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Abstract

The generalized type neural networks have always been a hotspot of research in recent years. This paper
concerns the stabilization control of generalized type neural networks with piecewise constant argument.
Through three types of stabilization control rules (single state stabilization control rule, multiple state
stabilization control rule and output stabilization control rule), together with the estimate of the state
vector with piecewise constant argument, several succinct criteria of stabilization are derived. The obtained
results improve and extend some existing results. Two numerical examples are proposed to substantiate the
effectiveness of the theoretical results. c©2016 All rights reserved.
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1. Introduction

Due to its potential applications in various fields, generalized type system with piecewise constant ar-
gument has been widely investigated in recent years ([1–7]). Different from that the traditional system can
only be delayed or advanced, generalized type system can change its type of deviation of the parameters
during the motion, and hence can be both delayed and advanced. Because of this property, such system
considered as a recurrent neural network model for the first time appeared in [5], in which Akhmet and his
team explored fully on the recurrent neural network of this type based on the method of Lyapunov functions.

In recent years, a lot of novel results on the dynamic behaviors of a variety of types of neural networks
are reported ([8, 11, 14, 17, 28, 32]). As a special case of the generalized type system, more research has been
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carried out on the generalized type neural network with piecewise constant argument. Several interesting
results on stability analysis of this type of neural networks are presented ([5–7, 9]). In [5], the stability of
generalized type recurrent neural networks with piecewise constant argument was considered. In [6], sufficient
conditions on uniform asymptotic stability and global exponential stability of the cellular neural networks
with piecewise constant argument were obtained. It was addressed the stability of the impulsive Hopfield-
type neural networks with piecewise constant argument in [7]. The robust stability of the generalized type
interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument was discussed in [9] and
several robust stability criteria were derived based on the comparison principle in the paper.

It is worth noting that all of the literature on the stability analysis mentioned above require the neural
networks to be stable, that is, stability of the neural networks is the prerequisite for the applications in
practice ([9, 10, 12, 16, 18, 19, 21, 27, 30, 31, 33–36]). Nevertheless, many neural networks are not stable
and in order to facilitate the utilization of neural networks in a wider scope of application, it is necessary to
consider the stabilization control method to stabilize the unstable neural networks. Recently, stabilization
control has been paid more attention due to its important impacts on the dynamic behavior of neural
networks. As we know, about the stabilization control of neural networks, there are many existing references
([13, 15, 20, 22–26, 29, 37]). In [15], the output feedback stabilization was explored on the type of delayed
nonlinear interconnected systems. In [25, 29], the state vector was chosen as the component of the controller
to stabilize the neural network. Whereas, the models of the neural networks concerned above are either
about constant delays, or about time-varying delays, or about distributed delays. That is, the deviation of
the parameters are always lagging behind. In order to promote deeper understanding of neural networks, it
is essential to consider more general types of deviations, i.e., generalized type neural networks with piecewise
constant argument, in which the parameter can change its deviation type (delayed or advanced) during the
motion. To the best of the authors’ knowledge, although there are some excellent results on this type of
neural networks, stabilization topic on this type of neural networks has not been investigated. Stabilization
control is desirable as it can guarantee the dynamical behavior of the designed neural networks to some
degree.

Motivated by the above discussion, in this paper, our aim is to investigate the stabilization control
of the generalized type neural networks with piecewise constant argument. By estimating the state with
argument, and meanwhile, based on the Lyapunov functions, three stabilization control rules, i.e., single
state stabilization control rule, multiple state stabilization control rule, and output stabilization control rule,
are proposed, and lots of stabilization results are obtained. The criteria acquired in this paper improve and
extend some existing ones.

2. Preliminaries and model description

Throughout this paper, we denote N as the set of natural numbers, Rn stands for the n-dimensional
Euclidean space, and C([t0 − ζ, t0];Rn) represents the set of continuous function ϕ from [t0 − ζ, t0] to Rn.
For x ∈ Rn, its norm is defined as ‖x‖ =

∑n
i=1 |xi|. Choose two real valued sequences θi, ηi, i ∈ N, satisfying

θi < θi+1, θi ≤ ηi ≤ θi+1, for all i ∈ N , and θi → +∞, ηi → +∞ as i → +∞. Then we consider the
generalized type neural networks with piecewise constant argument described by the following equations:

ẋi(t) =− aixi(t) +
n∑
j=1

bijfj(xj(t)) +
n∑
j=1

cijgj(xj(γ(t))) + Ii(t) (2.1)

for i = 1, 2, ..., n, t > t0, where xi(t) denotes the state variable of the ith unit at time t, ai > 0 stands for the
self-inhibition, bij , cij indicate the strength of the jth unit on the ith unit at time t and γ(t), respectively;
fj(·), gj(·) signify the activation functions, and γ(t) is a piecewise constant argument, satisfying γ(t) = ηk,
θk ≤ ηk ≤ θk+1, if θk ≤ t < θk+1, Ii(t) is the external input.

It is easy to see that neural network (2.1) is of mixed type. The argument is deviated when it is advanced
or delayed. In fact, fix k ∈ N and consider the neural network in the interval [θk, θk+1), the identification
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function γ(t) is equal to ηk. If it is satisfied with t ∈ [θk, ηk), then γ(t) > t and (2.1) is a system with
advanced argument. Similarly, if it is satisfied with t ∈ [ηk, θk+1), then γ(t) < t and (2.1) is a system with
delayed argument. Hence, neural network (2.1) varies the type of deviation of the argument as time t elapses.

Throughout the paper, the following hypotheses are needed.

