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Abstract

By using the fixed point technique, we prove the stability of sixtic functional equations. Our results
are studied and proved in the framework of fuzzy modular spaces (briefly, FM-spaces). The lower semi
continuous (briefly, l.s.c.) and β-homogeneous are necessary conditions for this work. c©2016 All rights
reserved.
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1. Introduction

In 1940 during a conference at Wisconsin University, S. M. Ulam [16] presented the following question
concerning stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a
δ > 0 such that if a function f : G1 → G2 satisfies the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1,
then there exists a homomorphism g : G1 → G2 with d(f(x), g(x)) < ε for all x ∈ G1?

When the homomorphisms are stable? So, we are interested in this question, that is, if a mapping is
almost a homomorphism, then there exists an exact homomorphism that must be close. In following year,
Hyers [7] was the first to give an affirmative answer to Ulam’s question for the case where G1 and G2 are
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Banach spaces. After that, a generalized version of the theorem of Hyers for approximately linear mappings
was given by Th. M. Rassias [14]. Later, the stability problems of various functional equation have been
extensively investigated by many authors [3, 4].

One of the interesting functional equations studied is the system of additive-quadratic-cubic functional
equations [6]:

f(ax1 + bx2, y, z) + f(ax1 − bx2, y, z) = 2af(x1, y, z),
f(x, ay1 + by2, z) + f(x, ay1 − by2, z) = 2a2f(x, y1, z) + 2b2f(x, y2, z),
f(x, y, az1 + bz2) + f(x, y, az1 − bz2) = ab2(f(x, y, z1 + z2)

+f(x, y, z1 − z2)) + 2a(a2 − b2)f(x, y, z1),

(1.1)

where a, b ∈ Z \ {0} with a 6= ±1,±b.
The function f : R × R × R → R defined by f(x, y, z) = cxy2z3 is a solution of the system (1.1). In

particular, letting y = z = x, we get a sextic function h : R→ R in one variable given by h(x) := f(x, x, x) =
cx6.

The concept of modular spaces was introduced by Nakano [12]. Soon after, the notation of modular spaces
was redefined and generalized by Musielak and Orlicz [11]. In 2007, Nourouzi [13] presented probabilistic
modular spaces related to the theory of modular spaces.

After that, Shen and Chen [15] following the idea of probabilistic modular spaces and the definition
of fuzzy metric spaces based on George and Veeramani ’s sense [5], applied fuzzy concept to the classical
notions of modular and modular spaces, and in 2013, Shen and Chen [15] presented the concept of a fuzzy
modular space. After that, Kumam [9, 10], Wongkum and et al [18] studied fixed points and some properties
in modular or fuzzy modular spaces.

In this paper, we investigate the generalized Ulam-Hyers-Rassias (briefly, UHR) stability of a sextic
functional equations from linear spaces into FM-spaces, by using some ideas of [2, 18].

2. Preliminaries

In this section, conventionally, we write throughout the paper R, C, and N to denote respectively the
set of all reals, complexes, and nonnegative integers.

Moreover, we recall some basic definitions and properties of a fuzzy modular space.

Definition 2.1 ([17]). A fuzzy set A in X is a function with domain X and value in [0, 1].

Definition 2.2 ([1]). A triangular norm (briefly, t-norm) is a function ∗ : [0, 1] × [0, 1] → [0, 1] satisfying,
for each a, b, c, d ∈ [0, 1], the following conditions:

(1) a ∗ 1 = a;

(2) a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d;

(3) a ∗ b = b ∗ a; and (a ∗ b) ∗ c = a ∗ (b ∗ c).

Definition 2.3. Let X be a vector space over a field K (R or C). A generalized functional ρ : X → [0,∞]
is called a modular if for arbitrary x, y ∈ X,

(m1) ρ(x) = 0 if and only if x = 0,

(m2) ρ(αx) = ρ(x) for every scalar α with |α| = 1,

(m3) ρ(z) ≤ ρ(x) + ρ(y) ,whenever z is a convex combination of x and y.

The corresponding modular space, denoted by Xρ, is then defined by

Xρ := {x ∈ X : ρ(λx)→ 0 as λ→ 0}.



K. Wongkum, P. Kumam, J. Nonlinear Sci. Appl. 9 (2016), 3555–3569 3557

Remark 2.4. Note that for a fixed x ∈ Xρ, the valuation γ ∈ K 7→ ρ(γx) is increasing.

Unlike a norm, a modular needs not be continuous or convex in general. However, it often occurs that
some weaker form of them are assumed.

Remark 2.5. In case a modular ρ is convex, one has ρ(x) ≤ δρ(1δx) for all x ∈ Xρ, provided that 0 < δ ≤ 1.

Definition 2.6. Let Xρ be a modular space and {xn} be a sequence in Xρ. Then,

(i) {xn} is ρ-convergent to a point x ∈ Xρ and write xn
ρ→ x if ρ(xn − x)→ 0 as n→∞.

(ii) {xn} is called ρ-Cauchy if for all ε > 0, we have ρ(xn − xm) < ε for sufficiently large m,n ∈ N.

(iii) A subset K ⊂ Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

Another unnatural behavior one usually encounter is that the convergence of a sequence {xn} to x does
not imply that {cxn} converges to cx, where c is chosen from the corresponding scalar field. Thus, many
mathematicians imposed some additional conditions for a modular to meet in order to make the multiples
of {xn} converge naturally. Such preferences are referred to mostly under the term related to the ∆2-
conditions.

