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Abstract

In this paper, we introduce some concepts in partial b-metric spaces. We establish fixed point theorems
for some new generalized o — ¢ type contractive mappings in the setting of partial b-metric spaces. Some
examples are presented to illustrate our obtained results. Finally, we show that the results generalize some
recent results. (©2016 All rights reserved.
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1. Introduction and Preliminaries

In the last few decades, fixed point theory was one of the most interesting research fields in nonlinear
functional analysis. Fixed point theory results are widely used in the economy, computer science, engineering
etc. The most remarkable result is the Banach Contraction Principle [8] in this direction.

Fixed points theorems for a — ) type contractive mappings in metric spaces were firstly obtain by Samet
et al. [26] in 2012, and then by Karapinar and Samet [15]. In this direction several authors obtained further
results (see, e.g., [3, 4 @, [16] 24]).

Let ¥ be family of functions v : [0,00) — [0, 00) satisfying the following conditions:

(i) v is nondecreasing;

(ii) S 4" (t) < oo for all t > 0, where 9™ is the nth iterate of 1.

It is easy to show that lim,, .~ "™ (t) = 0 and this implies ¥ (t) < t.

Definition 1.1 ([26]). Let 7: X — X and o : X x X — [0,00). We say that T is a-admissible if for all
z,y € X we have
alz,y) > 1= a(Tz,Ty) > 1.
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Definition 1.2 ([20]). Let (X, d) be a metric space and T': X — X be a given mapping. We say that 7" is
an « — 1 contractive mapping if there exist two functions o : X x X — [0,00) and v : [0,00) — [0, 00) such
that

a(z,y)d(Tz, Ty) < 4(d(z,y)), Vr,yeX.

Remark 1.3. We easily see any a — 1 contractive mapping with a(z,y) = 1 for all z,y € X and ¥(t) =
kt,k € (0, 1) satisfies the Banach contraction.

The concept of b-metric space was introduced by Baktin [7] and by Czerwik in [12] 13]. After that,
several interesting results about the existence of fixed point in b-metric spaces have been obtained (see,
e.g.,[1 2, Bl 6, 10 1T, 4] 17, 18, 19, 20, 211, 22] 23|, 25 27]). Very recently, Shukla [27] and Mustafa [17]
obtained fixed point theorems in partial b-metric spaces.

Definition 1.4 ([I7]). Let X be a nonempty set and the mapping b: X x X — R™ satisfies:
(bl) b(x,y) = 0 if and only if z =y for all z,y € X;
(b2) b(z,y) = b(y,x) for all z,y € X;
(b3) there exists a real number s > 1 such that b(z,y) < s[b(x, z) 4+ b(z,y)] for all z,y,z € X.
Then b is called a b-metric on X and (X, b) is called a b-metric space with coefficient s.

Definition 1.5 ([I7]). Let X be a nonempty set and the mapping p : X x X — R*, for all z,y,2z € X
satisfies:

(pl) =y if and only if p(x, z) = p(z,y) = p(y,y);

(p2) p(z,z) < p(x,y);
(p3) p(x,y) = p(y, );
(p4) p(z,y) < p(z,2) +p(2,y) — p(z, 2).

Then p is called a partial metric on X and (X, p) is called a partial metric space.

Definition 1.6 ([I7]). Let X be a nonempty set and the mapping p, : X x X — RT, for all z,y,2 € X
satisfies:
(pol
(pv2

x =y if and only if py(x,z) = pp(z,y) = pp(y,y);
po(2, ) < po(w,y);

(p63) po(@,y) = Po(y; ®);

(ppd) there exists a real number s > 1 such that py(z,vy) < s[pp(z, 2) + (2, y)] — pp(2, 2).
Then py is called a partial b-metric on X and (X, pp) is called a partial b-metric space.

— — — —

Remark 1.7. Any metric is a partial metric, b-metric and partial b-metric, but the converse is not true in
general.

Remark 1.8. It is clear that every b-metric space is a partial b-metric with coefficient s = 1 and zero self-
distance, and every partial metric space is a partial b-metric with coefficient s = 1. However, the converse
of this fact need not hold.

Example 1.9 ([27]). Let X = R™,q > 1 be a constant and p, : X x X — R™ be defined by

po(z,y) = [max{z,y}|? + |z —y|?, forall zyeX.

Then (X, pp) is a partial b-metric space with the coefficient s = 297! > 1, but it is neither a b-metric nor a
partial space.

Now, we present some definitions and propositions in partial b-metric space.

Definition 1.10 ([I7]). Let (X, py) be a partial b-metric space, then for 2 € X and e > 0, the py-ball with
center x and radius € is

pr(.%', 6) - {y € X’pb(xay) < pb<$7x) + 6}'
For example, let (X, pp) be the partial b-metric space from Example (with ¢ = 2). Then

pr(1a4) = {y € X‘pb(lvy) < pb(la 1) + 4} = (07 2)'
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Proposition 1.11 ([I7]). Let (X, py) be a partial b-metric space, for all z € X and r > 0, if y € B, (z,r),
then there exist ¢ > 0 such that B, (y,0) C By, (x,r).

Thus, from the above proposition the family of all py-balls
A= {pr(.’L',T)’33' S X,?“ > 0}
is a base of a Tj topology 7p, on X which we call the py-metric topology. It is Ty, but need not be 77.

Definition 1.12 ([I7]). A sequence {z,} in a partial b-metric space (X, p) is said to be:
(1) pp-convergent to a x € X if limy, oo pp(z, xn) = pp(x, T);
(ii) A pp-Cauchy sequence if limy, y—s00 Pb(Zn, Tm) exists (and is finite);
(iii) A partial b-metric space (X,pp) is said to be pp-complete if every pp-Cauchy sequence {x,} in X
p-converges to a point x € X such that limy, 100 P (20, Tm) = My, ;oo Db(Tn, ) = po(x, x).
Note that in a partial b-metric space the limit of convergent sequence may not be unique.
Proposition 1.13 ([I7]).
(1) A sequence {x,} is A py-Cauchy sequence in a partial b-metric space (X, py) if and only if it is A
b-Cauchy sequence in a b-metric space (X,b).
(2) A partial b-metric space (X, py) is pp-complete if and only if b-metric space (X, b) is b-complete.

Definition 1.14 ([I7]). Let (X, py) and (X', p}) be two partial b-metric spaces, let T : (X, py) — (X', p}) be
a mapping. Then T is said to be pp-continuous at a point a € X if for a given € > 0, there exists § > 0 such
that z € X and pb(a,x) < § + pp(a,a) imply pb(Ta,Tz) < € + pp(Ta,Ta). The mapping T is pp-continuous
on X if it is pp-continuous at all a € X.

Lemma 1.15 ([I7]). Let (X,py) and (X', p,) be two partial b-metric spaces. Then T : X — X' is py-
continuous at x € X if and only if it is py-sequentially continuous at x, that is, whenever {x,} is py-
convergent to x, then {T'z,} is py-convergent to Tx.

2. Main results

Since that lim, Y™ (t) = 0, for all t > 0, this implies each € > 0, there exist N(e) € N, n > N(e) such
that 1" (€) < 5. We use ng note that N(e) with ¢)™(¢) < 5.