(H1) For the activation functions fi(·), gi(·) ∈ C(R,R) satisfying fi(0) = 0, gi(0) = 0, there exist Lipschitz
constants L1

i , L
2
i > 0 such that

|fi(ω)− fi(%)| ≤ L1
i |ω − %|,

|gi(ω)− gi(%)| ≤ L2
i |ω − %|,

for any ω, % ∈ R, i = 1, 2, ..., n.

(H2) For any i ∈ N , there exists a positive constant θ that satisfies

θi+1 − θi ≤ θ, i = 1, 2, ..., n.

Remark 2.1. (H1) concerns with the property of the feedback functions, (H2) limits the maximum interval
length of the variable sequence.

In what follows we introduce some definitions which are needed later.

Definition 2.2 ([5]). A solution of neural network (2.1) is a continuous function such that:

(i) the derivative ẋ(t) exists at each point t ∈ [0,+∞) with the possible exception of the points θk, k ∈ N,
where a one-sided derivative exists;

(ii) neural network (2.1) is satisfied by x(t) at each interval (θk, θk+1), k ∈ N.

Definition 2.3 ([29]). The zero solution of neural network (2.1), where Ii(t) = 0, i = 1, 2, ..., n, is called
exponentially stable if there exist constants % > 0, and β > 0 such that

‖x(t, t0, x0)‖ ≤ %‖x0‖e−β(t−t0), t ≥ t0. (2.2)

Definition 2.4 ([29]). Neural network (2.1) is called exponentially stablilizable if there exists an appropriate
control rule such that the zero solution of the derived closed-loop system (2.1) satisfies (2.2).

3. Main results

In this section, we design three kinds of stabilization rules, i.e., single state stabilization control rule, mul-
tiple state stabilization control rule, and output stabilization control rule, and then derive the corresponding
stabilization criteria to ensure system (2.1) to be globally exponentially stabilizable.

3.1. Single state stabilization
Suppose that the state variables of (2.1) are measurable and consider the single state stabilization control

rule defined by:

I(t) =



k1x1(t)
k2x2(t)

...
kixi(t)

...
knxn(t)


= Kx(t), (3.1)
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where K = diag(k1, k2, · · · , kn) is the control gain.
From single state stabilization control rule (3.1), system (2.1) can be rewritten as follows:

ẋi(t) = −(ai − ki)xi(t) +
n∑
j=1

bijfj(xj(t)) +

n∑
j=1

cijgj(xj(γ(t))). (3.2)

Before giving the main result of the state stabilization control rule, we present a useful lemma.
In this subsection, we need the following assumption.

(H3) There exist positive constants θ, µ, and ν such that

1− θ
[
ν + µ(1 + νθ)eµθ

]
> 0,

where µ = max1≤i≤n
(
|ai − ki|+ L1

i

∑n
j=1 |bji|

)
, ν = max1≤i≤n

(∑n
j=1 L

2
i |cji|

)
.

Lemma 3.1. Under (H1), (H2), (H3), for (3.2), the following inequality holds

‖x(γ(t))‖ ≤ α‖x(t)‖,

for any t ≥ t0, where

α = 1

/(
1− θ

[
ν + µ(1 + νθ)eµθ

])
, µ = max

1≤i≤n

(
|ai − ki|+ L1

i

n∑
j=1

|bji|
)
, ν = max

1≤i≤n

( n∑
j=1

L2
i |cji|

)
.

Proof. For any t ≥ t0, by the property of γ(t) and the sequences {θk} and {ηk}, there exists only one
k ∈ N , which satisfies that

γ(t) = ηk ∈ [θk, θk+1), t ∈ [θk, θk+1),

and we get if t ≥ ηk

xi(t) = xi(ηk) +

∫ t

ηk

[
− (ai − ki)xi(s) +

n∑
j=1

bijfj(xj(s)) +

n∑
j=1

cijgj(xj(ηk))

]
ds, (3.3)

for i = 1, 2, ..., n, then

‖x(t)‖ ≤‖x(ηk)‖+
n∑
i=1

∫ t

ηk

[
|ai − ki||xi(s)|+

n∑
j=1

L1
j |bij ||xj(s)|+

n∑
j=1

L2
j |cij ||xj(ηk)|

]
ds

=‖x(ηk)‖+
∫ t

ηk

[ n∑
i=1

(
|ai − ki|+ L1

i

n∑
j=1

|bji|
)
|xi(s)|+

n∑
i=1

(
L2
i

n∑
j=1

|cji|
)
|xi(ηk)|

]
ds

≤‖x(ηk)‖+
∫ t

ηk

(
µ

n∑
i=1

|xi(s)|+ ν

n∑
i=1

|xi(ηk)|
)
ds

≤(1 + νθ)‖x(ηk)‖+ µ

∫ t

ηk

‖x(s)‖ds.

Based on the Gronwall-Bellman inequality, we obtain

‖x(t)‖ ≤ (1 + νθ)‖x(ηk)‖eµθ. (3.4)

Exchanging the location of xi(t) and xi(ηk) in (3.3), it derives that

‖x(ηk)‖ ≤‖x(t)‖+
∫ t

ηk

[ n∑
i=1

(
|ai − ki|+ L1

i

n∑
j=1

|bji|
)
|xi(s)|+

n∑
i=1

(
L2
i

n∑
j=1

|cji|
)
|xi(ηk)|

]
ds

≤‖x(t)‖+
∫ t

ηk

(
µ

n∑
i=1

|xi(s)|+ ν

n∑
i=1

|xi(ηk)|
)
ds

≤‖x(t)‖+ νθ‖x(ηk)‖+ µ

∫ t

ηk

‖x(s)‖ds,

(3.5)
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substituting (3.4) into (3.5)

‖x(ηk)‖ ≤‖x(t)‖+ νθ‖x(ηk)‖+ µ

∫ t

ηk

[
(1 + νθ)‖x(ηk)‖eµθ

]
ds

≤‖x(t)‖+ θ
[
ν + µ(1 + νθ)eµθ

]
‖x(ηk)‖,

it follows that
‖x(γ(t))‖ ≤ α‖x(t)‖.