A modular ρ is said to satisfy the ∆2-condition if there exists κ ≥ 2 such that ρ(2x) ≤ κρ(x) for all
x ∈ Xρ. Some authors varied the notion so that only κ > 0 is required and called it the ∆2-type condition.
In fact, one may see that these two notions coincide. There are still a number of equivalent notions related
to the ∆2-conditions.

Remark 2.7. We have to be very careful about the convergence behaviors on multiples and sums of ρ-
convergent sequences. In general, we suppose that {x1n}, {x2n}, · · · , {x2kn }, for some k ∈ N, are sequences in
Xρ in which they ρ-converge to the points x1, x2, · · · , x2k ∈ Xρ, respectively. Then, the averaged sequence

{ 1
2k

∑2k
i=1 x

i
n} ρ-converges to 1

2k

∑2k
i=1 x

i.

In [8], Khamsi proved a series of fixed point theorems in modular spaces where the modulars do not
satisfy ∆2- conditions. His results exploit one unifying hypothesis in which the boundedness of an orbit is
assumed.

Definition 2.8. Given a modular space Xρ, a nonempty subset C ⊂ Xρ, and a mapping T : C → C. The
orbit of T around a point x ∈ Xρ is the set

O(x) := {x, Tx, T 2x, · · · }.

The quantity δρ(x) := sup{ρ(u− v) : u, v ∈ O(x)} is then associated and is called the orbital diameter of T
at x. In particular, if δρ(x) <∞, we say that T has a bounded orbit at x.

Lemma 2.9 ([8]). Let Xρ be a modular space whose the induced modular is l.s.c. and C ⊂ Xρ be a
ρ-complete subset. If T : C → C is a ρ-contraction, i.e., there is a constant k ∈ [0, 1) such that

ρ(Tx− Ty) ≤ kρ(x− y), ∀x, y ∈ Xρ,

and T has a bounded orbit at a point x0 ∈ Xρ, then the sequence {Tnx0} is ρ-convergent to a point w ∈ C.

Definition 2.10 ([15]). Let V be a real or complex vector space with a zero θ, ∗ a continuous triangular
norm, and µ a fuzzy set on the product V × R+. Suppose that the following properties hold for x, y ∈ V
and s, t > 0:

(FM1) µ(x, t) > 0;

(FM2) µ(x, t) = 1 for all t > 0 if and only if x = θ;

(FM3) µ(x, t) = µ(−x, t);
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(FM4) µ(z, s+ t) ≥ µ(x, s) ∗ µ(y, t) whenever z is the convex combination between x and y;

(FM5) the mapping t 7→ µ(x, t) is continuous at each fixed x ∈ V .

Then, we write (V, µ, ∗) to represent the space with the pre-defined properties. In particular, we call µ a
fuzzy modular and the triple (V, µ, ∗) a fuzzy modular space (briefly, FM-space).

It is worth noting that every fuzzy modular is non-decreasing with respect to t > 0.

Example 2.11. Let X be a real or complex vector space and ρ be a modular on X. Take the t-norm a ∗ b
= min {a,b}. For every t ∈ (0,∞), define µ(x, t) = t

t+ρ(x) for all x ∈ X. Then (X,µ, ∗) is a FM-space.

Remark 2.12. Note that the above conclusion still holds even if the t-norm is replaced by a ∗ b = a · b and
a ∗ b = max{a+ b− 1, 0}, respectively.

Definition 2.13. Let (X,µ) be a FM-space, {xn} be a sequence in X and x ∈ X.

1. The sequence {xn} with xn ∈ (X,µ) is said to be µ - convergent to x (write xn
µ→ x) if, for any t > 0

and λ (0, 1), there exists a positive integer n0 such that

µ(xn − x, t) > 1− λ

for all n ≥ n0

2. The sequence {xn} with xn ∈ (X,µ) is called a µ - Cauchy sequence if, for any t > 0 and λ ∈ (0, 1),
there exists a positive integer n0 such that

µ(xn − xm, t) > 1− λ

for all n,m ≥ n0.

3. Every µ - convergent sequence in FM - space is µ - Cauchy sequence. If each µ - Cauchy sequence is
µ - convergent sequence in a FM - space (X,µ), then (X,µ) is called a µ - complete FM - space.

Shen and Chen [15] also studied the topological properties of a fuzzy modular space with a special
property that for every x ∈ V and a non-zero real λ, the equality

µ(λx, t) = µ

(
x,

t

|λ|β

)
holds for some fixed β ∈ (0, 1]. If the fuzzy modular µ has this property, we shall say that it is β-homogeneous.

The µ-ball in (V, µ, ∗) is the set of the form

B(x, r, t) := {y ∈ V |µ(x− y, t) > 1− r},

where r ∈ (0, 1) and t > 0.
Now, suppose that µ is β-homogeneous for some β ∈ (0, 1]. According to Shen and Chen [15], the family

B of all µ-balls forms a base for a first-countable Hausdorff topology, written as Tµ. With the notion of
the µ-balls, it is easy to see that a sequence (xn) in V µ-converges (i.e. it converges in the topology Tµ)
to its µ-limit x ∈ V if and only if µ(x − xn, t) → 1 as n → ∞ for all t > 0. Note here that the µ-limit is
unique if it does exists after all. It is then natural to say that (xn) is µ-Cauchy if for any given ε ∈ (0, 1)
and t > 0, there exists N ∈ N with µ(xm − xn, t) > 1 − ε whenever m,n > N . We say that µ-complete if
every µ-Cauchy sequence converge.