Lemma 2.1. {z,} is a sequence in partial b-metric space. Then
1=p
Po(@nip@n) <3 8 p(Tnsis nsio1) for allpn € N,p> 1.
=1
Proof. Using the triangular inequality, we get

pb($n+p7 xn) < 3[pb(a7n+p7 $n+1) + pb(fanrly l'n)] - pb(l'nJrl» $n+1)
< 5[pb(xn+p7 xn+1) + pb(anrla mn)],

recursively, we can obtain
(2

i=p
pb($n+p7 xn) < Slpb(-rn—i—iv xn—i—i—l)-
;=1

]

O

Definition 2.2. Let (X,p,) be a partial b-metric space and 7' : X — X be a given mapping. We say
that T is a generalized o — 1) contractive mapping if there exist two functions o : X x X — [0,00) and
Y : [0,00) — [0,00) such that

Oé(.TU,y)pb(T.%', Ty) < w(pb(xv y))v Vx,y € X. (2'1)
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Theorem 2.3. Let (X,py) be a complete partial b-metric space. Suppose that T : X — X is a generalized
a — 1 contractive mapping defined by (2.1) which satisfies:

(i) T is a-admissible;
(ii) there exist o € X such that a(xo, Txo) > 1 and a(xg, T™x0) > 1, there ng satisfies Y™ (€) < 5-,€ > 0;
(iii) T is continuous.

Then T has a fized point.

Proof. Let zo € X such that a(wg, T"°xg) > 1, there is ng satisfying Ve > 0,9"(¢) < 5. as n > ng. Take
F =T" and zyy1 = Fag,Vk € N. By condition (i), we can easily show that F' is a-admissible, then for all
z,y € X

alz,y) > 1= a(Fz, Fy) > 1. (2.2)

Since T is a-admissible, for all n € N we easily obtain
a(z,y) > 1= a(T"z, T"y) > 1. (2.3)
So, by and , for all a(z,y) > 1 we have
po(Fa, Fy) = pp(T"0x, T™y)

< oz(T”O_lx,T”O_ly)pb(TT"O_la:,TT"O_ly)
< P(pp(T0 " w, T y)),

recursively, it implies that
po(Fa, Fy) <™ (py(z,y)). (2.4)

Also, From (2.2), we have
a(zg, 1) = a(zg, T™xy) > 1 = a(r1,22) = a(Fxo, Fr1) > 1,

by indiction, we get

a(xg,xpe1) > 1, Vk e N. (2.5)
Using (2.4), we have
po(h; Thy1) = po(Fag—1, Fay) < 9" py(vgp_1, k). (2.6)
Recursively, we get
Po(@, Tpt1) = po(Fap—1, Fag) < 9" (py(xo, 21)). (2.7)

Let k — oo in the above inequality, we have py(zk, zgp11) — 0.
Now we choose kg € N, for all € > 0,k > kg such that

€

Po(Tk, Thi1) < o (2.8)

According to (2.6)), (2.8) and condition(ii), we have

€ €

Po(Thy1, Thg2) < V™ (pp(Tr, Try1)) < Qpno(23> < W7

by indiction, for all p € N,p > 1, we find
€

Po(Thip—1, Thp) < (s (2.9)

Using Lemma and (2.9), for all k,p € N,p > 1,k > ko, we derive

p o0
€ €
Pb(Thyp, k) < E 5 < E 5 =€ (2.10)
i=1 i=1
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Hence, {zy} is Cauchy sequence in complete partial b-metric space (X,pp). It implies that there exists
z* € X such that x, — z*, then

lim py(zp,z*) = lim py(zn,zm) = pp(z™,2*) = 0. (2.11)
n—oo

0,1 —+00

Since T is continuous, by Lemma then Tx, — Tz*, i.e.

lim py(Txy, Tx*) = pp(Tx*, Tx"). (2.12)

n—o0

Next we show z* is a fixed point of 7. By condition (ii), we have
alxg, Txo) > 1= a(Txo, T?xg) > 1,

for all n € N, by indiction, we get
Tz, T" M zg) > 1. (2.13)

So, using (2.13) and ([2.1]), then
po(xk, Tag) = po(TTF g, TT 0 z0)
S Oé(TknDilxo, Tknoxo)pb(TTknoile, TTkn0$0)
< Y(pp(TH0 g, TH020)),
recursively, we get
po(wr, Txy) < *0((pp(o, To)). (2.14)

Let k£ — oo, we have
py(zg, Txg) — 0. (2.15)

For all k > ko,p > 1, from (2.1)), (2.5) and (2.9), we derive

Po(T 2y p—1, TTh1p) < (Thgp—1, Thyp)Po(TThgp—1, T Ty p)

<Py (Thgp—1, Thip)) < ¢((2Z)p) < (2§)p- (2.16)
Using Lemma similarly, we can obtain
Po(Txpip, Tay) < €.
Which implies {7z} is also a cauchy sequence, so by , we have
lim pp(Txn, Tx*) = lim py(Tzy, Txy) = pp(Tz™, Tx*) = 0. (2.17)

n—o0 n,Mm—0o0

Using the triangle inequality, we obtain

(2", T2™) < s(pp(xn, %) + po(zn, T2™)) — pp(@n, )
< Spb(l‘n, .T*) + 52pb(xn, Txn)) + 52pb(Tl'n, TSU*).

Let n — oo, by (2.11)), (2.15)), (2.17), we have py(z*, Tx*) = 0, then x* = Tz*, Therefore z* is a fixed point
of T O

Theorem 2.4. Let (X,pp) be a complete partial b-metric space. Suppose that T : X — X is a generalized
a — P contractive mapping which satisfies:

(i) T is a — admissible;

(ii) there exist xg € X such that a(xg, Txo) > 1 and a(xo, T™x0) > 1, there ng satisfies "0 (€) < 5, > 0;
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(713) if {xn} is a sequence in (X, py) such that a(xy, Tpt1) > 1 for alln and x, — x € X as n — oo, then
a(zp,x) > 1.

Then T has a fixed point.

Proof. Following the proof of Theorem we know {x,} satisfying (2.11)), (2.15) and the condition (iii),
i.e a(zy,xx) > 1. Then by ({2.1), we have

Po(Txp, Tox) < @, 25)pp(TTn, Trx) < Y(pp(an, v%)) < pp(Tn, T*). (2.18)

Let n — oo, from ([2.11]) we get
lim py(Txy,, Tz*) = 0. (2.19)
n—oo

Also, using the triangle inequality, we have

po(z", Tz*) < 8(pp(Tn, °) + po(Tn, T2)) — po(Tn, Tn)
< sb(zn, %) + 52b(xp, Txy) + 2b(Txp, T*).

Let n — oo, hence, by (2.11), (2.15)), (2.19), we obtain py(z*, Tx*) = 0, then z* = Tz*, therefore z* is a
fixed point of T'. O

Example 2.5. Let X = RT, endowed with the partial b-metric py(z,y) = |z — y|? + (max{x,y})?(with
s =2) for all z,y € RT. Define the mapping T': X — X by

o2 — 2 x> 1;
T — 27 b
v { 5 0<z<l1.

We define the mapping o : X x X — [0,00) by

_ [ L if zel01];
oz,y) = { 0, otherwise.

Clearly T is a-admissible and an « — ¢ contractive mapping with ¥ (t) = i for all t > 0. In fact, for all
xz,y € X, we have

1
a(z,y)ps(Tz, Ty) < Zpb(:z, Y).

