not satisfy a linear
growth condition, the existence and uniqueness of its solution are proved and the solution operator of Eq.
(5.1) can generate a RDS.

In this experiment we take the initial value (0, 1, 0), time step size 7e−3 and iterative step 4.5e+5. The
pseudo orbits of Eq. (5.1) in Figs. 1 and 2 are generated by the Taylor-like scheme[10, 13].

Figure 1: Pseudo orbit of SLS projected on the (x, y) plane Figure 2: Pseudo orbit of SLS in the (x, y, z) space

It follows from [2] that the forward invariant random compact set U of RDS ϕ generated by Eqs. (5.1)
is the closed ball with center zero and radius R(ω), where

R(ω) = c2

∫ 0

−T
exp(c1s− 2σWs(ω))ds,

c1 = min(1, β, σ), c2 > 0, 2〈Bu, u〉 < −c1|u|2 + c2, T ∈ (0, tN ]

and

B =

 −σ σ 0
ρ −1 0
0 0 −β

 .

Then it suggests that the RDS ϕ generated by Eqs. (5.1) is pseudo hyperbolic in mean square for
P-almost surely ω ∈ Ω on the finite interval and lies in the forward invariant random compact set U . It is
shown as Figs. 3 and 4.

Figure 3: The approximative structure of pseudo hyper-
bolicity of an orbit of length 100 on SLS projected on the
(x, y) plane

Figure 4: The approximative structure of pseudo hyper-
bolicity of an orbit of length 700 on SLS projected on the
(x, y) plane

Therefore, this verify that the RDS ϕ along the finite computational points possesses pseudo hyperbolic
in mean square for P-almost surely ω ∈ Ω.
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5.2. Numerical results

It follows from the methods shown in Section 3 and 4, we can determine the parameters of Theorem 3.2.
Tables 1 and 2 present the numerical results and show the existence of shadowing orbits.

Table 1: Value of the parameters.

parameters value parameters value

∆hk 0.03 M1 ≤ 0.1855
(x0, y0, z0) (0.0, 1.0, 0.0) M2 0.0014

N 106 Θ ≤ 1.9369e+ 03
ε0 0.2 δ ≤ 3.1128e− 03
M0 ≤ 5.4477 ‖ L−1 ‖ ≤ 3.0712e− 03

Table 2: Comparison of the inequalities.

inequalities value

C ≤ 1.0681
C1 ≤ 4.3213e− 13
C2 ≤ 0.01
C3 ≤ 0.0221

shadowing distance ε 0.01
shadowing time t 3 ∗ 104

In conclusion, there is explicit dependent relationship between the shadowing distance and the pseudo
orbit error and there exists the true orbit in the appropriate neighborhood of the pseudo orbit of SLS.
Furthermore, the higher the order of the scheme is, the shorter the shadowing distance will be. The
symbolic drawing of such relation between pseudo orbits and true orbits of Eqs. (5.1) is depicted in Fig. 5,
that is, a (ω, δ)-pseudo orbit is shown as the red line, there exists a true orbit in the domain between two
blue lines.

Figure 5: The symbolic drawing of the relation between true orbit and pseudo orbit

6. Conclusion

The main result presented here is the shadowing theorem for finite time of SDE. To conduct the study we
have extended the well-known deterministic shadowing lemma to the random scenario by taking advantage
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of mean square and stochastic calculus. We show that the existence of the shadowing orbits of the SLS so
that the numerical experiments are performed and match the results of theoretical analysis. Although some
progresses are made, other kinds of shadowing such as random periodic shadowing, random quasi-periodic
shadowing and so on are needed in reality, which will be shown in my further work.
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