From here, let us turn to a typical example of a triangular norm which is defined by (a ∗ b) = min{a, b}.
This triangular norm has a very special property that if ∗′ be an arbitrary triangular norm, then (a ∗′ b) ≤
(a ∗ b) for all a, b ∈ [0, 1]. With this property, it is suitable to call this ∗ a strongest triangular norm. As is
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claimed by Shen and Chen [15], if V is a real vector space equipped with a β-homogeneous fuzzy modular µ
and a strongest triangular norm ∗, then a µ-convergent sequence is µ-Cauchy. The authors also mentioned
that if ∗ is not the strongest one, such implementation is not always true.

We say that FM-space (X,µ, ∗) satisfies the lower semi continuous if, for any sequence xn of X and
µ-converging to a point x ∈ X,

µ(x, t) ≤ lim inf
n→∞

µ(xn, t)

for all t > 0.

Theorem 2.14 ([8]). Let Xρ be a modular space satisfying l.s.c. property. Let C be a ρ-complete nonempty
subset of Xρ and T : C → C be a quasi-contraction, that is, there exists K < 1 such that

ρ(T (x)− T (y)) ≤ Kmax{ρ(x− y), ρ(x− T (x)), ρ(y − T (y)), ρ(x− T (y)), ρ(y − T (x))}.

Let X ∈ C such that
δρ(x) := sup{ρ(Tn(x)− Tm(x)) : m,n ∈ N} <∞.

Then {Tn(x)} ρ-converges to a point w ∈ C. Moreover, if ρ(w − T (w)) < ∞ and ρ(x − T (w)) < ∞,
then the ρ-limit of Tn(x) is a fixed point of T . Furthermore, if w∗ is any fixed point of T in C such that
ρ(w − w∗) <∞, then one has w − w∗.

In this section, we assume that µ is a fuzzy modular on V with the l.s.c. (in the fuzzy modular sense)
and (V, µ, ∗) is a µ-complete β-homogeneous FM-space with β ∈ (0, 1] and ∗ is defined by minimum t-norm.
Also, we establish the conditional UHR stability of sextic functional equations in a FM-space.

Theorem 2.15. Let E be a linear space and (V, µ, ∗) be a µ-complete β-homogeneous FM-space and
p ∈ {−1, 1} be fixed. Suppose that f : E × E × E → (V, µ, ∗) satisfies the condition f(x, 0, z) = 0 and the
inequalities of the form:

µ(f(ax1 + bx2, y, z) + f(ax1 − bx2, y, z)− 2af(x1, y, z), t)

> τ(x1, x2, y, z, t),
(2.1)

µ(f(x, ay1 + by2, z) + f(x, ay1 − by2, z)− 2a2f(x, y1, z)

− 2b2f(x, y2, z), t)

> ς(x, y1, y2, z, t),

(2.2)

µ(f(x, y, az1 + bz2) + f(x, y, az1 − bz2)− ab2f(x, y, z1 + z2)

+ f(x, y, z1 − z2)− 2a(a2 − b2)f(x, y, z1), t)

> υ(x, y, z1, z2, t),

(2.3)

where τ, ς, υ : E4 →4, and 4 is the set of all non-decreasing functions, are given functions such that

lim
n→∞

τ(anx1, a
nx2, a

ny, anz, a6βpnt) = 1,

lim
n→∞

ς(anx, any1, a
ny2, a

nz, a6βpnt) = 1,

lim
n→∞

υ(anx, any, anz1, a
nz2, a

6βpnt) = 1

for all x, xi, y, yi, z, zi ∈ E, i = 1, 2. Assume that

Φ(x, y, z, t) :=υ(a
p+1
2 x, a

p+1
2 y, a

p−1
2 z, 0, a(9−3p)βt/2β+2)

∗ ς(a
p+1
2 x, a

p−1
2 y, 0, a

p−1
2 z, a(6−3p)βt/2β+2)

∗ τ(a
p−1
2 x, 0, a

p−1
2 y, a

p−1
2 z, a(4−3p)βt/2)

(2.4)
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has the property:
Φ(apx, apy, apz, a6βpLt) > Φ(x, y, z, t) (2.5)

for all x, y, z ∈ E with a constant 0 < L < 1
2β
. Then there exists a unique sextic function s : E × E × E →

(V, µ, ∗) satisfying the system (1.1) such that

µ(s(x, y, z)− f(x, y, z),
2β

1− 2βL
t) > Φ(x, y, z, t). (2.6)

Proof. Let x1 = 2x and x2 = 0 and replacing y, z by 2y, 2z in (2.1), respectively, we get

µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), t) > τ(2x, 0, 2y, 2z, t) (2.7)

for all x, y, z ∈ E.
Let y1 = 2y and y2 = 0 and replacing x, z by 2ax, 2z in (2.2), respectively, we have

µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), t) > ς(2ax, 2y, 0, 2z, t) (2.8)

for all x, y, z ∈ E.
Let z1 = 2z and z2 = 0 and replacing x, y by 2ax, 2ay in (2.3), respectively, we obtain

µ(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z), t) > υ(2ax, 2ay, 2z, 0, t) (2.9)

for all x, y, z ∈ E. Since µ is β-homogeneous. We note that, since

µ(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z), t)

≥ µ(
1

a3
(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z)), t).