Moreover, there exists g = 1 € X such that

1
a(xo, T'ro) = o1, 5) =1

and 1
axo, T"zo) = a1, 2—n) =1.
Obviously T is continuous.
Now, all the hypotheses of Theorem are satisfied. T has a fixed point. In this example, 0 and % are

two fixed point of T.

Example 2.6. Let X = RT, endowed with the partial b-metric py(z,y) = |z — y|? + (max{z, y})?(with
s =2) for all z,y € RT. Define the mapping T': X — X by

o2 — 2 T > 1
— 2 ;
Tw { T 0<z<1.

It is clear that T is not continuous at 1. We define the mapping o : X x X — [0, 00) by

_J L if x€[0,1];
o(z,y) = { 0, otherwise.
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Clearly T is a-admissible and an « — 1) contractive mapping with ¥ (t) = 1% for all ¢ > 0. In fact, for all
xz,y € X, we have

1
a(z,y)ps(Tz, Ty) < pr(way)-

Moreover, there exists g = 1 € X such that

1
a(zg, Txo) = a1, 1) =1
and 1
a(xo, T"xo) = a1, 47) = 1.

Finally, let {z,} be a sequence such that a(zy,zp+1) > 1 for all n € N and z,, — x as n — oo. Since
a(Zp, Tp+1) > 1, we have z,, € [0,1] for all n € N and = € [0,1]. Then a(x,,z) > 1.

Now, all the hypotheses of Theorem are satisfied. T has a fixed point. In this example, 0 and % are
two fixed point of 7.

To the uniqueness of a fixed point of a generalized a — v contractive mapping, we will consider the
following hypothesis.
(H): For all z,y € X there exists z € X such that a(z,z) > 1 and a(y, z) > 1.

Theorem 2.7. Adding condition (H) to the hypotheses of Theorem (resp. Theorem we obtain
uniqueness of the fixed point of T.

Proof. Suppose that z* and y* are two fixed point of T'. By condition (H), there exists z € X such that
a(zr,z) > 1 and a(yx, z) > 1.
Since T' is a-admissible, from the above inequalities, for all n € N, we have
alzx,T"z) > 1 and a(y*x, T"z) > 1. (2.20)
Using and , we get
pp(x*, T"z) = pp(Tax, T"z)
< a(awx, TV 2)py(Tax, T"2)
< ¢(py(ax, T '2)),
recursively, for all n € N, we obtain
pp(xx, T"z) < " (pp(xx, 2)),

let n — oo, then

lim py(z*,T"2) = 0. (2.21)
n—oo

Similarly, we can get
lim py(y*,T"z) = 0. (2.22)
n—oo

Also, using the triangle inequality, we have

py(xx, yx) < spp(z*, T"2) + spp(z*, T"2).

Let n — oo, using (2.21)) and (2.22)), we get py(x*,y*x) = 0, then xx = yx*. O

Definition 2.8. Let (X,p;) be a partial b-metric space and 7' : X — X be a given mapping. We say
that 7" is a generalized o — 1 contractive mapping if there exist two functions o : X x X — [0,00) and
¥ :[0,00) — [0,00), for all z,y € X, s> 1 such that

oz, y)pp(Tz, Ty) < Y(max{py(z,y), pp(x, Tx), pp(y, Ty), %(m(w? Ty) +po(y, Tx))}). (2.23)
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Theorem 2.9. Let (X,py) be a complete partial b-metric space. Suppose that T : X — X is a generalized
a — 1 contractive mapping defined by (2.23) which satisfies:

(i) T is a-admissible;
(ii) there exist o € X such that a(xo, Txo) > 1 and a(xg, T™x0) > 1, there ng satisfies Y™ (€) < 55,€ > 0;
(iii) T is continuous.

Then T has a fized point.

Proof. Let x9 € X such that a(xo, Tzo) > 1 and a(xo, T™0xg) > 1, there ng satisfying Ve > 0,9"(¢) < 5
as n > ng. lake xpy1 =Txy, n €N, if zy,11 = x, for some n € N, then z* = z, is a fixed point of T
Assumed that =41 # @, take yr11 = Fyi, for all k € N, yo = 29 and F = T, then we have y, = zpk
and we may easily show that F' is a-admissible, then for all x,y € X

alz,y) > 1= a(Fz, Fy) > 1. (2.24)
Since T and F are oo — admissible, by condition (ii), we get
a(zg, 1) = a(xg, Txg) > 1= a(Txo, Tx1) = a(zy,z2) > 1,

a(xg, T™x0) = a0, Tny) > 1 = a(Txg, Txy,) = a1, Tng+1) > 1

and
a(yo,y1) = a(wo, T x0) > 1 = a(Fyo, Fy1) = a(y1,y2) > 1,

by indiction, we obtain

a(Tp, Tnt1) > 1, (2.25)

a(Tpy Tping) > 1 (2.26)
and

oYk, Ye41) > 1. (2.27)

From (2.23)), (2.25) and the triangle inequality, we have

Po(Tn, Tng1) = pp(Txp_1,Txy)
< Oé(xnfla $n)pb(Tl‘n—1, Txn)

< Y(max{py(zn-1,2n), Pp(Tn—1,TTn-1), pp(Tn, Txy),

%(pb(xn—l)Tl‘n) +pb($n,T$n—1))}) (228)

= Y(max{py(n_1,Tn), Po(Tn, Tni1), %(m(azn—h Tpi1) + 0o(Tn, zn))})
< Y(max{py(Tn-1,Tn), Pp(Tn, Tni1), %(m(xn_h Tp) + Pp(Tn, Tny1))})

= w(max{pb(xn—la xn),Pb(ﬂfm xn—i—l)})‘
If po(Tn—1,2n) < Po(Tn, Tni1), by (2.28)), then
pb(xnaxn—i-l) S ¢(pb(90n733n+1)) < pb(xnaxn—i-l)'

It is a contradiction, hence
pb(xna xn+1) < pb(xnfly xn) (2.29)

Then, by (2.28) and ([2.29)), we get

Po(Zn, Tng1) < Y(Po(Tn—1,2n)),
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recursively, we have
Po(Tns Tny1) < " (py(wo, 21)). (2.30)
Hence, from ([2.23)), (2.26)), (2.29) and using the triangle inequality, we obtain

Po(Yks Yr+1)
= Pb(Tnoks Tng(k+1))
= Po(TZnok—1, Ty (k41)-1)
< U Trgk—15 Trg (1) —1)Pb(TTrgk—1, T (kg 1)1)

< Y(max{pp(Trok—1, Trg (k+1)—1)> Pb(Trok—1, TTrgk—1)s Pb(Trg (k- 1)~ 15 T g (k41)—1)
1
552 P (@nok—15 T (k41)-1) + Po(Zng (k1)1 Tnok-1))})
Y(max{py(Trok—15 Trg(k-+1)—1)> Pb(Trok—15 Tnok)s Pb(Trg (k+1)—15 Trg (k+1) )»
1
@(pb(xnokfla x’no(k+1)) + pb(xno(k+1)717 xnok))}) (2 31)
< (max{pp(Trok—15 Tng(k41)—1)s Pb(Trok—15 Tnok )
1
2s 92
+ Spb(xnokfla $n0k)) + Spb(wnokfla ﬂcno(k+1)—1))})
< w(max{pb(:ﬁnok—la l‘no(k—&—l)—l)’pb(mnok—l, xnok‘)v

