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Abstract

The Burgers’ equation is one of the typical nonlinear evolutionary partial differential equations. In
this paper, a mesh-free method is proposed to solve the Burgers’ equation using the finite difference and
collocation methods. With the temporal discretization of the equation using C-N scheme, the solution is
approximated spatially by Radial Basis Function (RBF). The numerical results of two different examples
indicate the high accuracy and flexibility of the presented method. c©2016 All rights reserved.
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1. Introduction

In this paper, we consider the following nonlinear evolutionary partial differential equation:

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
=

1

R

∂2u(x, t)

∂x2
, (1.1)

where R > 0, interpreted as Reynolds number.
This equation is widely termed Burgers’ equation, because it was treated by Burgers [4, 5] as a mathe-

matical model for free turbulence after it was first introduced by Bateman [2]. Burgers’ equation has been
studied by many researchers for the following reasons:

(1) It contains the simplest form of nonlinear advection term uux and dissipation term uxx/R for simulating
the physical phenomena of wave motion[1, 17, 20–23, 25].
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(2) It can be solved analytically by exp-function method, variational iteration method and homotopic
perturbation method[6, 14] so that numerical comparison can be made.

(3) Its shock wave behavior when the Reynolds number R is large. To date, the development of an
innovative and robust numerical method for seeking accurate and efficient numerical solutions of
Burgers’ equation with large values of R, remains as a challenging task.

Various numerical methods were employed to obtain the solution of Burgers’ equation and the solution
methodologies commonly fall into the following classes: finite difference method [3, 10], finite element
method [18], spectral methods and meshless methods [9, 12]. Recently, there has been an increasing interest
in approximating the solutions of PDEs ([7, 11–13, 19, 24]) using Kansa method, one of the domain-type
meshless methods, developed by Kansa [15, 16] in 1990. It is obtained by collocating the RBFs, particularly
the multiquadric (MQ), for the numerical approximation of the solution. In contrast to the traditional
meshed-based methods, the RBF collocation methods are mathematically simple and truly meshless. In
this paper, a new numerical method is proposed to solve the Burgers’ equation based on the finite difference
and collocation method. The C-N scheme is employed for the temporal discretization of the equation,
meanwhile, the numerical solution is approximated by the MQ radial basis function.

The paper is organized as follows: In Section 2, the radial basis functions approximation method is
described. In Section 3, the method is applied to Burgers’ equation with its temporal discretization by C-N
scheme. The numerical experiments are presented in Section 4. Finally, a brief conclusion is summarized in
Section 5.

2. Radial basis function approximation

The approximation of a distribution u(x), using radial basis functions, may be written as a linear
combination of N radial functions, usually it takes the following form

u(x) '
N∑
j=1

λjϕ(x,xj) + ψ(x), x ∈ Ω ⊂ Rd, (2.1)

where N is the number of data points, x = (x1, x2, ..., xd), d is the dimension of the problem, λj is the
coefficient to be determined, ϕ is the radial basis function, and ψ is an additional polynomial. In the
case without the additional polynomial, ϕ must be strictly positive definite to guarantee the solvability
of the resulting system (e.g., Gaussian or inverse-multiquadrics). However, ψ is usually required if ϕ is
conditionally positive definite, i.e., ϕ has a polynomial growth toward infinity, for example, thin plate
splines and multiquadrics. Moreover, the polynomial in (2.1) is added for a special proof of nonsingularity
of the extended interpolation system. Due to its good accuracy, multiquadrics will be used as radial basis
function for the numerical scheme introduced in Section 3, which is defined as

ϕ(x,xj) = ϕ(rj) =
√
r2j + c2, (2.2)

where rj =‖ x− xj ‖ is the Euclidean norm of x− xj .
Herein Pd

q denotes the space of d-variate polynomials of order not exceeding q, and letting the polynomials
P1, ..., Pm be the bases, then the polynomial ψ(x), in (2.1), can be stated with

ψ(x) =

m∑
i=1

ξiPi(x), (2.3)

where m = (q − 1 + d)!/(d!(q − 1)!).
To determinate the coefficients (λ1, ..., λN ) and (ξ1, ..., ξm), the collocation method is used. However, in

addition to the N equations resulting from collocating (2.1) at the N points, extra m equations are required.
This is insured by the m conditions for (2.1), i.e.,
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N∑
j=1

ξiPi(xj) = 0, i = 1, ...,m. (2.4)

In a similar representation as equation (2.1), for any linear partial differential operator L, Lu can be
approximated by

Lu(x) '
N∑
j=1

Lλjϕ(x,xj) + Lψ(x). (2.5)

3. Meshless method for the Burgers’ equation

In this section, we consider the second-order nonlinear Burgers’ equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= ε

∂2u(x, t)

∂x2
, x ∈ [a, b] ⊂ R, t > 0, (3.1)

with the initial and boundary conditions
u(x, 0) = u0(x), (3.2)

u(a, t) = f1(t), u(b, t) = f2(t), t > 0, (3.3)

where ε = 1
R > 0, and u0(x), f1(t), f2(t) are given functions.