Hence, since µ is β-homogeneous, it follows from (2.8) and (2.9) that

µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z)

+ 2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z), t)

≥ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z)

+ 2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z), t)

= µ(2a−3f(2ax, 2ay, 2az)− 2a2f(2ax, 2y, 2z), t)

≥ µ(a−3f(2ax, 2ay, 2az)− a2f(2ax, 2y, 2z), t)

= µ(
2

2
a−3f(2ax, 2ay, 2az)− 2

2
a2f(2ax, 2y, 2z), t)

= µ(2a−3f(2ax, 2ay, 2az)− 2a2f(2ax, 2y, 2z), 2βt)

= µ(2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z) + 2f(2ax, 2ay, 2z)

− 2a2f(2ax, 2y, 2z), 2βt)

= µ(2(a−3f(2ax, 2ay, 2az)− f(2ax, 2ay, 2z) + f(2ax, 2ay, 2z)

− a2f(2ax, 2y, 2z)), 2βt)

= µ((a−3f(2ax, 2ay, 2az)− f(2ax, 2ay, 2z)) + (f(2ax, 2ay, 2z)

− a2f(2ax, 2y, 2z)), t)

= µ(
1

2
(2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z)) +

1

2
(2f(2ax, 2ay, 2z)

− 2a2f(2ax, 2y, 2z)), t/2 + t/2)

> µ(2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z), t/2)
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∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), t/2)

= µ(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z), a3βt/2)

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), t/2)

> υ(2ax, 2ay, 2z, 0, a3βt/2) ∗ ς(2ax, 2y, 0, 2z, t/2)

and hence

µ(2a−3f(2ax, 2ay, 2az)− 2a2f(2ax, 2y, 2z), t)

≥ µ(
1

a2
(2a−3f(2ax, 2ay, 2az)− 2a2f(2ax, 2y, 2z)), t)

= µ(2a−5f(2ax, 2ay, 2az)− 2f(2ax, 2y, 2z), t)

= µ((2a−5)
a2

a2
f(2ax, 2ay, 2az)− 2

a2

a2
f(2ax, 2y, 2z), t)

= µ(
1

a2
(2a−3f(2ax, 2ay, 2az)− 2a2f(2ax, 2y, 2z)), t)

= µ(2a−3f(2ax, 2ay, 2az)− 2a2f(2ax, 2y, 2z), a2βt)

= µ(2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z) + 2f(2ax, 2ay, 2z)

− 2a2f(2ax, 2y, 2z), a2βt)

= µ(2(a−3f(2ax, 2ay, 2az)− f(2ax, 2ay, 2z) + f(2ax, 2ay, 2z)

− a2f(2ax, 2y, 2z)), a2βt)

= µ(a−3f(2ax, 2ay, 2az)− f(2ax, 2ay, 2z) + f(2ax, 2ay, 2z)

− a2f(2ax, 2y, 2z), a2βt/2β)

= µ(
1

2
(2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z)) +

1

2
(2f(2ax, 2ay, 2z)

− 2a2f(2ax, 2y, 2z)), a2βt/2β+1 + a2βt/2β+1)

≥ µ(2a−3f(2ax, 2ay, 2az)− 2f(2ax, 2ay, 2z), a2βt/2β+1)

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), a2βt/2β+1)

= µ((2a−3)
a3

a3
f(2ax, 2ay, 2az)− 2

a3

a3
f(2ax, 2ay, 2z), a2βt/2β+1)

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), a2βt/2β+1)

= µ(
1

a3
(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z)), a2βt/2β+1)

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), a2βt/2β+1)

= µ(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z)), a5βt/2β+1)

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), a2βt/2β+1)

≥ υ(2ax, 2ay, 2z, 0, a5βt/2β+1) ∗ ς(2ax, 2y, 0, 2z, a2βt/2β+1)

for all x, y, z ∈ E. By (2.7) and the last inequality, we get

µ(a−5f(2ax, 2ay, 2az)− af(2x, 2y, 2z), t)

= µ(a−5f(2ax, 2ay, 2az)− f(2ax, 2y, 2z)

+ f(2ax, 2y, 2z)− af(2x, 2y, 2z), t)

= µ(
1

2
(2a−5f(2ax, 2ay, 2az)− 2f(2ax, 2y, 2z))

+
1

2
(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z)), t/2 + t/2)
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≥ µ(2a−5f(2ax, 2ay, 2az)− 2f(2ax, 2y, 2z), t/2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), t/2)

= µ(a−5f(2ax, 2ay, 2az)− f(2ax, 2y, 2z), t/2β+1)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), t/2)

= µ(
1

2
(2a−5f(2ax, 2ay, 2az)− 2a−2f(2ax, 2ay, 2z))

+
1

2
(2a−2f(2ax, 2ay, 2z)− 2f(2ax, 2y, 2z)), t/2β+2 + t/2β+2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), t/2)