(806 (Znok—1, Tnok) + SPb(Tnok, Tng(k+1))

1
%(2pb(wnok—1, Trok) + Po(Uks Yk+1) + Po(Trok—1> Tng(k+1)—1)) 1)
S w(ma‘x{pb(wnok717 xno(k+1)71)7pb(xnok717 xnok)7
1

ﬁ(%b(%ok—la Tngk) + Pb(Tnok—1, xno(k+1)71))})°

By (2.31)), we have

pb(xnokfh :Uno(k:-i—l)—l) < ¢(maX{pb($nok72: x’no(k}-‘rl)—?)?pb(xnok’*Q? xnok‘fl)v
1 (2.32)

2% —1 (2pb($n0k—27 @"nok—l) + pb(@“nokf% xno(k+1)72))})7

recursively, and using ([2.30)), since 1 is nondecreasing, we can obtain

oY, Y1) < max{y"F (py (0, y1)), "% (pp (0, 1)),

(26 (py 0, 20)) + 6" (py (a0, 1)))) (239
95 — 1 PvTo, L1 Po{To, Y1 .
Let k — oo in ([2.33)), then
Po(Yks Y1) < max{y"F (py (w0, y1)), "% (pp (0, 1)),
1 nok nok (2.34)
2s 1\ (po(w0, 1)) + "% (pp(20,91)))} — 0.
Now we choose kg, Ve > 0, for all k > kg such that
oYk Yrr1) < max{s"" (py(z0,y1)), " (pp (w0, 21)),
] (2.35)

(20"F (py (w0, 1)) + %™ (py (w0, y1)))} < 5=

2s —1 2s
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Since 9" (¢) < 5, from ([2.35), we have
Po (Yt 1, ir2) < max{y0E D (py (g, 1)), "0 * D (py (20, 21)),

(20" (py(0, 1)) + 1" (pe (0, 11)))}

2s —1

by induction, for all p > 1,p € N, we get

€

Po(Yk4p—1, Yk+p) < 25y (2.36)
Using Lemma and ([2.36)), we derive
" e e
bk U6) < D57 < D5 =€ (2.37)
i=1 =1

Hence, {yx} is Cauchy sequence in complete partial b-metric space (X,pp). It implies that there exists
y* € X such that y, — y*, then

m py(Yn,y*) = Lm  py(yn, ym) = pe(y",y") = 0. (2.38)
n—00 n,m—00
Since T is continuous, then Ty, — Ty*, so we have
lim py(Tyn, Ty*) = po(Ty", Ty"). (2.39)
n—oo
Finally, we show y* is a fixed point of T'. By (2.30)), we have
pb(Tyk’7 yk‘) = pb(xnok‘-i-b xnok‘) S wnOk(pb(xla 1130))
Let k — oo in the above inequality, we have
pb(Tyk, yk) — 0. (240)
Analogous inequality (2.37)) of the acquisition process, we can obtain
Po(TYptps Tyr) < e (2.41)
Then, {Ty,} is a Cauchy sequence in complete b-metric space (X, pp), by (2.39)), for all m,n € N, we get

lim pp(Tyn, Ty*) = lm  py(Tyn, Tym) = b(Ty*, Ty*) = 0. (2.42)
n— oo n,m—o0
Using triangle inequality, we have

2oy, Ty™) < s(0b(Yns ¥™) + 06(Yn, TY")) — 26 (Yns Yn)
< 8pb(Yn, ) + 8200 (Yn, TYn)) + 806(TYn, Ty*).

Let n — oo, from (2.38)), (2.40) and (2.42)), which implies that py(y*, Ty*) = 0, then y* = T'y*, therefore y*
is a fixed point of T'. O

To the uniqueness of a fixed point of a generalized a — @ contractive mapping, we will consider the
following hypothesis.
(H’): For all z,y € X there exists z € X such that a(z,z) > 1, a(y,z) > 1. and a(z,Tz) > 1
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Theorem 2.10. Adding condition (H’) to the hypotheses of Theorem we obtain uniqueness of the fized
point of T.

Proof. Suppose that z* and y* are two fixed point of T'. By condition (H’), there exists z € X such that
a(zx,2) > 1,a(yx,z) > 1 and a(z,Tz) > 1,
since T' is a-admissible, from the above inequalities, for all n € N, we have
oz, T"2) > 1,a(y+,T") > 1 and a(T" 2, T"z) > 1. (2.43)
By , , and (pp2), we get
po(x*, T"2) = pp(Tax,T"z)
< a(z, T L 2)py (Tax, T"2)
< p(max{py(zx, T" 12), py(z*, Tax), pp(T" 12, T 2),

2i32(pb(:v*,T"z) +pp(T" 12, Tax))}) (2.44)

= ¢(max{pb(x*, Tn_lz)7pb(x*7 x*)>pb(Tn_1za Tnz)’

%(pb(az*, T"z) + py(T" 2, 2%))})

= v(max{py(zx, T""'2), pp(T" 12, T"2)}).
Also, from , , and using the triangle inequality, we have
po(T L2, T72) < (T 22, T 1 2)py (T 12, T72)
< (max{py(T" 22, T ' 2), pp (T 22, T 2), po(T" 12, T"2),

T;(pb(T"*Qz, T"2) + pp(T" 12, T 12))}) 0.15)
< p(max{py(T" 22, T" 2), pp(T" 12, T"2), .
o (po(T"722, T 2) 4 (T2, T72)))
< (max{py(T" 22, T '2), pp(T" 12, T"2)}),
if py(T" 22, T 12) < pp(T™ 12, T"2), then by , we get
po(T™ L2, T72) < (pp(T™ 12, T72)) < pp(T" L2, T"2).
It is a contraction. So, by , we have
pu(T™ 12, T2) < h(py(T™ 22, T 12)).
Recursively, this implies that
po(T" 12, T"2) <" Hpy(2, T2)). (2.46)

Moreover, from , we can obtain
py(xx, T 2) < h(max{py(ax, T 22), pp(T" 22, T 12)}),
recursively, for all n € N, and by , since ¢ is nondecreasing, then
pp(z*, T"2) < max{y" (pp(z*,2)), V" (pp(z,T%))}. (2.47)

Let n — oo in (2.47)), we have
lim py(z*, T"z) = 0. (2.48)
n—o0

Similarly, we can get
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lim py(y*, T"2) = 0. (2.49)
n—oo
Also, using the triangle inequality, we have

pp(T*, yx) < spp(ax, T"2) + spp(y*, T"2).

Let n — oo, using (2.48]) and (2.49), we get py(x*,y*) = 0, then xx = yx*. O

Example 2.11. Let X = R", endowed with the partial b-metric py(x,y) = (max{z,y})?(with s = 2) for
all x,y € Ry. Define the mapping 7' : X — X by

T z, x> 1;
xr = €T
Vv 0sesl
We define the mapping o : X x X — [0,00) by
)L if y<a
o(z,y) _{ 0, otherwise.

Clearly T is a-admissible and an « — 1) contractive mapping with ¥(t) = % for all t > 0. In fact, for all
z,y € X, we have

1 1
a(z,y)ps(Tz, Ty) < 3 max{py(z,y), pp(x, Tx), pp(y, Ty), @(m(x’ Ty) + pp(y, Tx))}

Moreover, there exists xg = 1 € X such that
O[(l’o, TxO) =1

and
a(zg, T"xo) = 1.

