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Abstract

In this paper, we discuss the definition of the Reich multivalued monotone contraction mappings defined
in a metric space endowed with a graph. In our investigation, we prove the existence of fixed point results
for these mappings. We also introduce a vector valued Bernstein operator on the space C([0, 1], X), where
X is a Banach space endowed with a partial order. Then we give an analogue to the Kelisky-Rivlin theorem.
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1. Introduction

The fundamental fixed point theorem of Banach [2] has laid the foundation of metric fixed point theory
for contraction mappings on a complete metric space. Fixed point theory of certain important single-valued
mappings is very interesting in its own right due to their results having constructive proofs and applications
in industrial fields such as image processing engineering, biology, physics, computer science, economics, and
telecommunication.

Multivalued mappings are a useful tool in convex optimization, differential inclusions, control theory,
financial mathematics, and mathematical biology. Following the Banach contraction principle, Nadler [19]
gave the definition of multivalued contractions and established multivalued contraction version of the classical
Banach’s fixed point theorem. Subsequently many mathematicians generalized Nadler’s fixed point theorem
in different ways. In this regard, we mention the work of Reich [22] where he left open a problem on
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the existence of a fixed point of certain class of multivalued mappings (see Problem 3.1). Mizoguchi and
Takahashi [18] gave a partial answer to Reich’ s problem. Following the publication of Ran and Reuring’s
fixed point theorem [20] seen as the Banach contraction principle in metric spaces endowed with a partial
order, Sultana and Vetrivel [26] tried to extend the main results of [18] to metric spaces endowed with a
graph. In particular, they used their ideas to discuss the iterate of the Bernstein operator. Moreover, they
gave an example of a nonlinear version of the Bernstein operator and establish the Kelisky and Rivlin’s
theorem [11] for such operator.

In this paper, we will revisit the definition of the Reich multivalued mappings given by the authors in
[26]. Then we will prove a fixed point theorem of these mappings. Moreover, we will define a vector valued
Bernstein operator and give a more general version of the Kelisky and Rivlin’s theorem. In particular, we
will improve the conclusion of [26] regarding the Bernstein operator.

For more on fixed point theory, we suggest the books [7, 12].

2. Preliminaries and Basic results

The multivalued version of the classical Banach’s fixed point theorem was obtained by Nadler [19].
Extensions and generalizations of Nadler’s fixed point theorem were obtained by many mathematicians
[6, 16]. The case of the Banach contraction principle for monotone mappings couched within the case of
partially ordered metric spaces was obtained by Ran and Reurings [20]. Following the publication of [20], it
was natural to find a similar version of Theorem [19] to metric spaces endowed with partial order or more
generally a graph. Beg and Butt [3] gave the first attempt. But their definition of multivalued monotone
mappings was not correct which had the effect that the proof of their version of the fixed point theorem of
Nadler was wrong (see for example [1]). The difficulty one meets when dealing with multivalued mappings
defined in a partially ordered set (X,�) is the problem of comparing two subsets with respect to the order. In
fact, there are mainly three well-known pre-orders (reflexive, transitive but not necessarily antisymmetric),
namely the Smyth ordering, the Hoare ordering, and the Egli-Milner ordering [9, 13, 25], which have been
proposed in the context of nondeterministic programming languages for example:

1. A �S B if and only if for any b ∈ B, there exists a ∈ A such that a � b (Smyth ordering);

2. A �H B if and only if for any a ∈ A, there exists b ∈ B such that a � b (Hoare ordering);

3. A �EM B if and only if A �S B and A �H B (Egli-Milner ordering)

for any nonempty subsets A and B of X. Clearly, the Hoare order is equivalent to the Smyth order in the
dual underlying lattice. Similarly, we follow Jachymski’s extension [10] of the fixed point theorem of Ran
and Reurings [20] to a metric space endowed with a graph instead of a partial order. Recall that a directed
graph G consists of two sets: V (G) a nonempty set of elements called vertices, and E(G) a possibly empty
set of elements in V (G)× V (G) called edges. If E(G) contains all the loops (u, u), then G is reflexive. Let
X be a set endowed with a reflexive digraph G such that V (G) = X. Then, we will write

1. (A,B)S ∈ E(G) if and only if for any b ∈ B, there exists a ∈ A such that (a, b) ∈ E(G);