≥ µ(2a−5f(2ax, 2ay, 2az)− 2a−2f(2ax, 2ay, 2z), t/2β+2)

∗ µ(2a−2f(2ax, 2ay, 2z)− 2f(2ax, 2y, 2z), t/2β+2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), t/2)

= µ(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z), a5βt/2β+2)

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), a2βt/2β+2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), t/2)

≥ υ(2ax, 2ay, 2z, 0, a5βt/2β+2) ∗ ς(2ax, 2y, 0, 2z, a2βt/2β+2)

∗ τ(2x, 0, 2y, 2z, t/2)

for all x, y, z ∈ E. Therefore, we get

µ(a−6f(2ax, 2ay, 2az)− f(2x, 2y, 2z), t)

= µ((a−6)
a

a
f(2ax, 2ay, 2az)− a

a
f(2x, 2y, 2z), t)

= µ(
1

a
(a−5f(2ax, 2ay, 2az)− af(2x, 2y, 2z)), t)

= µ(a−5f(2ax, 2ay, 2az)− af(2x, 2y, 2z), aβt)

= µ(a−5f(2ax, 2ay, 2az)− f(2ax, 2y, 2z)

+ f(2ax, 2y, 2z)− af(2x, 2y, 2z), aβt)

= µ(
1

2
(2a−5f(2ax, 2ay, 2az)− 2f(2ax, 2y, 2z))

+
1

2
(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z)), aβt/2 + aβt/2)

≥ µ(2a−5f(2ax, 2ay, 2az)− 2f(2ax, 2y, 2z), aβt/2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), aβt/2)

= µ(a−5f(2ax, 2ay, 2az)− f(2ax, 2y, 2z), aβt/2β+1)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), aβt/2)

= µ(
1

2
(2a−5f(2ax, 2ay, 2az)− 2a−2f(2ax, 2ay, 2z))

+
1

2
(2a−2f(2ax, 2ay, 2z)− 2f(2ax, 2y, 2z)), aβt/2β+2 + aβt/2β+2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), aβt/2)

≥ µ(2a−5f(2ax, 2ay, 2az)− 2a−2f(2ax, 2ay, 2z), aβt/2β+2)

∗ µ(2a−2f(2ax, 2ay, 2z)− 2f(2ax, 2y, 2z), aβt/2β+2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), aβt/2)

= µ(2f(2ax, 2ay, 2az)− 2a3f(2ax, 2ay, 2z), a6βt/2β+2)



K. Wongkum, P. Kumam, J. Nonlinear Sci. Appl. 9 (2016), 3555–3569 3563

∗ µ(2f(2ax, 2ay, 2z)− 2a2f(2ax, 2y, 2z), a3βt/2β+2)

∗ µ(2f(2ax, 2y, 2z)− 2af(2x, 2y, 2z), aβt/2)

≥ υ(2ax, 2ay, 2z, 0, a6βt/2β+2) ∗ ς(2ax, 2y, 0, 2z, a3βt/2β+2)

∗ τ(2x, 0, 2y, 2z, aβt/2).

Replacing x, y and z by x
2 ,

y
2 and z

2 in the last inequality, respectively, we get

µ
(f(ax, ay, az)

a6
− f(x, y, z), t

)
= µ

(f(ax, ay, az)

a6
− f

a
(ax, y, z) +

f

a
(ax, y, z)− f(x, y, z), t

)
= µ

(1

2

(2f(ax, ay, az)

a6
− 2f

a
(ax, y, z)

)
+

1

2

(2f

a
(ax, y, z)− 2f(x, y, z)

)
, t/2 + t/2

)
≥ µ

(2f(ax, ay, az)

a6
− 2

a
f(ax, y, z), t/2

)
∗ µ
(2

a
f(ax, y, z)− 2f(x, y, z), t/2

)
= µ

(2f(ax, ay, az)

a6
− 2

a3
f(ax, ay, z) +

2

a3
f(ax, ay, z)− 2

a
f(ax, y, z), t/2

)
∗ µ
(2

a
f(ax, y, z)− 2f(x, y, z), t/2

)
= µ

(1

2
(
2 · 2f(ax, ay, az)

a6
− 2 · 2f(ax, ay, z)

a3
)

+
1

2
(
2 · 2f(ax, ay, z)

a3
− 2 · 2f(ax, y, z)

a
), t/2 · 2 + t/2 · 2

)
∗ µ
(2

a
f(ax, y, z)− 2f(x, y, z), t/2

)
≥ µ

(2 · 2f(ax, ay, az)

a6
− 2 · 2f(ax, ay, z)

a3
, t/2 · 2

)
∗ µ
(2 · 2f(ax, ay, z)

a3
− 2 · 2f(ax, y, z)

a
), t/2 · 2

)
∗ µ
(2

a
f(ax, y, z)− 2f(x, y, z), t/2

)
= µ(2f(ax, ay, az)− 2a3f(ax, ay, z), a6βt/2β+2)

∗ µ(2f(ax, ay, z)− 2a2f(ax, y, z), a3βt/2β+2)

∗ µ(2f(ax, y, z)− 2af(x, y, z), aβt/2)

≥ υ(ax, ay, z, 0, a6βt/2β+2) ∗ ς(ax, y, 0, z, a3βt/2β+2)

∗ τ(x, 0, y, z, aβt/2)