Obviously T is continuous , condition (H’) is satisfied.
Now, all the hypotheses of Theorem [2.10| are satisfied. T" has a unique fixed point. In this example, 0 is
the unique fixed point of T'.

Definition 2.12. Let (X, pp) be a partial b-metric space and T': X — X be a given mapping. We say
that T is a generalized o — v contractive mapping if there exist two functions « : X x X — [0,00) and
Y :[0,00) = [0,00), for all z,y € X,s > 1 such that

a(z,y)pp(Tz, Ty) < %w(maX{pb(w, y),po(@, Tx), po(y, Ty), ;Z(pb(w, Ty) + po(y, Tx))}).- (2.50)
Theorem 2.13. Let (X, py) be a complete partial b-metric space. suppose that T : X — X is a generalized
a — 1 contractive mapping defined by which satisfies:

(i) T is a-admissible;

(ii) there exists xog € X such that a(xg, Txo) > 1;
(111) T is continuous.

Then T has a fized point.

Proof. Let xy € X such that a(xg, T'z¢) > 1, Take 25,11 = T'xy, for allm € N. If 2,41 = x,, for some n € N,
then xx = z, is a fixed point of T. Assume that z,1 # x,, for all n € N. Since T is o — admissible, we
get

a(zg, 1) = a(zo, Txo) > 1= a(Txo, Tx1) = a(zy, z2) > 1,

by indiction, we obtain
Ty, Tpt1) > 1. (2.51)
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So, from (2.50)), (2.51)) and the triangle inequality, we have
Pb(Tn, Tnt1)
= Pb(T%z—l, Txn)
S Oé(xn_]_, $n)pb(Txn—1y Txn)
1
< gw(max{pb(xn—la wn)u pb(mn—ly Txn—l)vpb(wm Txn)y
1
55 Po(@n—1,Tn) + py(2n, Twn-1))}
1
< S Y(max{py(zn—1,2n), P(Zn—1,n), Po(Tn, Tnt1), (2.52)
1
%(pb(ﬁnfla anrl) =+ pb(xna $n))}
1
< giﬁ(maX{Pb(fﬂn—h xn)u Pb(l“m xn—i—l)u
1
%(Spb(xn—la xn) + Spb(l’m mn—f—l))}
1
< ;WmaX{Pb(wn—h xn)a pb(«xm mn—l—l)}-
If pp(zn—1,2n) < Pp(Tn; Tnt1), by (2.52), then
1 1
Pb(ﬂfmfn-i-l) < gw(]?b(ﬁmxm-l)) < ;Pb(l’n,l’nﬂ)v
it is a contradiction, hence
pb(l’m xn—&—l) < pb(xn—l) xn) (253)
Then, by (252) and (2.53), we get
1
pb(xm $n+1) < gw(pb(l'n—l, xn))? (2‘54)
recursively, we can obtain
1
Po(Tn, Tng1) < 877/1n(29b($07$1))- (2.55)
Also, fix € > 0 and n(e) € N such that
> M (py(wo, 1)) < €. (2.56)
n>n(e)
Hence, by (2.55)), (2.56]) and Lemma we get
p .
pb($n+p7 xn) < Z Slpb(xn-i-iv xn-i—l—l)
i=1
P .
< Z SZ@WHZ(I%(HTO’ 1))
i=1 (2.57)

L

o " (py (o, 71))

M@

1

-.
Il

IN

" (py(0, 1)) < €.
n(e)

3
I\
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Therefore {x,} is Cauchy sequence in complete partial b-metric space (X, pp). It implies that there exists
z* € X such that x, — z*, then

lim pp(xn,2*) = lm  py(zp, zm) = pp(z*, %) = 0. (2.58)

n—oo n,m—0o0

Since T is continue, then z,11 = Tz, — Tx*, so

lim py(zpn, T2*) = lm pp(an, zm) = pp(T2z*, T2*) = 0. (2.59)

n—00 ,1M—00
Also, using the triangle inequality, we have
po(2", Tx") < 5(py(Tn, ") + po(Tn, T2")) — b(zn, 2n)
$(Po(zn, ") + py(zn, T2")).

Let n — oo, by (2.57) and (2.58), which implies py(z*,Tz*) = 0, then z* = T'z*, therefore x* is a fixed
point of T. 0

IN |

Theorem 2.14. Let (X, py) be a complete partial b-metric space. suppose that T : X — X is a generalized
a — 1 contractive mapping defined by (2.50) which satisfies:

(i) T is a — admissible;
(ii) there exists xo € X such that a(xo, Txo) > 1;
(iii) if{fxn} is a consequence in (X, py) such that o(zy,Tp+1) > 1 for alln and z, - x € X as n — oo,
then a(xy,z) > 1.

Then T has a fized point.

Proof. Following the proof of Theorem we know {z,} satisfying (2.55), (2.57) and the condition (iii),
Le. a(zy,xx) > 1. If pp(z*, Tz*) # 0, by (2.50), (2.55)) and the triangle inequality, we can obtain

po(z*, ™) < spy(Tny1,
(
(
(

< spy(Tnt1, 27) + Y (max{py(n, 2%), pp(@n, Tan ), po(x*, Tax),

*

z ) + Spb($n+1v T-T*) - pb(xn+la fL'nJrl)
Tnt1,27) + pp(Txp, Tx™)
")

*

< spy

< spp(Tnt1, + sa(mmx*)l)b(Tmeﬂ?*)

%s(pb(xn, Txx) + pp(Tan, w%))})

* 2.60
S Spb(xn—‘rl;x ) +w(maX{pb(fEn,$*),pb($n,$n+1),pb<1’*,TCC*), ( )

1 1
;S(Spb(wm xx) + spy(x, Trx)) + ;Spb(xn+1, z*)})

. 1
< spp(@nt1, @7) + 1 (max{py(@n, 2x), 20" (po(wo, 21)), polax, Tax),

1 1
5 P, %) + po(s, Twx)) + oopp(@nt1, 7)),

take

1
M :max{pb(xm .fU*), Ewn(pb(xﬁv xl))upb(w*a Tﬁ:’*),
1

1
§(pb(xn, xx) + pp(a*, Tax)) + ;Spb(xn+1, zx)}.

There are three cases:

1. if M = max{py(zn, z*), 0" (pp(20, 1))}, let n — oo in (2.59), and by (2.57)), we have p,(z*, Tz*) = 0,

it is a contradiction;
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2. if M = py(x*,Tax), let n — oo in (2.59), and by (2.57), we have py(a*, Tx*) < ¥(pp(z*,Tz*)) <
py(x*, Tx*), it is a contradiction;

3. if M = 3(pp(zn, x%) + pp(ax, Tax)) + 5=pp(Tni1, %), let n — oo in (2.59), and by (2.57), we have
po(x*, Ta*) < Spy(a*, Ta*), it is a contradiction.

Therefore there must be p,(z*, Txz*) = 0 , then x* = T'z*, therefore z* is a fixed point of T'. O

Theorem 2.15. Adding condition (H’) to the hypotheses of Theorem [2.13] (resp. Theorem [2.14) we obtain

uniqueness of the fixed point of T'.

Proof. Suppose that z* and yx are two fixed point of T'. By condition (H’), there exists z € X such that
a(zx,2) > 1,a(yx,z) > 1 and a(z,Tz) > 1.