For the other case of t < ηk, the same conclusion can be drawn with the method above. And hence, the
lemma is proved.

Remark 3.2. Different from the conventional neural networks, the generalized type neural networks with
piecewise constant argument can change its deviation type during the process, which is the difficulty of the
study on this type of neural networks. Lemma 3.1 estimates the norm of the deviation term x(γ(t)) via the
norm of the corresponding state vector x(t) and establishes the link between deviation term and the state
vector of the system itself.

Theorem 3.3. Assume (H1), (H2), (H3) hold, system (3.2) is globally exponentially stable, which implies
system (2.1) is globally exponentially stabilizable under the single state stabilization control rule (3.1) if there
exist constants ki, i = 1, 2, ..., n such that

A− να > 0, (3.6)

where

α = 1

/(
1− θ

[
ν + µ(1 + νθ)eµθ

])
,

µ = max
1≤i≤n

(
|ai − ki|+ L1

i

n∑
j=1

|bji|
)
,

ν = max
1≤i≤n

( n∑
j=1

L2
i |cji|

)
,

A = min
1≤i≤n

[
(ai − ki)−

n∑
j=1

|bji|L1
i

]
.

Proof. Consider the following Lyapunov function

V (x(t)) =
n∑
i=1

eβt|xi(t)|,

where β > 0, is a sufficiently small and positive constant.
Along trajectory (3.2), the upper right Dini derivative of V can be calculated as follows:

D+V (x(t)) =D+

[ n∑
i=1

sgn(xi(t))e
βtxi(t)

]

=
n∑
i=1

sgn(xi(t))

[
βeβtxi(t) + eβtẋi(t)

]

=βeβt
n∑
i=1

sgn(xi(t))xi(t) + eβt
n∑
i=1

sgn(xi(t))ẋi(t)
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=βeβt
n∑
i=1

|xi(t)|+ eβt
n∑
i=1

sgn(xi(t))

(
− (ai − ki)xi(t) +

n∑
j=1

bijfj(xj(t))

+
n∑
j=1

cijgj(xj(γ(t)))

)

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki)sgn(xi(t))xi(t) + eβt
n∑
i=1

n∑
j=1

bijsgn(xi(t))fj(xj(t))

+ eβt
n∑
i=1

n∑
j=1

cijsgn(xi(t))gj(xj(γ(t)))

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki)|xi(t)|+ eβt
n∑
i=1

n∑
j=1

bijsgn(xi(t))fj(xj(t))

+ eβt
n∑
i=1

n∑
j=1

cijsgn(xi(t))gj(xj(γ(t)))

≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki)|xi(t)|+ eβt
n∑
i=1

n∑
j=1

|bijfj(xj(t))|

+ eβt
n∑
i=1

n∑
j=1

|cijgj(xj(γ(t)))|

≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki)|xi(t)|+ eβt
n∑
i=1

n∑
j=1

|bijL1
jxj(t)|

+ eβt
n∑
i=1

n∑
j=1

|cijL2
jxj(γ(t))|

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki)|xi(t)|+ eβt
n∑
i=1

( n∑
j=1

|bjiL1
i |
)
|xi(t)|

+ eβt
n∑
i=1

( n∑
j=1

|cjiL2
i |
)
|xi(γ(t))|.

And hence

D+V (x(t)) ≤ βeβt
n∑
i=1

|xi(t)|+ eβt
n∑
i=1

( n∑
j=1

|cjiL2
i |
)
|xi(γ(t))| − eβt

n∑
i=1

[
(ai − ki)−

( n∑
j=1

|bjiL1
i |
)]
|xi(t)|

≤ βeβt‖x(t)‖ −Aeβt
n∑
i=1

|xi(t)|+ νeβt
n∑
i=1

|xi(γ(t))|

= βeβt‖x(t)‖ −Aeβt‖x(t)‖+ νeβt‖x(γ(t))‖.

Applying Lemma 3.1, it derives that

D+V (x(t)) ≤ βeβt‖x(t)‖ −Aeβt‖x(t)‖+ ναeβt‖x(t)‖
= −(A− να− β)‖x(t)‖eβt.

According to (3.6) and utilizing the continuity of the parameters, there exists some sufficiently small and
positive β > 0 such that

δ0 = A− να− β > 0.
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Then

D+V (x(t)) ≤ −δ0eβt‖x(t)‖ < 0.

Therefore

‖x(t)‖eβt = V (x(t)) ≤ V (x(t0)) = ‖x(t0)‖eβt0 .

That is

‖x(t)‖ = V (x(t))e−βt ≤ V (x(t0))e
−βt = ‖x(t0)‖e−β(t−t0).

It implies that system (2.1) is of globally exponential stabilization under the single state stabilization
control rule (3.1).

3.2. Multiple state stabilization
We propose the following multiple state stabilization control rule:

I(t) =



k11x1(t) + k12x1(γ(t))
k21x2(t) + k22x2(γ(t))

...
ki1xi(t) + ki2xi(γ(t))

...
kn1xn(t) + kn2xn(γ(t))


= K1x(t) +K2x(γ(t)), (3.7)

where K1 = diag(k11, k21, · · · , ki1, · · · , kn1), K2 = diag(k12, k22, · · · , ki2, · · · , kn2) are the control gain of
state vector and state vector with piecewise constant argument, respectively.