(2.10)

for all x, y, z ∈ E. Replacing x, y, z by a−1x, a−1y, a−1z in (2.10), we get

µ
(f(x, y, z)

a6
− f(a−1x, a−1y, a−1z), t

)
≥ µ

( 1

a6

(f(x, y, z)

a6
− f(a−1x, a−1y, a−1z)

)
, t
)

= µ
(f(x, y, z)

a6
− f(a−1x, a−1y, a−1z), a6βt

)
= µ

(1

2

(2f

a6
(x, y, z)− 2f

a
(x, a−1y, a−1z)

)
+

1

2

(2f

a
(x, a−1y, a−1z)− 2f(a−1x, a−1y, a−1z)

)
, a6βt/2 + a6βt/2

)
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≥ µ
(2f

a6
(x, y, z)− 2f

a
(x, a−1y, a−1z), a6βt/2

)
∗ µ
(2f

a
(x, a−1y, a−1z)− 2f(a−1x, a−1y, a−1z), a6βt/2

)
= µ

( f
a6

(x, y, z)− f

a
(x, a−1y, a−1z), a6βt/2β+1

)
∗ µ
(

2f(x, a−1y, a−1z)− 2af(a−1x, a−1y, a−1z), a7βt/2
)

= µ
(1

2
(

2

a6
f(x, y, z)− 2

a3
f(x, y, a−1z))

+
1

2
(

2

a3
f(x, y, a−1z)− 2

a
f(x, a−1y, a−1z), a6βt/2β+2 + a6βt/2β+2

)
∗ µ
(

2f(x, a−1y, a−1z)− 2af(a−1x, a−1y, a−1z), a7βt/2
)

≥ µ
( 1

a6
(2f(x, y, z)− 2a3f(x, y, a−1z)

)
, a6βt/2β+2

)
∗ µ(

1

a3
(2f(x, y, a−1z)− 2a2f(x, a−1y, a−1z)

)
, a6βt/2β+2

)
∗ µ
(

2f(x, a−1y, a−1z)− 2af(a−1x, a−1y, a−1z), a7βt/2
)

≥ µ
(

2f(x, y, z)− 2a3f(x, y, a−1z)
)
, a12βt/2β+2

)
∗ µ(2f(x, y, a−1z)− 2a2f(x, a−1y, a−1z)

)
, a9βt/2β+2

)
∗ µ
(

2f(x, a−1y, a−1z)− 2af(a−1x, a−1y, a−1z), a7βt/2
)

≥ υ(a−1x, y, a−1z, 0, a12βt/2β+2) ∗ ς(x, a−1y, 0, a−1z, a9βt/2β+2)

∗ τ(a−1x, 0, a−1y, a−1z, a7βt/2)

but, we know that

µ
(f(a−1x, a−1y, a−1z)

a−6
− f(x, y, z), t

)
≥ µ

(f(x, y, z)

a6
− f(a−1x, a−1y, a−1z), t

)

therefore

µ
(f(a−1x, a−1y, a−1z)

a−6
− f(x, y, z), t

)
≥ υ(a−1x, y, a−1z, 0, a12βt/2β+2) ∗ ς(x, a−1y, 0, a−1z, a9βt/2β+2)

∗ τ(a−1x, 0, a−1y, a−1z, a7βt/2)

and so

µ
(f(apx, apy, apz)

a6p
− f(x, y, z), t

)
≥ Φ(x, y, z, t). (2.11)

Now, we consider the set

D = {h : E × E × E → V : h(x, 0, z) = 0 for all x, z ∈ E}

and introduce the modular ρ on D as follows:

ρ(h) = inf{c > 0 : µ(h(x, y, z), ct) ≥ Φ(x, y, z, t)}.

We know that ρ is even from ρ(−h) = ρ(h) and ρ(0) = 0. If ρ(h) = 0, then, for each c > 0,

µ(h(x, y, z), ct) ≥ Φ(x, y, z, t)
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for all t > 1 and x, y ∈ E. Now, if ε = ct is fixed and t→ +∞, then µ(h(x, y, z), ε) = 1, which implies that
h = 0. It is sufficient to show that ρ satisfies the following condition:

ρ(αg + βh) ≤ ρ(g) + ρ(h)

if α+ β = 1 for all α, β ≥ 0. Let ε > 0 be given. Then there exist c1 > 0 and c2 > 0 such that

c1 ≤ ρ(g) + ε, µ(g(x, y, z), c1t) ≥ Φ(x, y, z, t)

and
c2 ≤ ρ(h) + ε, µ(h(x, y, z), c2t) ≥ Φ(x, y, z), t).

If α+ β = 1 for all α, β ≥ 0, then we get

µ(αg(x, y, z) + βh(x, y, z), c1t+ c2t) ≥ µ(g(x, y, z), c1t) ∗ µ(h(x, y, z), c2t)

≥ Φ(x, y, z, t)

and
ρ(αg + βh) ≤ c1 + c2 ≤ ρ(g) + ρ(h) + 2ε

thus
ρ(αg + βh) ≤ ρ(g) + ρ(h).

Now, we show that ρ has the 42-condition, where κ = 2β. For all ε > 0, there exists c > 0 such that

c ≤ ρ(h) + ε, µ(h(x, y, z), ct) ≥ Φ(x, y, z, t).