Since T' is a-admissible, from the above inequalities, for all n € N, we have

alzx, T"z) > 1,a(yx, T") > 1 and a(T" 12, T"2) > 1. (2.61)

By " ‘ , and (pb2)’ we get
py(xx, T"2) = pp(Txx, T"2)
< afwx, T L 2)py(Tax, T™2)

1
< —tp(max{pp(xx, T"_lz) , oy, Trx), pb(T"_lz, T"z2),
S

%(pb(az*, T"z) + po(T" "2, Twx))})

(2.62)
1

= —p(max{py(xx, T"ilz) , pp(Tx, T%), pb(Tnflz, T"2),
S

%(pb(x*,T"Z) +pp(T" ' 2, 2%))})

1
< “ep(max{py(z*, T 2), pp (T 12, T"2)}).
s
Also, from ([2.50)), (2.60), and using the triangle inequality, we have
puo(T™ 12, T72) < a(T™ 22, T 1 2)py (T 12, T"2)

<

W | =

Y(max{py(T" 22, T 12), pp(T" 22, T L2), pp (T L2, TT2),

) (2.63)
)

9

1
?(Pb(T”_QZ T"z) +pp(T" 12, T 2)
(mascpy (T 22, T 12), py (172, T2
1
i(pb(T"*QZyT"AZ) +pp(T"12,T"2))})
< p(max{py(T" 22, T 12), pp(T" 12, T"2)}).
If pb(Tn72Z7Tnilz) < pb(Tnilsznz)a by " we get
po(T" 12, T 2) < p(po(T" "2, T"2)) < pp(T" 12, T"2).
It is a contraction. So, by (2.62)), we have

pb(Tnflz, T'z) < w(pb(T”*QZ, T”flz)).
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Recursively, this implies that
po(T™ 12, T72) < " (py(2, T2)). (2.64)
Moreover, from , we can obtain
py(xx, T 1 2) < h(max{py(ax, T 22), pp(T" 22, T 12)}),
recursively, for all n € N, and by , since v is nondecreasing, then
po(ax, T"z) < max{y)" (py(x*, 2)), ¥" (pe(2,T2))}- (2.65)

Let n — oo in ([2.64]), we have

lim py(xx,T"z) = 0. (2.66)
n—o0

Similarly, we can get
lim py(y*, T"z) = 0. (2.67)
n— o0

Also, using the triangle inequality, we have

py(ax, yx) < spp(xx, T"2) 4 spp(y*, T" 2).

Let n — oo, using (2.65)) and (2.66)), we get py(x*,y*) = 0, then xx = yx*. O

Definition 2.16. Let f,g: X — X and a : X x X — [0,00). We say that a pair (f,g) of mappings is
a-admissible if for all z,y € K, and we have

a(z,y) > 1= a(fr,gy) > 1 and a(gz, fy) > 1.

Definition 2.17. Let (X,pp) be a partial b-metric space and f,g : X — X be a given mapping. We
say that a pair (f,g) of self-mappings is a generalized « — 1) contractive pair if there exist two functions
a: X x X —[0,00) and 9 : [0,00) — [0,00), for all z,y € X,s > 1 such that

L (2, g9) + poly, F2)))- (2.68)

ol )T, Ty) < ~max{p(e, v), (e, f2),m0(0,99), 5

Theorem 2.18. Let (X, py) be a complete partial b-metric space. suppose that f,g: X — X, and (f,g) is
a generalized o — 1) contractive pair defined by (2.67)) which satisfies:

(i) (f,qg) is a-admissible;
(ii) there exists xo € X such that a(xg, frg) > 1;
(iii) f and g are continuous.

Then f and g have a fixed point.

Proof. Let oy € X such that a(zg, fzg) > 1, We construct a sequence {z,} in X such that xo,+1 = fzo,
and Tap4+9 = gTan+1 Yn € N. Since (f,g) is a-admissible, then

a(zo, fro) = a(xo, 1) > 1 = a(fro, gr1) > 1 = a1, 22) > 1
= Oé(gl'l, fx2> = 04(1'2, .’IJ3) Z 17

by indiction, we have
(20, Tns1) 2 1. (2.69)
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If xop+1 = w9, for some n € N, then z9, = fxo,. Thus zo,+1 = 2, is a fixed point of f. This must
Top = Tan1 is fixed point of g, i.e. 2,41 = gwo,41. Indeed, if 29,11 # 92241, then py(z2,41, T2ng2) # 0,

so by (2.67), (2.68)), (pp2) and the triangle inequality, we get

Po(Tan+1, Toant2) = Pu(f2on, 9Ton+1)
Oé(fb‘zn, $2n+1)pb(fl‘2m 9$2n+1)

IN

IN

1
giﬁ(maX{Pb(ﬂczn, Zon+1)s Pb(T2n, fon), Pb(T2n+1, 9T2n+1),

1
%(pb(x%w 9Zon+1) + Po(Tont1, fTan))})

1
= glb(maX{Pb(QO $2n+1),Pb(9€2m $2n+1)7pb(x2n+17 332n+2),

1

7(pb(332m $2n+2) + pb($2n+1, $2n+1))})

2s (2.70)

IN

1
g%b(max{pb(ﬂﬁzn, $2n+1),pb($2n+1, $2n+2),

1
?S(Spb(ﬂbn, Zont1) + SPb(Tan+1, Tant2))})

1
= giﬁ(max{pb(@n, Ton+1), Pb(T2n+1, Tan+2) })

1
= gw(pb(mnﬂ, 902n+2))

1
< gpb($2n+1, Tont2),

which gives a contradiction. Therefore py(x2n+1,T2n+2) = Po(Tan+1,9T2n+1) = 0, then zo, = zop41 is a
fixed point of g.
Similarly, if zop4+2 = xa,4+1 for some n € N, we obtain x9,41 is fixed point of g and f. Therefore we

assume that x, # 1. If pp(Toni1, Tant2) > Po(T2n, Tont1), from (2.69) we get

1 1
Po(Ton41, Tong2) < g¢(pb($2n+1,$2n+2)) < gpb($2n+1,3?2n+2),

it is a contradiction. Hence,

Po(Zon+1, Tant2) < Db(T2n, Tant1)-

Moreover, from ([2.69)), we have

Po(Tan+1, Tont2) < —(Po(@2n, T2n+t1))-

®w | =

Similarly, we can show that

[y

Po(Tan, Tont1) < gw(pb<$2n—lax2n))-

Recursively, we get

1
Po(T2n+1, Tant2) < 82n+1¢2n+1(pb(x0,x1))

and

1
Py(T2n, T2nt1) < sﬁl/}%(pb(xo,m))-
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Then, by the above two inequalities, which imply that
1
Po(Tn, Tng1) < 87¢n(pb($o,$1))- (2.71)
Also, fix € > 0 and n(e) € N such that

> M (py(wo, 1)) < e (2.72)

n>n(e)
Hence, by (2.70)), (2.71)) and Lemma we can obtain
p .
Po(Tntps Tn) <Y 8'Py(@npi Tntit1)
i=1
1
< Z S i —= " (py (0, 1)) (2.73)

Z V" (po(o, 1)) <

n>n(e

It shows that {x,} is Cauchy sequence in complete partial b-metric space (X, pp). Which implies that
there exists * € X such that z,, — z*, then

lim pp(xn,2*) = Um  py(zp, zm) = pp(z*, %) = 0. (2.74)
n—00 n,m—00
Moreover
lim pp(zont1,2") = Lm  pp(Tont1, Toams1) = pp(z™, %) =0, (2.75)
n—00 n,M—00
and
lim py(zon, ™) = lm  py(zon, x2m) = pp(z*, 2¥) = 0. (2.76)
n—00 n,m—00

Since f is continuous, then x9, 11 = fxo, — fz* as n — co.

nli_ggopb(l’znﬂ, fx*) = hmoopb(ﬂ?QnH,mmH) po(fz*, fz*) = 0. (2.77)

n,m—

Using the triangle inequality, we have

po(z”, fa*) < s(pp(zant1,2") + po(zont1, f27)) — b(T2n41, Tont1)

<
< s(pp(z2n+1, %) + po(@2041, f27)).