With multiple state stabilization control rule (3.7), system (2.1) can be rewritten as follows:

ẋi(t) =− (ai − ki1)xi(t) +
n∑
j=1

bijfj(xj(t)) +
n∑
j=1

cijgj(xj(γ(t))) + ki2xi(γ(t)). (3.8)

In order to verify Theorem 3.5 more expediently, we give Lemma 3.4. The following hypothesis is needed
in this subsection.
(H4) There exist positive constants θ, τ , and ς such that

1− θ
[
τ + ς(1 + τθ)eςθ

]
> 0,

where ς = max1≤i≤n
(
|ai − ki1|+ L1

i

∑n
j=1 |bji|

)
, τ = max1≤i≤n

(
|ki2|+

∑n
j=1 L

2
i |cji|

)
.

Lemma 3.4. Under (H1), (H2), (H4), for (3.8), the following inequality holds

‖x(γ(t))‖ ≤ ξ‖x(t)‖

for all t ≥ t0, where ξ = 1

/(
1 − θ

[
τ + ς(1 + τθ)eςθ

])
, ς = max1≤i≤n

(
|ai − ki1| + L1

i

∑n
j=1 |bji|

)
, τ =

max1≤i≤n
(
|ki2|+

∑n
j=1 L

2
i |cji|

)
.

Proof. For any t ≥ t0, by the property of γ(t) and the sequences {θk} and {ηk}, there exists only one k ∈ N ,
which satisfies that

γ(t) = ηk ∈ [θk, θk+1), t ∈ [θk, θk+1),

and we get if t ≥ ηk

xi(t) =xi(ηk) +

∫ t

ηk

[
− (ai − ki1)xi(s) +

n∑
j=1

bijfj(xj(s)) +

n∑
j=1

cijgj(xj(ηk)) + ki2xi(ηk)

]
ds, (3.9)

for i = 1, 2, ..., n, then
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‖x(t)‖ ≤‖x(ηk)‖+
n∑
i=1

∫ t

ηk

[
|ai − ki1||xi(s)|+

n∑
j=1

L1
j |bij ||xj(s)|+

n∑
j=1

L2
j |cij ||xj(ηk)|+ |ki2xi(ηk)|

]
ds

=‖x(ηk)‖+
∫ t

ηk

[ n∑
i=1

(
|ai − ki1|+ L1

i

n∑
j=1

|bji|
)
|xi(s)|+

n∑
i=1

(
|ki2|+ L2

i

n∑
j=1

|cji|
)
|xi(ηk)|

]
ds

≤‖x(ηk)‖+
∫ t

ηk

(
ς

n∑
i=1

|xi(s)|+ τ
n∑
i=1

|xi(ηk)|
)
ds

≤(1 + τθ)‖x(ηk)‖+ ς

∫ t

ηk

‖x(s)‖ds,

Based on the Gronwall-Bellman inequality

‖x(t)‖ ≤ (1 + τθ)‖x(ηk)‖eςθ. (3.10)

Exchanging the location of xi(t) and xi(ηk) in (3.9), it derives

‖x(ηk)‖ ≤‖x(t)‖+
n∑
i=1

∫ t

ηk

[
|ai − ki1||xi(s)|+

n∑
j=1

L1
j |bij ||xj(s)|+

n∑
j=1

L2
j |cij ||xj(ηk)|+ |ki2xi(ηk)|

]
ds

=‖x(t)‖+
∫ t

ηk

[ n∑
i=1

(
|ai − ki1|+ L1

i

n∑
j=1

|bji|
)
|xi(s)|+

n∑
i=1

(
|ki2|+ L2

i

n∑
j=1

|cji|
)
|xi(ηk)|

]
ds

≤‖x(t)‖+
∫ t

ηk

(
ς

n∑
i=1

|xi(s)|+ τ
n∑
i=1

|xi(ηk)|
)
ds

≤‖x(t)‖+ τθ‖x(ηk)‖+ ς

∫ t

ηk

‖x(s)‖ds,

(3.11)

substituting (3.10) into (3.11)

‖x(ηk)‖ ≤‖x(t)‖+ τθ‖x(ηk)‖+ ς

∫ t

ηk

[
(1 + τθ)‖x(ηk)‖eςθ

]
ds

≤‖x(t)‖+ θ
[
τ + ς(1 + τθ)eςθ

]
‖x(ηk)‖,

it follows that
‖x(γ(t))‖ ≤ ξ‖x(t)‖.

For the other case of t < ηk, the same conclusion can be drawn with the method above. And hence, the
lemma is proved.

Theorem 3.5. Assume (H1), (H2) and (H4) hold, system (3.8) is globally exponentially stable, which implies
system (2.1) is globally exponentially stabilizable under the multiple state stabilization control rule (3.7) if
there exist constants ki1, ki2, i = 1, 2, ..., n, such that

Â− τξ > 0, (3.12)

where

ξ =1

/(
1− θ

[
τ + ς(1 + τθ)eςθ

])
,

ς = max
1≤i≤n

(
|ai − ki1|+ L1

i

n∑
j=1

|bji|
)
,
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τ = max
1≤i≤n

(
|ki2|+

n∑
j=1

L2
i |cji|

)
,

Â = min
1≤i≤n

[
(ai − ki1)−

n∑
j=1

|bji|L1
i

]
.