2. (A,B)H ∈ E(G) if and only if for any a ∈ A, there exists b ∈ B such that (a, b) ∈ E(G);

3. (A,B)EM ∈ E(G) if and only if (A,B)S ∈ E(G) and (A,B)H ∈ E(G)

for any nonempty subsets A and B of X. Throughout, we will use the Hoare relationship and will omit to
write the subscript H. Before, we give the definition of the Reich multivalued mappings, we will need some
basic definitions and notations. Let (X, d) be a metric space. The Hausdorff-Pompeiu distance H defined
on CB(X ), the set of nonempty bounded and closed subsets of X, is defined by

H(A,B) = max
{

sup
b∈B

inf
a∈A

d(b, a), sup
a∈A

inf
b∈B

d(a, b)
}

for any A,B ∈ CB(X ). The following technical result is useful to explain our definition later on.
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Lemma 2.1 ([19]). Let (X, d) be a metric space. For any A,B ∈ CB(X ) and ε > 0, and for any a ∈ A,
there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

Using Lemma 2.1, we are able to give a simpler formulation of what is a multivalued contraction which
avoids the use of Hausdorff-Pompeiu distance. Indeed, let (X, d) be a metric space. The mapping T : X →
CB(X ) is a contraction mapping if there exists α ∈ [0, 1) such that for any x, y ∈ X and a ∈ T (x), there
exists b ∈ T (y) such that

d(a, b) ≤ α d(x, y).

Clearly this definition does not use the boundedness assumption of the considered subsets of X. Instead,
we will consider C(X) the set of all nonempty closed subsets of X.

In their attempt to extend Mizoguchi-Takahashi’s fixed point theorem for Reich multivalued contraction
mappings to metric spaces endowed with a graph, Sultana and Vetrivel [26] introduced the concept of Reich
G-contractions.

Definition 2.2 ([26]). Let (X, d,G) be a metric space endowed with a reflexive directed graph G with
no-parallel edges. The multivalued map T : X → CB(X ) is called a Reich G-contraction if for any different
x, y ∈ X with (x, y) ∈ E(G), we have

(i) H(T (x), T (y)) ≤ k(d(x, y)) d(x, y),

(ii) if (u, v) ∈ T (x) × T (y) is such that d(u, v) ≤ d(x, y), we have (u, v) ∈ E(G), for some k : (0,+∞) →
[0, 1) which satisfies lim sup

s→t+
k(s) < 1 for any t ∈ [0,+∞).

This definition is not appropriate because of the condition (ii). The following example explains our
reasoning.

Example 2.3. Consider the space R2 endowed with the Euclidean distance d. Then, consider the graph G
obtained by the pointwise ordering of R2 defined by

(x, y) = ((x1, x2), (y1, y2)) ∈ E(G) iff x1 ≤ y1 & x2 ≤ y2.

Let A be the unit ball of R2, that is, A = {(x1, x2) ∈ R2; d2(x, 0) = x21 +x22 ≤ 1}. Consider the multivalued
map T : R2 → CB(R∈) defined by T (x) = A. Then, we have H(T (x), T (y) = 0 for any x, y ∈ R2. Since T
is a constant multivalued mapping, then it is a contraction according to Nadler’s definition. Therefore, T
must be a Reich G-contraction. The condition (i) is obviously satisfied but the condition (ii) fails. Indeed,
set x = (2, 0) and y = (2, 2). Then x 6= y and (x, y) ∈ E(G). Since d(x, y) = 2, (ii) will hold if and only if
for any u, v ∈ A such that d(u, v) ≤ 2, we must have (u, v) ∈ E(G). This is not the case, if we take

u = (1, 0) and v = (0, 1),

then u, v ∈ A, d(u, v) =
√

2, (u, v) 6∈ E(G) and (v, u) 6∈ E(G).

Before we give the correct definition of Reich multivalued G-contractions, we need the following remark.

Remark 2.4. Let (X, d) be a metric space. Let T : X → CB(X ). Assume there exists α : (0,+∞) → [0, 1)
with lim sup

s→t+
α(s) < 1 for any t ∈ [0,+∞), such that

H(T (x), T (y)) ≤ α(d(x, y)) d(x, y)

for any different x, y ∈ X. Using Lemma 2.1, we can easily prove that for any different x, y ∈ X and
a ∈ T (x), there exists b ∈ T (y) such that

d(a, b) ≤ β(d(x, y)) d(x, y),

where β = 1
2(1 + α) which satisfies lim sup

s→t+
β(s) < 1 for any t ∈ [0,+∞).