Let n — oo, by (2.74]) and (2.76)), then py(z*, fz*) = 0, it implies z* = fx*, therefore z* is a fixed point of
f. Similarly, we can obtain x* is a fixed point of g. O

Theorem 2.19. Let (X, py) be a complete partial b-metric space. suppose that f,g: X — X, and (f,g) is
a generalized o — 1) contractive pair defined by (2.67)) which satisfies:

(i) (f,q) is a-admissible;
(i) there exists xg € X such that oz, fxo) > 1;
(71) if {zn} is a consequence in (X,pp) such that a(xn,xpnt1) > 1 for alln and x,, — x € X as n — oo,
then a(xy,, ) > 1.

Then f and g have a fixed point.
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Proof. Following the proof of Theorem we know {x,} satisfying (2.70)), (2.74), (2.75]) and the condition
(iii), i.e. a(xp,z*x) > 1, if pp(a*, fx*) # 0, then by (2.67)), (2.70) and using the triangle inequality, we obtain

po(x”, f2) < spp(9rant1, %) + spp(922nt1, f2*) — po(T2nt1, Tont1)
< spp(Tn+2, ") + spp(gTont1, fr*)
< spp(Tan+t2,27) + sa(@ont1, 2%)pp(9Tan11, f2*)
< spp(T2n42, %) + Y(max{py (21, %), pp(Tant1, gTant1), Po(T*, f*),

%(pb(JUQn—i-l’ frx) + pp(gxont1, x))})
< spy(z2n+2, %) + Y(max{py(Tont1, %), o (T2n+1, Tant2), Po(T*, fax),
(2.78)

21 (Po(z2nt1, fr*) + po(T2nt2, 2%))})

< spp(xon+2, ™) + Y (max{py(zan+1, %), pp(T2n+1, Tant2), Po(T*, frx),
1
5% —(spp(@an41, %) + spy(a*, frx) + py(Tant2, x*))})

* 1
< spp(Tant2, ) + Y(max{py (@241, T%), oI VP (py (w0, 1)), Py, fax),
1

1
§(pb($2n+1a wx) + py(x*, frx)) + 2*gpb($2n+2,$*)}),

take

1
N = maX{pb($2n+1, .’IZ’*), 82n+1 1/}2n+1 (pb(x(h xl))vpb(x*7 fﬂf*),

1 1
—(pp(Tont1, %) + pp(a*, fox)) + —pp(Tant2, %)}
2 2s

There are three cases:
1. if N = max{pp(xon+1,x*), 52,}+11/12”+1(pb($0, x1))}, let n — oo in (2.77)), by (2.74)) and (2.75]), we have

py(x*, fox) =0, it is a contradiction;

2. if N = py(x*, fox), let n — oo in (2.77), by (2.74) and (2.75]), we have py(xx, fox) < ¢(pp(z*, f2¥)) <
py(x*, fx*), it is a contradiction;

3. if N = §(py(zon+1, 2%) + ppa, fox)) + =pp(Tonta, 2), let n — oo in (2.77), by ([2.74) and ([2.75)), we
have py(z*, fo*) < %pb(:v*, fx*), it is a contradiction.

Hence, py(z*, fx*) = 0, then * = fz*, therefore x* is a fixed point of f. Similarly, we can obtain z* is a
fixed point of g. O

Theorem 2.20. Adding condition (H’) to the hypotheses of Theorem (resp. Theorem we obtain
uniqueness of the fixed point of T .

Proof. In the proof of Theorem take T' = f to get the result. O

Example 2.21. Let X = R", endowed with the partial b-metric py(z,y) = (max{z,y})? (with s = 2) for
all z,y € Ry. Define the mapping f,g: X — X by

5 x> 1;
fa =
X
NeNGETE 0<z<1
gxz%,xe[o,oo)
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We define the mapping o : X x X — [0,00) by

_ L af y<w
o(z,y) = { 0, otherwise.

Clearly (f,g) is a-admissible pair and an o — 1 contractive pair with ¢(¢) = £ for all ¢ > 0. In fact, for all
z,y € X, we have

%(pb(w,gy) + py(y, fr))}.

Obviously, f and g are continuous and condition (H’) is satisfied. Moreover, there exists zg = 1 € X such
that

1
a(z,y)pp(Tz, Ty) < 3 max{py(z,y), pp(x, fx), (Y, 9Y),

a(zo, fxo) = 1.
Hence, all conditions of Theorem are satisfied. f and g have a unique fixed point (which is z = 0).

3. Consequences

We will show that many latest existing Theorems in the literature can be deduced easily from our results
Firstly, the following results from our Theorem
Let 1(t) = At, A € [0,1), we obtain the following result.

Corollary 3.1 ([27]). Let (X, py) be a complete partial b-metric space. T : X — X be a given mapping, for
all z,y € X and X € [0,1) such that

Then T has a unique fixed point.

In Corollary 3.1 take s = 1 and for all x,y € X, pp(z,y) = 0 if only if z = y, we obtain the following
result.

Corollary 3.2 ([20]). Let (X,d) be a complete metric space. Suppose that T : X — X is a generalized
a — 1 contractive mapping defined by (2.1)) for all x,y € X. Which satisfies:

(i) T is a-admissible;
(ii) there exists xo € X such that a(xo, Txo) > 1;
(11i) T is continuous or {z,} is a sequence in (X,d) such that a(zy,xps1) > 1 for alln and x, — v € X
as n — 0o, then a(x,,x) > 1.

Then T has a fixed point, if condition (H) is satisfied, one has uniqueness of the fixed point.
Secondly, the following results from our Theorem [2.10
Let a(z,y) =1 for all z,y € X, we obtain,

Corollary 3.3. Let (X, py) be a complete partial b-metric space. T : X — X be a given continuous mapping,
suppose there exists a function ¥ € U, for oll x,y € X such that

pb(Txa Ty) < ¢(max{pb(x, y)a pb(xv Tl'),pb(y, Ty)a ;?(pb(x’ Ty) + pb(y7 Tﬂj‘))}) (32)

Then T has a unique fixed point.
The following results follow immediately from Corollary

Corollary 3.4. Let (X, pp) be a complete partial b-metric space. T : X — X be a given continuous mapping,
forall x,y € X and X € [0, %) such that

(T, Ty) < App(x, Tz) + pu(y, Ty)]. (3.3)

Then T has a unique fixed point.
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Corollary 3.5. Let (X, py) be a complete partial b-metric space. T : X — X be a given continuous mapping,
for all x,y € X and X\ € [0,1) such that

po(Tx, Ty) < Amax{py(z,y), ps(z,Tx), pp(y, Ty)} (3.4)

Then T has a unique fized point.