Proof. Consider the following Lyapunov function

V (x(t)) =
n∑
i=1

eβt|xi(t)|,

where β > 0, is a sufficiently small positive constant.
Along trajectory (3.8), evaluating the upper right Dini derivative of V , we can have

D+V (x(t)) =
n∑
i=1

sgn(xi(t))

(
βeβtxi(t) + eβtẋi(t)

)

=
n∑
i=1

sgn(xi(t))βe
βtxi(t) + eβt

n∑
i=1

sgn(xi(t))ẋi(t)

=βeβt
n∑
i=1

|xi(t)|+ eβt
n∑
i=1

sgn(xi(t))

[
− (ai − ki1)xi(t) +

n∑
j=1

bijfj(xj(t))

+

n∑
j=1

cijgj(xj(γ(t))) + ki2xi(γ(t))

]

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki1)|xi(t)|+ eβt
n∑
i=1

n∑
j=1

bijfj(xj(t))sgn(xi(t))

+ eβt
n∑
i=1

n∑
j=1

cijgj(xj(γ(t)))sgn(xi(t)) + eβt
n∑
i=1

ki2xi(γ(t))sgn(xi(t))

≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki1)|xi(t)|+ eβt
n∑
i=1

n∑
j=1

|bijL1
jxj(t)|

+ eβt
n∑
i=1

n∑
j=1

|cijL2
jxj(γ(t))|+ eβt

n∑
i=1

|ki2xi(γ(t))|

≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki1)|xi(t)|+ eβt
n∑
j=1

n∑
i=1

|bjiL1
ixi(t)|

+ eβt
n∑
j=1

n∑
i=1

|cjiL2
ixi(γ(t))|+ eβt

n∑
i=1

|ki2xi(γ(t))|

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

(ai − ki1)|xi(t)|+ eβt
n∑
i=1

n∑
j=1

|bjiL1
i ||xi(t)|

+ eβt
n∑
i=1

n∑
j=1

|cjiL2
ixi(γ(t))|+ eβt

n∑
i=1

|ki2xi(γ(t))|,

and hence, we can get

D+V (x(t)) ≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

[
(ai − k1i)−

( n∑
j=1

|bjiL1
i |
)]
|xi(t)|+ eβt

n∑
i=1

[( n∑
j=1

|cjiL2
i |
)
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+ |ki2|
]
|xi(γ(t))|

≤βeβt
n∑
i=1

|xi(t)| − eβtÂ
n∑
i=1

|xi(t)|+ eβtτ

n∑
i=1

|xi(γ(t))|

=βeβt‖x(t)‖ − eβtÂ‖x(t)‖+ eβtτ‖x(γ(t))‖.

Applying Lemma 3.4, we have

D+V (x(t)) ≤βeβt‖x(t)‖ − Âeβt‖x(t)‖+ τξeβt‖x(t)‖
=− (Â− τξ − β)‖x(t)‖eβt.

According to (3.12) and utilizing the continuity of the parameters, there exists some sufficiently small and
positive constant β > 0 such that

δ1 = Â− τξ − β > 0.

Then

D+V (x(t)) ≤ −δ1eβt‖x(t)‖ < 0.

Therefore, we have

‖x(t)‖eβt = V (x(t)) ≤ V (x(t0)) = ‖x(t0)‖eβt0 .

That is

‖x(t)‖ = V (x(t))e−βt ≤ V (x(t0))e
−βt = ‖x(t0)‖e−β(t−t0).

It implies that system (2.1) is of global exponential stabilization under the multiple state stabilization
control rule (3.7).

Remark 3.6. It is clear that Theorem 3.3 is a special case of Theorem 3.5. In fact, when the conditions in
Theorem 3.5 are satisfied, let ki1 = ki, and ki2 = 0, it is an immediate consequence that Theorem 3.3 follows.

Remark 3.7. Compared with the control rule of Theorem 3.3, the control rule of Theorem 3.5 contains two
adjustable parameters, which increase the flexibility of Theorem 3.5. The control rule of Theorem 3.3 is
simpler, which is implemented more easily in practical applications.

3.3. Output stabilization
In many integrated systems, the states of some components are unable or inconvenient to be measured,

but their outputs are easy to be measured. Hence, we can use the outputs as the elements of the control rule
to stabilize the integrated systems.

Assume that the state variables xi(t), i = 1, 2, ..., n of (2.1) are not measurable, but the corresponding
outputs fi(xi), gi(γ(xi)), i = 1, 2, ..., n are measurable. Hence we can use the outputs as the entry of the
stabilization control rule to stabilize the system. We propose the following output stabilization control rule:

I(t) =



k11f1(x1(t)) + k12g1(x1(γ(t)))
k21f2(x2(t)) + k22g2(x2(γ(t)))

...
ki1fi(xi(t)) + ki2gi(xi(γ(t)))

...
kn1fn(xn(t)) + kn2gn(xn(γ(t)))


= K1f(x(t)) +K2g(x(γ(t))), (3.13)
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where K1 = diag(k11, k21, · · · , ki1, · · · , kn1), K2 = diag(k12, k22, · · · , ki2, · · · , kn2) are the control gain of
outputs fi(xi(t)) and gi(xi(γ(t))), respectively.

With the output stabilization control rule (3.13), the system (2.1) can be rewritten as follows

ẋi(t) = −aixi(t) +
n∑
j=1

b̃ijfj(xj(t)) +

n∑
j=1

c̃ijgj(xj(γ(t))), (3.14)

where

b̃ij =

{
bij + ki1, if i = j,
bij , if i 6= j,

c̃ij =

{
cij + ki2, if i = j,
cij , if i 6= j.

In order to formulate Theorem 3.9 more conveniently, we introduce the following assumption and Lemma
3.8.
(H5) There exist positive constants θ, ζ, and κ such that

1− θ
[
κ+ ζ(1 + κθ)eζθ

]
> 0,

where ζ = max1≤i≤n
(
ai + L1

i

∑n
j=1 |b̃ji|

)
, κ = max1≤i≤n

(∑n
j=1 L

2
i |c̃ji|

)
.