M. R. Alfuraidan, M. Bachar, M. A. Khamsi, J. Nonlinear Sci. Appl. 9 (2016), 3931–3938 3934

The following definition is more appropriate than Definition 2.2.

Definition 2.5. Let (X, d,G) be a metric space endowed with a reflexive directed graph G with no-parallel
edges. The multivalued map T : X → C(X ) is called a Reich G-contraction if there exists k : (0,+∞) →
[0, 1) which satisfies lim sups→t+ k(s) < 1 for any t ∈ [0,+∞), such that for any different x, y ∈ X with
(x, y) ∈ E(G) and any a ∈ T (x), there exists b ∈ T (y) such that (a, b) ∈ E(G) and

d(a, b) ≤ k(d(x, y)) d(x, y).

A point x ∈ X is a fixed point of T if x ∈ T (x).

3. Main Results

In [22], Reich raised the following problem:

Problem 3.1. Let (X, d) be a complete metric space. Consider the multivalued map T : X → CB(X ) for
which there exists k : (0,+∞) → [0, 1) which satisfies lim sups→t+ k(s) < 1 for any t ∈ (0,+∞), such that
for any different x, y ∈ X, we have

H(T (x), T (y)) ≤ k(d(x, y)) d(x, y).

Does T have a fixed point?

In [21], Reich proved that such mappings have a fixed point provided they have compact values. Clearly,
if k(t) is a constant function, Nadler gives a positive answer to Reich’s problem. In [18], Mizoguchi and
Takahashi gave a positive answer when the function k(t) is defined on [0,+∞). It is still unclear whether
Reich’s problem has a positive answer. In this section, we will discuss the graph version of the fixed point
theorem of Mizoguchi and Takahashi.

First, we state and give a simpler proof to the original theorem of [18] without boundedness.

Theorem 3.2. Let (X, d) be a complete metric space. Then any Reich contraction mapping T : X → C(X )
has a fixed point.

Proof. Since T : X → C(X ) is a Reich contraction mapping, then there exists k : (0,+∞) → [0, 1) with
lim sups→t+ k(s) < 1, for any t ∈ [0,+∞), such that for any x, y ∈ X and a ∈ T (x), there exists b ∈ T (y)
such that

d(a, b) ≤ k(d(x, y)) d(x, y).

Fix y0 ∈ X. If y0 is a fixed point of T , then we have nothing to prove. Otherwise, choose y1 ∈ T (y0) different
from y0. Using the contractive assumption of T , there exists y2 ∈ T (y1) such that

d(y1, y2) ≤ k(d(y0, y1)) d(y0, y1).

By induction, we construct a sequence {yn} in X such that yn+1 ∈ T (yn) and yn 6= yn+1 with

d(yn, yn+1) ≤ k(d(yn−1, yn)) d(yn−1, yn)

for any n ≥ 1. Since k(t) < 1, for any t ∈ [0,+ inf), we conclude that {d(yn, yn+1)} is a decreasing sequence
of positive numbers. Let

t0 = lim
n→+∞

d(yn, yn+1) = inf
n∈N

d(yn, yn+1).

Since lim sups→t0+ k(s) < 1, there exist α < 1 and n0 ≥ 1 such that k(d(yn, yn+1)) ≤ α for any n ≥ n0.
Then, we have

d(yn, yn+1) ≤
k=n∏
k=n0

k(d(yk, yk+1)) d(yn0 , yn0+1) ≤ αn−n0 d(yn0 , yn0+1)
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for any n ≥ n0. This will imply that
∑
d(yn, yn+1) is convergent. Hence {yn} is a Cauchy sequence. Since

X is complete, then {yn} converges to some point x ∈ X. Let us prove that x is a fixed point of T . Using
the contractive assumption of T , there exists zn ∈ T (x) such that

d(yn+1, zn) ≤ k(d(yn, x)) d(yn, x) < d(yn, x),

for any n ∈ N. This will force {zn} to also converge to x. Since T (x) is closed, we conclude that x ∈ T (x),
that is, x is a fixed point of T as claimed.