Corollary 3.6. Let (X, py) be a complete partial b-metric space. T : X — X be a given continuous mapping,
forallz,ye X , A,B,C >0, A+ B+ C €][0,1) such that

po(Tz,Ty) < Apy(@,y) + Bpo(x,Tx) + Cpy(y, Ty). (3.5)
Then T has a unique fized point.

Corollary 3.7. Let (X, py) be a complete partial b-metric space. T : X — X be a given continuous mapping,
for all xz,y € X and X\ € [0,1) such that

p(Te, Ty) < Amax(pa(e, ). 5l 7o) + 0y T0)). 5 oo T) + oy T} (36)

Then T has a unique fixed point.

Corollary 3.8. Let (X, pp) be a complete partial b-metric space. T : X — X be a given continuous mapping,
for all x,y € X and X\ € [0,1) such that

po(T, Ty) < Amax{py(z,9). po 7o), po(3 T9). 55 (mlar, To) + ol T)). (37)

Then T has a unique fized point.

From Theorem [2.10], we will deduce very easily the following results on a partial b-metric space endowed
with a partial ordered.

Corollary 3.9. Let (X, =< py) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to < and satisfying for all x,y € X withy < x. If there exists
xo such that xo = Txg.

Then T has a fived point. If for all x,y € X there exists z € X such that x < z and y = z, one has
uniqueness of the fixed point.

Corollary 3.10. Let (X, = py) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to <X, suppose there exists a function ¥ € VU satisfying for all
z,y € X withy X x. If there exists o such that ro <X Txg.

Then T has a fixed point. If for all x,y € X there exists z € X such that x < z, y X z and z 2 Tz, one
has uniqueness of the fized point.

Corollary 3.11. Let (X, < py) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to X and satisfying forall x,y € X withy <X x. If there exists
zo such that xg < Txg.

Then T has a fized point. If for all x,y € X there exists z € X such that x = z, y <z and z X Tz, one
has uniqueness of the fized point.

Corollary 3.12. Let (X, = py) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to < and satisfying for all x,y € X withy < x. If there exists
xo such that ro = Txg.

Then T has a fized point. If for all x,y € X there exists z € X such that x < z, y X z and z 2 Tz, one
has uniqueness of the fized point.
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Corollary 3.13. Let (X, = py) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to < and satisfying for all x,y € X withy < x. If there exists
xo such that ro = Txg.

Then T has a fized point. If for all x,y € X there exists z € X such that x < z, y X z and z 2 Tz, one
has uniqueness of the fized point.

Corollary 3.14. Let (X, = py) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to < and satisfying forall x,y € X withy < x. If there exists
zo such that xo < Txg.

Then T has a fized point. If for all x,y € X there exists z € X such that x 2 z, y <Xz and z X Tz, one
has uniqueness of the fized point.

Corollary 3.15. Let (X, < pp) be a complete ordered partial b-metric space. Let T : X — X be a continuous
and nondecreasing mapping with respect to < and satisfying for all x,y € X with y < x. If there exists
xo such that xo = Txg.

Then T has a fized point. If for all x,y € X there exists z € X such that x < z, y X z and z 2 Tz, one
has uniqueness of the fized point.

Corollary 3.16 ([17]). Let (X, = pp) be a complete ordered partial b-metric space. Let T : X — X be a

continuous and nondecreasing mapping with respect to =X, for all x,y € X with y = x such that

pp(Tx, Ty) < gmax{pb(x, y), ooz, Tx), pp(y, Ty), 2—18(pb(x, Ty) + pp(y, Tx))}. (3.8)

If there exists xg such that g =< Txg. Then T has a fixed point. If for all x,y € X there exists z € X such
that x = z, y = z and z X Tz, one has uniqueness of the fized point.

Thirdly, the following results from our Theorem [2.15
Let 1(t) = Ast, As < 1, we obtain the following results.

Corollary 3.17 ([27]). Let (X,py) be a complete partial b-metric space. T : X — X be a given mapping,
forall xz,y € X and X € [0, %), As < 1 such that

pb(T.%',Ty) < )\[pb(vax) +pb(y7Ty)}' (39)
Then T has a unique fixed point.

Corollary 3.18 ([27]). Let (X,py) be a complete partial b-metric space. T : X — X be a given mapping,
forall z,y € X and X € [0,1), A\s < 1 such that

pb(T[L‘, Ty) <A max{pb(x, y)7pb($a Tx)apb(yv Ty)} (310)
Then T has a unique fized point.
Let s =1 and for all z,y € X, pp(x,y) = 0 if and only if = y, we obtain the following results.

Corollary 3.19. Let (X,d) be a complete metric space. suppose that T : X — X is a generalized ov —
contractive mapping defined by the following inequality

a(z,y)d(Tz, Ty) < P(max{d(z,y), d(z,Tx),ps(y, Ty)), %d(ﬂ% Ty) +d(y,Tz))}), (3.11)

for all x,y € X, and which satisfies:

(i) T is a-admissible;

(ii) there exists xo € X such that a(zo, Txo) > 1;
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(i1i) T is continuous or {x,} is a sequence in (X,d) such that a(xy,Tnt1) > 1 for alln and z, — z € X
as n — oo, then a(x,,x) > 1.

Then T has a fized point, if condition (H’) is satisfied, one has uniqueness of the fized point.

Corollary 3.20 ([15]). Let (X,d) be a complete metric space. Suppose that T : X — X is a generalized
a — Y contractive mapping defined by the following inequality

(e, )d(Te, Ty) < w(max{d(e.). 1d(x, 7o), py(v. Tv). fd(e, Ty) +d(w, o)), (3.12)

for all x,y € X, and which satisfies:

(i) T is a-admissible;
(ii) there exists xo € X such that a(xo, Txo) > 1;
(i1i) T is continuous or {xy} is a sequence in (X,d) such that a(xy,Tp41) > 1 for alln and z, - x € X
as n — oo, then axy,x) > 1.

Then T has a fized point, if condition (H’) is satisfied, one has uniqueness of the fized point.

Finally, the following results from our Theorem Let a(x,y) = 1 for all x,y € X, we obtain the
following results.

Corollary 3.21. Let (X,py) be a complete partial b-metric space. f,g : X — X be two given mappings,
suppose that there exists a function ¢ € U, for all x,y € X such that

po(Tx, Ty) < %MmaX{pb(%y),pb(w,ffc),pb(y,gy), %S(pb(:v,gy) + ooy, fr))}) (3.13)

Then f and g have a unique fixed point.

Corollary 3.22 ([17]). Let (X, =,pp) be a complete ordered partial b-metric space. Also f,g: X — X be
two given mappings with fr < gfx,gx < fgr,Vx € X, and for all x,y € X with y < = such that

pb(T‘Ta Ty) < gmax{pb(l‘a y)vpb(l'a fl‘)apb(yagy)v 21 (pb(l‘,gy) +pb(y7 fl'))}a (314)

s
if [ is continuous or {x,} is a nondecreasing sequence in (X, =,py) such that z, — x € X asn — oo, then
(xn, X x) for alln € N.

Then f and g have a fized point, if for all z,y € X there exists z € X such that v =< z, y X z and
z =Tz, one has uniqueness of the fixed point.
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