Lemma 3.8. Under (H1), (H2), (H5), for (3.14), the following inequality holds

‖x(γ(t))‖ ≤ ρ‖x(t)‖,

for all t ≥ t0, where

ρ = 1

/(
1− θ

[
κ+ ζ(1 + κθ)eζθ

])
, ζ = max

1≤i≤n

(
ai + L1

i

n∑
j=1

|b̃ji|
)
, κ = max

1≤i≤n

( n∑
j=1

L2
i |c̃ji|

)
.

Proof. For any t ≥ t0, by the property of γ(t) and the sequences {θk} and {ηk}, there exists only one k ∈ N ,
which satisfies that

γ(t) = ηk ∈ [θk, θk+1), t ∈ [θk, θk+1),

and we get if t ≥ ηk

xi(t) =xi(ηk) +

∫ t

ηk

[
− aixi(s) +

n∑
j=1

b̃ijfj(xj(s)) +
n∑
j=1

c̃ijgj(xj(ηk))

]
ds. (3.15)

for i = 1, 2, ..., n, then

‖x(t)‖ ≤‖x(ηk)‖+
n∑
i=1

∫ t

ηk

[
ai|xi(s)|+

n∑
j=1

L1
j |b̃ij ||xj(s)|+

n∑
j=1

L2
j |c̃ij ||xj(ηk)|

]
ds

=‖x(ηk)‖+
∫ t

ηk

[ n∑
i=1

(
ai + L1

i

n∑
j=1

|b̃ji|
)
|xi(s)|+

n∑
i=1

(
L2
i

n∑
j=1

|c̃ji|
)
|xi(ηk)|

]
ds

≤‖x(ηk)‖+
∫ t

ηk

(
ζ

n∑
i=1

|xi(s)|+ κ
n∑
i=1

|xi(ηk)|
)
ds

≤(1 + κθ)‖x(ηk)‖+ ζ

∫ t

ηk

‖x(s)‖ds.
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Based on the Gronwall-Bellman inequality, we obtain

‖x(t)‖ ≤ (1 + κθ)‖x(ηk)‖eζθ. (3.16)

Exchanging the location of xi(t) and xi(ηk) in (3.15), it follows that

‖x(ηk)‖ ≤‖x(t)‖+
∫ t

ηk

[ n∑
i=1

(
ai + L1

i

n∑
j=1

|b̃ji|
)
|xi(s)|+

n∑
i=1

(
L2
i

n∑
j=1

|c̃ji|
)
|xi(ηk)|

]
ds

≤‖x(t)‖+
∫ t

ηk

(
ζ

n∑
i=1

|xi(s)|+ κ
n∑
i=1

|xi(ηk)|
)
ds

≤‖x(t)‖+ κθ‖x(ηk)‖+ ζ

∫ t

ηk

‖x(s)‖ds.

(3.17)

substituting (3.16) into (3.17)

‖x(ηk)‖ ≤‖x(t)‖+ κθ‖x(ηk)‖+ ζ

∫ t

ηk

[
(1 + κθ)‖x(ηk)‖eζθ

]
ds

≤‖x(t)‖+ θ
[
κ+ ζ(1 + κθ)eζθ

]
‖x(ηk)‖,

it follows that
‖x(γ(t))‖ ≤ ρ‖x(t)‖,

For the other case of t < ηk, the same conclusion can be drawn with the method above. And hence, the
lemma is proved.

Theorem 3.9. Assume H(1), (H2) and H(5) hold, system (3.14) is globally exponentially stable, which
implies system (2.1) is globally exponentially stabilizable under stabilization control rule (3.13) if there exist
constants ki1, ki2, i = 1, 2, ..., n, such that

Ã− κρ > 0, (3.18)

where

ρ = 1

/(
1− θ

[
κ+ ζ(1 + κθ)eζθ

])
, ζ = max

1≤i≤n

(
ai + L1

i

n∑
j=1

|b̃ji|
)
,

κ = max
1≤i≤n

( n∑
j=1

L2
i |c̃ji|

)
, Ã = min

1≤i≤n

(
ai −

n∑
j=1

|b̃ji|L1
i

)
.

Proof. Consider the following Lyapunov function

V (x(t)) =
n∑
i=1

eβt|xi(t)|,

where β > 0, is a sufficiently small and positive constant.
Evaluating the upper right Dini derivative of V along the trajectory of (3.14), we can have

D+V (x(t)) =D+

[ n∑
i=1

sgn(xi(t))e
βtxi(t)

]

=
n∑
i=1

sgn(xi(t))

[
βeβtxi(t) + eβtẋi(t)

]
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=βeβt
n∑
i=1

sgn(xi(t))xi(t) + eβt
n∑
i=1

sgn(xi(t))ẋi(t)

=βeβt
n∑
i=1

|xi(t)|+ eβt
n∑
i=1

sgn(xi(t))

(
− aixi(t) +

n∑
j=1

b̃ijfj(xj(t))

+
n∑
j=1

c̃ijgj(xj(γ(t)))

)

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

aisgn(xi(t))xi(t) + eβt
n∑
i=1

n∑
j=1

b̃ijsgn(xi(t))fj(xj(t))

+ eβt
n∑
i=1

n∑
j=1

c̃ijsgn(xi(t))gj(xj(γ(t)))

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

ai|xi(t)|+ eβt
n∑
i=1

n∑
j=1

b̃ijsgn(xi(t))fj(xj(t))

+ eβt
n∑
i=1

n∑
j=1

c̃ijsgn(xi(t))gj(xj(γ(t)))

≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

ai|xi(t)|+ eβt
n∑
i=1

n∑
j=1

|b̃ijfj(xj(t))|

+ eβt
n∑
i=1

n∑
j=1

|c̃ijgj(xj(γ(t)))|

≤βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

ai|xi(t)|+ eβt
n∑
i=1

n∑
j=1

|b̃ijL1
jxj(t)|

+ eβt
n∑
i=1

n∑
j=1

|c̃ijL2
jxj(γ(t))|

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

ai|xi(t)|+ eβt
n∑
i=1

( n∑
j=1

|b̃jiL1
i |
)
|xi(t)|

+ eβt
n∑
i=1

( n∑
j=1

|c̃jiL2
i |
)
|xi(γ(t))|

=βeβt
n∑
i=1

|xi(t)| − eβt
n∑
i=1

[
ai −

( n∑
j=1

|b̃jiL1
i |
)]
|xi(t)|+ eβt

n∑
i=1

( n∑
j=1

|c̃jiL2
i |
)
|xi(γ(t))|

≤βeβt‖x(t)‖ − Ãeβt
n∑
i=1

|xi(t)|+ κeβt
n∑
i=1

|xi(γ(t))|

=βeβt‖x(t)‖ − Ãeβt‖x(t)‖+ κeβt‖x(γ(t))‖,

Applying Lemma 3.8, it derives that

D+V (x(t)) ≤ βeβt‖x(t)‖ − Ãeβt‖x(t)‖+ κρeβt‖x(t)‖
= −(Ã− κρ− β)‖x(t)‖eβt.

According to (3.18) and utilizing the continuity of the parameters, there exists some sufficiently small
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and positive β > 0 such that

δ2 = Ã− κρ− β > 0.

Then

D+V (x(t)) ≤ −δ2eβt‖x(t)‖ < 0.

Therefore

‖x(t)‖eβt = V (x(t)) ≤ V (x(t0)) = ‖x(t0)‖eβt0 .

That is

‖x(t)‖ = V (x(t))e−βt ≤ V (x(t0))e
−βt = ‖x(t0)‖e−β(t−t0).

It implies that system (2.1) is of global exponential stabilization under the output stabilization control
rule (3.13).

4. Numerical examples

In this section, we introduce two illustrative examples to demonstrate the effectiveness of the obtained
criteria.

Example 4.1. We consider the generalized type neural network with piecewise constant argument as follows,
where θk = k/9, γ(t) = ηk = (2k + 1)/18, k ∈ N .

ẋ1(t) = −0.8x1(t) + 0.02 tanh(x1(t)) + 0.03 tanh(x2(t))
+0.08 tanh(x1(γ(t))/7) + 0.1 tanh(x2(γ(t))) + I1(t),

ẋ2(t) = −x2(t) + 0.01 tanh(x1(t)) + tanh(x2(t))
+0.01 tanh(x1(γ(t))/7) + 0.1 tanh(x2(γ(t))) + I2(t).

(4.1)

The state trajectory of (4.1) is depicted in Figure 1. Clearly, its states converge to different equilibrium
points and even unstable.
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Figure 1: Transient behavior of x1(t), x2(t) for (4.1) without external controller.
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Choose the single state stabilization control rule as following

I(t) =

{
I1(t) = k1x1(t) = −2.2x1(t),
I2(t) = k2x2(t) = −1.8x2(t).

(4.2)

We can easily calculate

|a1 − k1|+ L1
1

2∑
j=1

bj1 = |0.8 + 2.2|+ 1× (0.02 + 0.01) = 3.03,

|a2 − k2|+ L1
2

2∑
j=1

bj2 = |1 + 1.8|+ 1× (0.03 + 1) = 3.83,

2∑
j=1

L2
1|cj1| = 1/7× (0.08 + 0.01) = 9/700,

2∑
j=1

L2
2|cj2| = 1× (0.1 + 0.1) = 0.2.

Hence

µ = max
1≤i≤2

(|ai − ki|+ L1
i

2∑
j=1

bji) = 3.83,

ν = max
1≤i≤2

(
2∑
j=1

L2
i |cji|) = 0.2,

1− θ[ν + µ(1 + νθ)eµθ] = 1− 1/9× [0.2 + 3.83× (1 + 0.2× 1/9)× e3.83×1/9]

= 0.3120 > 0,

and consequently, (H3) is satisfied.

α = 1/(1− θ[ν + µ(1 + νθ)eµθ]) = 1/0.3120 = 3.2051,[
(a1 − k1)−

2∑
j=1

|bj1|L1
1

]
= (0.8 + 2.2)− 1× (0.02 + 0.01) = 2.97,

[
(a2 − k2)−

2∑
j=1

|bj2|L1
2

]
= (1 + 1.8)− 1× (0.03 + 1) = 1.77,

A = min
1≤i≤2

[
(ai − ki)−

2∑
j=1

|bji|L1
i

]
= 1.77,

it satisfies that

A− να = 1.77− 0.2× 3.2051 = 1.1290 > 0.

The conditions in Theorem 3.3 are all satisfied. Consequently, (4.1) under the single state stabilization
control rule (4.2) is of global exponential stabilization. The simulations in Figure 2 are well suited to the
theoretical results.
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Figure 2: Transient behavior of x1(t), x2(t) for (4.1) with the single state stabilization control rule I1(t) = −2.2x1(t), I2(t) =
−1.8x2(t).