Equation (3.1) is discretized according to the following θ-weighted scheme

un+1 − un

τ
+ [θun+1∇un+1 + (1− θ)un∇un] = ε[θ∇2un+1 + (1− θ)∇2un], (3.4)

where ∇ is the gradient operator, 0 ≤ θ ≤ 1, un = u(x, tn), tn = tn−1 + τ and τ is the time step size.
Moreover, the nonlinear term is linearized by

un+1∇un+1 = un+1∇un + un∇un+1 − un∇un. (3.5)

Substituting (3.5) into (3.4), we obtain

un+1 − τεθ∇2un+1 + τθ[un+1∇un + un∇un+1] = un + τ(2θ − 1)un∇un + τε(1− θ)∇2un. (3.6)

Assuming that there are N − 2 interpolation points, u(x, tn) can be approximated by

un(x) '
N−2∑
j=1

λnj ϕ(rj) + λnN−1x+ λnN . (3.7)

To determine the interpolation coefficients (λ1, λ2, ..., λN−1, λN ), the collocation method is used by ap-
plying (3.6) at point xi, i = 1, 2, ..., N − 2. Thus, we have

un(xi) '
N−2∑
j=1

λnj ϕ(rij) + λnN−1xi + λnN , (3.8)

where rij =
√

(xi − xj)2. The additional conditions due to (2.4) are written as

N−2∑
j=1

λnj =
N−2∑
j=1

λnj xj = 0. (3.9)

Combining (3.8) with (3.9) in a matrix form, we have

[u]n = A[λ]n, (3.10)

where [u]n = [un1 , · · · , unN−2 0 0]T , [λ]n = [λn1 , · · · , λnN ]T and A = [aij , 1 ≤ i, j ≤ N ].
There are p = N − 4 internal (domain) points and two boundary points. Therefore, the (N ×N) matrix

A can be split into A = Ad + Ab + Ae, where
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• Ad = [aij for (2 ≤ i ≤ N − 3, 1 ≤ j ≤ N) and 0 elsewhere];

• Ab = [aij for (i = 1, N − 2, 1 ≤ j ≤ N) and 0 elsewhere];

• Ae = [aij for (N − 1 ≤ i ≤ N, 1 ≤ j ≤ N) and 0 elsewhere].

Using the notation LA to designate the matrix of the same dimension as A and containing the elements
ãij = Laij , 1 ≤ i, j ≤ N , then (3.6) together with (3.3) can be stated, in the matrix form, as

{Ad − τεθ∇2Ad + τθ[diag(Ad[λ]n)∇Ad + diag(∇Ad[λ]n)Ad] + Ab}[λ]n+1

= Ad[λ]n + τε(1− θ)∇2Ad[λ]n + τ(2θ − 1)(Ad[λ]n). ∗ (∇Ad[λ]n) + [F ]n+1, (3.11)

where diag(Ad[λ]n) is a diagonal matrix with Ad[λ]n as its main diagonal and [F ]n = [fn1 0 · · · 0 fnN−2 0 0]T .
In (3.11), the accent ′′.∗′′ means component by component multiplication of two vectors. Equation (3.11)

is obtained by combining (3.6), which applies to the domain points, while (3.3) applies to the boundary
points.

Using (3.9) and the initial condition, represented by (3.2), [λ]0 can be computed. Then (3.11) and (3.9)
lead to [u]n’s.

Remark 3.1. When choosing N − 2 internal (domain) points and two boundary points, [u]n can also be got
without using (3.9) [12].

Remark 3.2. Although (3.11) is valid for any value of θ ∈[0, 1], we will use θ = 1/2 (the famous Crank-
Nicholson scheme).

4. Numerical experiments

In this section, numerical results of our method for the Burgers’ equation are presented. We use two
different problems to show the accuracy and flexibility of the proposed method. In order to evaluate the
numerical errors, we adopt three kinds of norms as defined by

L∞ = max
j
|uj − Uj |, L2 =

√√√√ N∑
j=1

|uj − Uj |2 , RMS =

√√√√ 1

N

N∑
j=1

|uj − Uj |2 ,

where uj = u(xj , T ) is the exact analytical solution, and Uj is the numerical solution of uj .