Since (V, µ, ∗) is a β-homogeneous FM-space, we get

µ(2h(x, y, z), 2βct) = µ(h(x, y, z), ct) ≥ Φ(x, y, z, t),

where ρ(2h) ≤ 2βc ≤ 2βρ(h) + 2βε and so ρ(2h) ≤ 2βρ(h). Thus ρ satisfies the 42-condition with κ = 2β.
Moreover, ρ satisfies the l.s.c. (in the modular sense). Indeed, if the sequence {hn} in D is ρ-convergent

to h, then we can easily see that hn(x, y, z) is µ-convergent to h(x, y, z) for all x, y, z ∈ E.
Let ρ := lim infn→∞ ρ(hn) <∞ and ρ(h) > ρ. Then, we have

µ(h(x, y, z), ρt) < Φ(x, y, z, t)

for all t > 0. Since µ satisfies the l.s.c. (in the fuzzy modular sense), we have

lim sup
n→∞

µ(hn(x, y, z), ρt) ≤ µ(h(x, y, z), ρt) < Φ(x, y, z, t).

From the last inequality, we know that there exists a positive integer n0 ∈ N such that

µ(hn(x, y, z), ρt) < Φ(x, y, z, t)

and so ρ(hn) > ρ for all n ≥ n0. Thus lim infρ(hn) > ρ where n→∞, which is a contradiction. Therefore,
ρ satisfies the l.s.c..

If δ > 0 and λ ∈ (0, 1) are given, it follows from Φ(x, y, z) ∈ 4 that there exists t0 > 0 such that
Φ(x, y, z, t0) > 1− λ. Let {hn} be a ρ-Cauchy sequence in Dρ and let ε < δ

t0
be given. Then there exists a

positive integer n0 ∈ N such that ρ(hn − hm) ≤ ε for all n,m ≥ n0.
Now, by considering the definition of the modular ρ, we see that

µ(hn(x, y, z)− hm(x, y, z), δ) ≥ µ(hn(x, y, z)− hm(x, y, z), εt0)

≥ Φ(x, y, z, t0)

> 1− λ
(2.12)
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for all x, y, z ∈ E and n,m ≥ n0.
If x, y and z are arbitrary given points of E, then (2.12) implies that {hn(x, y, z)} is a µ-Cauchy sequence

in (V, µ, ∗). Since it is µ-complete, it follows that {hn(x, y, z)} is µ-convergent in (V, µ, ∗) for all x, y, z ∈ E.
Thus, we can define

h(x, y, z) = lim
n→∞

hn(x, y, z),

where a function h : E × E × E → (V, µ, ∗) for all x, y, z ∈ E. Moreover, µ has the l.s.c.. Then, we have

ρ(hn − h) ≤ ε

for all n ≥ n0. Thus {hn} is a ρ-convergent sequence in Dρ. Therefore, Dρ is ρ-complete. Now, we consider
the function T : Dρ → Dρ defined by

T h(x, y, z) := a−6ph(apx, apy, apz)

for all h ∈ Dρ. Let g, h ∈ Dρ and c ∈ [0,∞] be an arbitrary constant with ρ(g − h) ≤ c. From the definition
of ρ, we have

µ(g(x, y, z)− h(x, y, z), ct) ≥ Φ(x, y, z, t)

for all x, y, z ∈ E. By the assumption and the last inequality, we get

µ(T g(x, y, z)− T h(x, y, z), Lct)

= µ(a−6pg(apx, apy, apz)− a−6ph(apx, apy, apz), Lct)

= µ(g(apx, apy, apz)− h(apx, apy, apz), a6βpLct)

≥ Φ(apx, apy, apz, a6βpLt)

≥ Φ(x, y, z, t)

for all x, y, z ∈ E and so ρ(T g − T h) ≤ Lρ(g − h) for all g, h ∈ Dρ, that is, T is a ρ-contraction.
Now, we show that the ρ-strict mapping T satisfies the conditions of Theorem (2.14). Observe that

µ(a−6pf(a2px, a2py, a2pz)− f(apx, apy, apz), t) ≥ Φ(apx, apy, apz, t)

and so

µ(a−2(6)pf(a2px, a2py, a2pz)− a−6pf(apx, apy, apz), Lt)

= µ(a−6pf(a2px, a2py, a2pz)− f(apx, apy, apz), a6βpLt)

≥ Φ(apx, apy, apz), a6βpLt)

≥ Φ(x, y, z, t).

Thus, we get

µ
(f(a2px, a2py, a2pz)

a2(6)p
− f(x, y, z), 2β(Lt+ t)

)
≥ µ

(f(a2px, a2py, a2pz)

a2(6)p
− f(apx, apy, apz)

a6p
, Lt
)

∗ µ
(f(apx, apy, apz)

a6p
− f(x, y, z), t

)
≥ Φ(x, y, z)(t)

(2.13)

for all x, y, z ∈ E. By replacing x, y and z by apx, apy and apz in (2.13), respectively, we get

µ
(
a−2(6)pf(a3px, a3py, a3pz)− f(apx, apy, apz), a6βp2β(L2t+ Lt)

)
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≥ Φ(apx, apy, apz), a6βpLt)

≥ Φ(x, y, z, t)

and so
µ
(
a−3(6)pf(a3px, a3py, a3pz)− a−6pf(apx, apy, apz), 2β(L2t+ Lt)

)
≥ Φ(x, y, z, t).