Next, we discuss the extension of Theorem 3.2 to metric spaces endowed with a graph. We will need the
following property introduced by Jachymski [10]:

Property 3.3. Let (X, d,G) be a metric space endowed with a reflexive directed graph G with no-parallel
edges. (X, d,G) is said to satisfy Property 3.3 if and only if for any sequence {xn} in X such that (xn, xn+1) ∈
E(G) and {xn} converges to x, then (xϕ(n), x) ∈ E(G) for any n ∈ N, where {xϕ(n)} is a subsequence of
{xn}.

Theorem 3.4. Let (X, d) be a complete metric space. Let G be a reflexive graph with no-parallel edges such
that E(G) = X. Assume that (X, d,G) satisfies Property 3.3. Let T : X → C(X ) be a Reich G-contraction.
Then there exists k : (0,+∞)→ [0, 1) which satisfies lim sups→t+ k(s) < 1 for any t ∈ [0,+∞), such that for
any different x, y ∈ X with (x, y) ∈ E(G) and any a ∈ T (x), there exists b ∈ T (y) such that (a, b) ∈ E(G)
and

d(a, b) ≤ k(d(x, y)) d(x, y).

Set XT = {x ∈ X; there exists y ∈ T (x) such that (x, y) ∈ E(G)}. If XT 6= ∅, then T has a fixed point.

Proof. Assume XT 6= ∅. Let y0 ∈ XT . Then there exists y1 ∈ T (y0) such that (y0, y1) ∈ E(G). If y1 = y0,
then y0 is a fixed point of T . Assume y0 6= y1. then there exists y2 ∈ T (y1) such that

d(y1, y2) ≤ k(d(y0, y1)) d(y0, y1).

By induction, we construct a sequence {yn} such that yn 6= yn+1, yn+1 ∈ T (yn), (yn, yn+1) ∈ E(G) and

d(yn, yn+1) ≤ k(d(yn−1, yn)) d(yn−1, yn),

for any n ≥ 1. As we did in the proof of Theorem 3.2, we will show that {yn} converges to some point x ∈ X.
Let us prove that x is a fixed point of T . Since (X, d,G) satisfies Property 3.3, there exists a subsequence
{yϕ(n)} of {yn} such that (yϕ(n), x) ∈ E(G) for any n ∈ N. Using the contractive assumption of T , there
exists zn ∈ T (x) such that

d(yϕ(n)+1, zn) ≤ k(d(yϕ(n), x)) d(yϕ(n), x) < d(yϕ(n), x)

for any n ∈ N. This will force {zn} to also converge to x. Since T (x) is closed, we conclude that x ∈ T (x),
that is, x is a fixed point of T as claimed.

Remark 3.5. Once Theorem 3.2 and Theorem 3.4 are established, it is easy to extend them to the case of
uniformly locally contractive mappings in the sense of Edelstein [5] with or without a graph.

4. Application: A generalized Bernstein operator

In [11], Kelisky and Rivlin investigated the behavior of the iterates of the Bernstein polynomial of degree
n ≥ 1 defined by

Bn(f)(t) =

k=n∑
k=0

f

(
k

n

)(
n
k

)
tk(1− t)n−k
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for any f ∈ C([0, 1]) and t ∈ [0, 1], where C([0, 1]) is the space of continuous functions defined on [0, 1]. In
particular, they proved that for any f ∈ C([0, 1]), we have

lim
j→+∞

Bj
n(f)(t) = f(0)(1− t) + f(1)t, 0 ≤ t ≤ 1. (KRB)

Their proof uses the techniques of matrix algebra. Rus [24] was the first one to notice that a proof
of (KRB) exists which is metric in nature. In fact, his proof inspired Jachymski [10] to rephrase it in the
identical using the graph language. In [26], Sultana and Vetrivel modified the Bernstein operator to obtain
a nonlinear version which will not be suitable for the technique used by Kelisky and Rivlin. Indeed, Sultana
and Vetrivel introduced the operator:

B′n(f)(t) =

k=n∑
k=0

∣∣∣∣f (kn
)∣∣∣∣ ( n

k

)
tk(1− t)n−k

for any f ∈ C([0, 1]). Then, they proved that

lim
j→+∞

(B′n)j(f)(t) = f(0)(1− t) + f(1)t, 0 ≤ t ≤ 1

for any f ∈ C([0, 1]) such that f(0) ≥ 0 and f(1) ≥ 0. In fact, we have a better conclusion. Indeed, it is
easy to see that B′n(f) = Bn(|f |) for any f ∈ C([0, 1]), which allows us to obtain the following more general
result:

Proposition 4.1. Let f ∈ C([0, 1]). Then

lim
j→+∞

(B′n)j(f)(t) = |f(0)|(1− t) + |f(1)|t, 0 ≤ t ≤ 1.