Example 4.1. In this example, we consider the second-order nonlinear Burgers’ equation (1.1) with a large
Reynolds number R = 10000, which has a monotone increasing solution. The analytical solution is given in
[8] as

u(x, t) =
ε

1 + εt
(x+ tan(

x

2(1 + εt)
)). (4.1)

The solution, evaluated at t = 0, is used as the initial condition, and the boundary functions are taken
from the exact solution at x = ±3, respectively.

Table 1: L∞, L2 and RMS errors, with τ = 0.1, dx = 0.12, x ∈ [−3, 3].
T L∞ L2 RMS c

1 2.1296×10−5 3.2324×10−5 4.5713×10−6 3.72
2 1.1971×10−5 2.7778×10−5 3.9285×10−6 3.55
2 1.7986×10−5 3.4930×10−5 4.9398×10−6 3.54
4 2.4114×10−5 5.5027×10−5 7.7819×10−6 3.75
5 3.0091×10−5 5.0920×10−5 7.2012×10−6 3.60
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All the computations were performed on Pentium(R) Dual-Core, 2.10 GHZ CPU and 2 GB of RAM.
In Table 1, the L∞, L2, Root-Mean-Square (RMS) of errors between the exact and numerical solutions
confirm the high accuracy of our method, and the shape parameter c found experimentally are also listed
for T = 1, 2, 3, 4 and 5. In Figure 1, the graph of exact and numerical solutions for T = 5 and the absolute
error graph are shown simultaneously. The space-time graph of the numerical solution up to T = 5 is also
depicted in Figure 2.
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Figure 1: Exact and numerical solutions, and absolute error at T = 5 with τ = 0.1, dx = 0.12, x ∈ [−3, 3].
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Figure 2: Space-time graph of the solution up to T = 5 with τ = 0.1, dx = 0.12, x ∈ [−3, 3].

Example 4.2. The nonlinear Burgers’ Equation with Reynolds number R = 10 is considered and it has a
monotone decreasing solution. The exact solution is given by

U(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
, (4.2)

where
A = 0.05R(x− 0.5 + 4.95t),

B = 0.25R(x− 0.5 + 0.75t),

C = 0.5R(x− 0.375).
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The required initial and boundary functions are taken from the exact solution. The L∞ and L2 errors
and RMS of errors at T = 1, 2, 3, 4 and 5, and the values of the shape parameter c are listed in Table 2,
respectively. The graph of exact and numerical solutions and the absolute error graph for T = 5 are drawn
in Figure 3, which also indicate the good accuracy of the presented method. The space-time graph of the
numerical solution up to T = 5 is shown in Figure 4. The space-time graphs for the two problems show the
temporal stability of the meshless method for the Burgers’ equation.

Table 2: L∞, L2 and RMS errors, with τ = 0.1, dx = 0.16, x ∈ [−4, 4].
T L∞ L2 RMS c

1 1.9311×10−4 3.9249×10−3 5.5506×10−4 1.19
2 2.9140×10−3 8.2943×10−3 1.1730×10−3 1.70
2 2.9268×10−3 9.4732×10−3 1.3397×10−3 1.51
4 2.6951×10−3 8.5127×10−3 1.2039×10−3 1.27
5 4.8280×10−5 1.3387×10−2 1.8932×10−3 1.56
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Figure 3: Exact and numerical solutions, and absolute error at T = 5 with τ = 0.1, dx = 0.16, x ∈ [−4, 4].
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Figure 4: Space-time graph of the solution up to T = 5 with τ = 0.1, dx = 0.12, x ∈ [−3, 3].
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5. Conclusions

In this paper, we discussed one of the well-known nonlinear partial differential equations named the
Burgers’ equation. A meshless numerical method was proposed to solve the Burgers’ equation based on
the finite difference and RBF collocation. The C-N scheme was employed in the temporal discretization of
the equation, and the numerical solution is approximated directly by the multiquadric (MQ) radial basis
function. To demonstrate the accuracy and flexibility of this method, two different problems were considered
in the numerical experiments, one with Reynolds number R = 10000 and a monotone increasing solution,
and the other with Reynolds number R = 10000 and a monotone decreasing solution. The good performance
of the presented method indicates the possibility of the extension of meshless method to other nonlinear
partial differential equations.
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