In addition, select

I(t) =

{
I1(t) = −2.2x1(t)− 0.2x1(γ(t)),
I2(t) = −1.8x2(t)− 0.2x2(γ(t)),

(4.3)

as the multiple state stabilization control rule.
We can easily compute

|a1 − k11|+ L1
1

2∑
j=1

|bj1| = |0.8 + 2.2|+ 1× (0.02 + 0.01) = 3.03,

|a2 − k21|+ L1
2

2∑
j=1

|bj2| = |1.0 + 1.8|+ 1× (0.03 + 1) = 3.83,

|k12|+
2∑
j=1

L2
1|cj1| = 0.2 + 1/7× (0.08 + 0.01) = 149/700,

|k22|+
2∑
j=1

L2
2|cj2| = 0.2 + 1× (0.1 + 0.1) = 0.4,

ς = max
1≤i≤2

(
|ai − ki1|+ L1

i

2∑
j=1

|bji|
)
= 3.83,

τ = max
1≤i≤2

(
|ki2|+

2∑
j=1

L2
i |cji|

)
= 0.4,

1− θ
[
τ + ς(1 + τθ)eςθ

]
= 1− 1/9× [0.4 + 3.83× (1 + 0.4× 1/9)× e3.83×1/9] = 0.2753 > 0,

and (H4) is fulfilled.

ξ = 1/0.2753 = 3.6324,[
(a1 − k11)−

1∑
j=1

|bj1|L1
1

]
= (0.8 + 2.2)− 1× (0.02 + 0.01) = 2.97,
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[
(a2 − k21)−

2∑
j=1

|bj2|L1
2

]
= (1 + 1.8)− 1× (0.03 + 1) = 1.77,

Â = min
1≤i≤2

[
(ai − ki1)−

2∑
j=1

|bji|L1
i

]
= 1.77,

Â− τξ = 1.77− 0.4× 3.6324 = 0.3170 > 0.

It is easy to see the conditions of Theorem 3.5 are satisfied. The simulations depicted in Figure 3 also
demonstrate the feasibility of the multiple state stabilization control rule (4.3).
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Figure 3: Transient behavior of x1(t), x2(t) for (4.1) with the multiple state stabilization control rule I1(t) = −2.2x1(t) −
0.2x1(γ(t)), I2(t) = −1.8x2(t)− 0.2x2(γ(t)).

Example 4.2. Consider the following generalized type neural network with piecewise constant argument,
where θk = k/9, γ(t) = ηk = (2k + 1)/18, k ∈ N .

ẋ1(t) = −2x1(t) + 6.62 tanh(x1(t)) + 0.03 tanh(x2(t))
+5.08 tanh(x1(γ(t))/7) + 0.1 tanh(x2(γ(t))/6) + I1(t),

ẋ2(t) = −1.5x2(t) + 0.01 tanh(x1(t)) + 8.3 tanh(x2(t))
+0.01 tanh(x1(γ(t))/7) + 8.1 tanh(x2(γ(t))/6) + I2(t).

(4.4)

The numerical simulations of (4.4) are shown in Figure 4. It is clear that the system (4.4) converges to
different states for different initial values.
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Figure 4: Transient behavior of x1(t), x2(t) for (4.4) without external controller.
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Select the output stabilization control rule as follows

I(t) =

{
I1(t) = −6.6 tanh(x1(t))− 5 tanh(x1(γ(t))/7),
I2(t) = −7.3 tanh(x2(t))− 8 tanh(x2(γ(t))/6).

(4.5)

Then

(b̃ij)2×2 =

(
0.02 0.03
0.01 1

)
,

(c̃ij)2×2 =

(
0.08 0.1
0.01 0.1

)
.

We calculate as follows

a1 + L1
1

2∑
j=1

|b̃j1| = 2 + 1× (0.02 + 0.01) = 2.03,

a2 + L1
2

2∑
j=1

|b̃j2| = 1.5 + 1× (0.03 + 1) = 2.53,

2∑
j=1

L2
1|c̃j1| = 1/7× (0.08 + 0.01) = 9/700,

2∑
j=1

L2
2|c̃j2| = 1/6× (0.1 + 0.1) = 1/30, ζ = max

1≤i≤2

(
ai + L1

i

2∑
j=1

|b̃ji|
)
= 2.53,

κ = max
1≤i≤2

( 2∑
j=1

L2
i |c̃ji|

)
= 1/30,

1− θ
[
κ+ ζ(1 + κθ)eζθ

]
> 0 = 1− 1/9× [1/30 + 2.53× (1 + 1/30× 1/9)× e2.53×1/9] = 0.6226 > 0,

ρ = 1/0.6226 = 1.6062,

a1 −
2∑
j=1

|b̃j1|L1
1 = 2− 1× (0.02 + 0.01) = 1.97,

a2 −
2∑
j=1

|b̃j2|L1
2 = 1.5− 1× (0.03 + 1) = 0.47,

and hence

Ã = min
1≤i≤2

(
ai −

2∑
j=1

|b̃ji|L1
i

)
= 0.47.

It satisfies that

Ã− κρ = 0.47− 1.6062× 1/30 = 0.4165 > 0.

Consequently, the system (4.4) is of global exponential stabilization with the output stabilization control
rule (4.5), and the simulation results in Figure 5 agree well with the theoretical results.
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Figure 5: Transient behavior of x1(t), x2(t) for (4.4) with the output stabilization control rule I1(t) = −6.6 tanh(x1(t)) −
5 tanh(x1(γ(t))/7), I2(t) = −7.3 tanh(x2(t))− 8 tanh(x2(γ(t))/6).

5. Concluding remarks

Generalized type neural networks with piecewise constant argument have attracted more attention over
the past years. Different from the conventional neural networks with or without delays, the generalized type
neural networks with piecewise constant argument can be both advanced and delayed during the motion. In
this paper, the stabilization control for generalized type neural networks with piecewise constant argument
is explored. Three kinds of different stabilization controllers are considered, and correspondingly sufficient
conditions are established to guarantee the stabilization of the neural networks, which are not discussed in
the existing literature. The obtained results in this paper are the preliminary research on the generalized
type neural networks with piecewise constant argument, and further investigation may be focused on the
synchronization, chaos and other dynamic behaviors of this type of neural networks.
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