Next we extend the classical Bernstein operator to the vector case. Indeed, let (X, ‖.‖X) be a Banach
space. Consider the Banach space C([0, 1], X), the space of all continuous functions defined on [0, 1] with
values in X. The norm in C([0, 1], X) is given by

‖f‖ = sup{‖f(t)‖X ; t ∈ [0, 1]}.

Fix n ≥ 1 and define the generalized Bernstein operator Bn : C([0, 1], X)→ C([0, 1], X) by

Bn(f)(t) =
k=n∑
k=0

(
n
k

)
tk(1− t)n−k f

(
k

n

)
for any t ∈ [0, 1]. In this case, we have a similar conclusion to Kelisky and Rivlin’s result.

Theorem 4.2. For any f ∈ C([0, 1], X), we have

lim
j→+∞

Bj
n(f)(t) = (1− t)f(0) + tf(1), 0 ≤ t ≤ 1.

Proof. We may use the graph language to prove this conclusion. Since the proof is identical to the one used
by Rus [24], we prefer to give this proof instead. Indeed, let us first notice that

k=n∑
k=0

(
n
k

)
tk(1− t)n−k = 1 and

k=n∑
k=0

k

n

(
n
k

)
tk(1− t)n−k = t

for any t ∈ [0, 1]. Set g(t) = (1− t)f(0)+ tf(1) for t ∈ [0, 1]. Obviously g ∈ C([0, 1], X). We have Bn(g) = g.
Since f(0) = g(0) and f(1) = g(1), we have

Bn(f)(t)−Bn(g)(t) =
n−1∑
k=1

(
n
k

)
tk(1− t)n−k

(
f

(
k

n

)
− g

(
k

n

))
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for any t ∈ [0, 1]. Hence

‖Bn(f)(t)−Bn(g)(t)‖ ≤
n−1∑
k=1

(
n
k

)
tk(1− t)n−k

∥∥∥∥f (kn
)
− g

(
k

n

)∥∥∥∥
for any t ∈ [0, 1], which implies

‖Bn(f)(t)−Bn(g)(t)‖ ≤
(

1− 1

2n−1

)
‖f − g‖

for any t ∈ [0, 1]. So

‖Bn(f)− g‖ = ‖Bn(f)−Bn(g)‖ ≤
(

1− 1

2n−1

)
‖f − g‖.

By induction, we obtain

‖Bj
n(f)− g‖ ≤

(
1− 1

2n−1

)j

‖f − g‖

for any j ∈ N. This clearly implies the conclusion of Theorem 4.2 as claimed.

Motivated by Sultana and Vetrivel example, we introduce the following Bernstein operator
B′n : C([0, 1], X)→ C([0, 1], X) defined by

B′n(f)(t) =
k=n∑
k=0

(
n
k

)
tk(1− t)n−k T

(
f

(
k

n

))
, (4.1)

where T : X → X is continuous. Since B′n(f) = Bn(T ◦ f), we obtain the following result:

Theorem 4.3. For any f ∈ C([0, 1], X), we have

lim
j→+∞

(B′n)j(f)(t) = (1− t)T
(
f(0)

)
+ tT

(
f(1)

)
, 0 ≤ t ≤ 1.

Remark 4.4. Paying a careful attention to the definition of Bn, we see that it is a convex combination because
i=m∑
i=0

(
m
i

)
ti(1 − t)m−i = 1 for any m ≥ 1. Therefore, we may have similar conclusions as Theorems 4.2

and 4.3 if we take for X a hyperbolic metric space like CAT (0) spaces. For more on hyperbolic spaces, we
refer to [4, 8, 14, 15, 17, 23].
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