Therefore, we get

µ
(f(a3px, a3py, a3pz)

a3(6)p
− f(x, y, z), 2β{2β(L2t+ Lt) + t}

)
≥ µ

(f(a3px, a3py, a3pz)

a3(6)p
− f(apx, apy, apz)

a6p
, 2β(L2t+ Lt)

)
∗ µ
(f(apx, apy, apz)

a6p
− f(x, y, z), t

)
≥ Φ(x, y, z, t)

for all x, y, z ∈ E. By induction, we can easily see that

µ
(f(anpx, anpy, anpz)

a6np
− f(x, y, z),

{
(2βL)n−1 + 2β

n−1∑
i=1

(2βL)i−1
}
t
)
≥ Φ(x, y, z, t)

for all x, y, z ∈ E and so

ρ(T nf − f) ≤ (2βL)n−1 + 2β
n−1∑
i=1

(2βL)i−1 ≤ 2β
n∑
i=1

(2βL)i−1 ≤ 2β

1− 2βL
. (2.14)

Next, we confirm that δρ(f) = sup{ρ(T n(f)− T m(f)) : n,m ∈ N} < ∞. Since ρ satisfies the 42-condition
with κ = 2β, it follows from the inequality (2.14) that

ρ(T nf − T mf) ≤ 1

2
ρ(2T nf − 2f) +

1

2
ρ(2T mf − 2f)

≤ κ

2
ρ(T nf − f) +

κ

2
ρ(T mf − f)

≤ 22β

1− 2βL

(2.15)

for all n,m ∈ N. By the definition of δρ(f), we have δρ(f) <∞. Thus Theorem (2.14) shows that {T n(f)}
is ρ-convergent to a point s ∈ Dρ. Since ρ has the l.s.c., the inequality (2.14) gives ρ(T (s)− f) <∞.

If we replace m by n+ 1 in the inequality (2.15), then we obtain

ρ(T n+1f − T nf) ≤ 22β

1− 2βL
.

Therefore, we get ρ(T (s) − s) ≤ 22β

1−2βL < ∞. Therefore, it follows from Theorem (2.14) that ρ-limit of
{T n(f)}, s ∈ Dρ, is a fixed point of the mapping T .

If we replace x1, x2, y and z by anpx1, a
npx2, a

npy and anpz in the inequality (2.1), respectively, then we
obtain

µ
(f(anp(ax1 + bx2), a

npy, anpz)

a6np
+
f(anp(ax1 − bx2), anpy, anpz)

a6np

− 2a
f(anpx1, a

npy, anpz)

a6np
, t
)

= µ(f(anp(ax1 + bx2), a
npy, anpz) + f(anp(ax1 − bx2), anpy, anpz)

− 2af(anpx1, a
npy, anpz), a6βnpt)

≥ τ(anpx1, a
npx2, a

npy, anpz), a6βnpt).

(2.16)



K. Wongkum, P. Kumam, J. Nonlinear Sci. Appl. 9 (2016), 3555–3569 3568

Similarly, by replacing x, y1, y2 and z by anpx, anpy1, a
npy2 and anpz in the inequality (2.2), respectively,

we get

µ
(f(anpx, anp(ay1 + by2), a

npz)

a6np
+
f(anpx, anp(ay1 − by2), anpz)

a6np

− 2a2
f(anpx, anpy1, a

npz)

a6np
− 2b2

f(anpx, anpy2, a
npz)

a6np
, t
)

≥ ς(anpx, anpy1, anpy2, anpz), a6βnpt)

(2.17)

and, also by replacing x, y, z1 and z2 by anpx, anpy, anpz1 and anpz2 in the inequality (2.3), respectively, we
get

µ
(f(anpx, anpy, anp(az1 + bz2))

a6np
+
f(anpx, anpy, anp(az1 − bz2))

a6np

− ab2 f(anpx, anpy, anp(z1 + z2))

a6np
+
f(anpx, anpy, anp(z1 − z2))

a6np

− 2a(a2 − b2)f(anpx, anpy, anpz1)

a6np
, t
)

≥ υ(anpx, anpy, anpz1, a
npz2), a

6βnpt)

(2.18)

for all x, xi, y, yi, z, zi ∈ E, i = 1, 2. Taking n → ∞ in the inequalities (2.16), (2.17) and (2.18), we deduce
that s satisfies the system (1.1), that is, s is sextic. It follows from the inequality (2.14) that

ρ(s− f) ≤ 2β

1− 2βL
.

Hence (2.5) holds. If s∗ is another fixed point of T , then we get

ρ(s− s∗) ≤ 1

2
ρ(2T (s)− 2f) +

1

2
ρ(2T (s∗)− 2f)

≤ κ

2
ρ(T (s)− f) +

κ

2
ρ(T (s∗)− f)

≤ 22β

1− 2βL

<∞.

Since T is ρ-contraction, we get

ρ(s− s∗) = ρ(T (s)− T (s∗))

≤ Lρ(s− s∗),

which implies that ρ(s− s∗) = 0 or s = s∗. Since ρ(s− s∗) <∞, which proves the uniqueness of s. This
completes the proof.

Concluding remarks

Our results guarantee the generalized UHR stability of sextic mappings, whose codomain is equipped
with a β-homogeneous and l.s.c. modular.
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