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Abstract

An iterative algorithm is presented to find the fixed points of a quasi-asymptotic pseudo-contraction in
Hilbert spaces. It is shown that the proposed algorithm converges strongly to the fixed point of a quasi-
asymptotic pseudo-contraction. (©2016 All rights reserved.
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1. Introduction

Throughout, we assume that H is a real Hilbert space equipped with inner product (-,-) and norm || - ||,
respectively. Let () 2 C' C H be a closed and convex set.

Definition 1.1. An operator T : C' — (' is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that
[Tz —T"y[| < Lz -y

for all z,y € C' and for all n > 1.

Definition 1.2. An operator T': C' — C is said to be asymptotically nonexpansive if there exists a sequence
{kn} C [1,00) with lim,_,o k, = 1 such that

[Tz = T"y|| < kn llz =y (1.1)

for all z,y € C and for all n > 1.
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The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [3] in 1972.
They proved the following result.

Proposition 1.3. Let X be a uniformly conver Banach space. Let ) # C C X be a bounded, closed and
convex set. Let T : C — C' be an asymptotically nonexpansive mapping. Then, the set F(T) of fixed points
of T is nonempty, closed and conver.

Since then, a large number of authors have devoted to study the weak and strong convergence problems
of the iterative algorithms for such a class of mappings (see, e.g., [1, B, Bland [7, 10, 15H17]). In particular,
the following two algorithms have been studied extensively in the literature.

Algorithm 1.4. For arbitrary xz¢ € C, compute the sequence {z,} by the manner
Tyl = (1 —ap)zn + T2y, Yn > 1.

Algorithm 1.5. For arbitrary xz¢ € C, compute the sequence {z,} by the manner

{ Yn = (1 - 5n)xn + /BnTnxrm (12)

Tpt1 = (1 — ap)xn + anT"yn, Yn>1.

Definition 1.6. An operator T' : C — C is called asymptotically pseudo-contractive if there exists a
sequence {k,} C [1,00) with lim,_ kn, = 1 such that

(T"z =T,z —y) < knllx —y]|? (1.3)
for all z,y € C and for all n > 1.

Remark 1.7. Tt is easy to check that (|1.3]) equals
1Tz = T™y|* < 2k — 1) [l — y|* + | (2 = T"2) — (y — T") | (1.4)

for all z,y € C and for all n > 1.

The class of asymptotic pseudo-contractions was introduced by Schu [6] in 1991. We know that the class
of asymptotic pseudo-contractions contains properly the class of asymptotically nonexpansive mappings as
a subclass.

To compute the fixed point of asymptotic pseudo-contractions, Schu [6] demonstrated the following
convergence theorem.

Theorem 1.8. Let H be a real Hilbert space and ) # C C H a closed and convex set. Let T : C — C' be
a uniformly L-Lipschitzian and asymptotic pseudo-contraction with {kn}>2, C [1,00) and {x,} a sequence
generated by (1.2)). Suppose the following conditions are satisfied:

(i) C is bounded and T is completely continuous;

(il) > opeq(kn — 1) < oo;
(iii) O<n1§an§5n§/€2<7vl‘2f§2_l for alln > 1.

Then the sequence {xy} generated by (1.2)) converges strongly to some fized point of T.
Further, Chidume and Zegeye [2] introduced the following algorithm.

Algorithm 1.9. For given z; € C, compute the sequence {x,} by the manner
Tng1 = Anbpz1 + (1 — Ny — MpOn)zp + ATy, V0 > 1, (1.5)

where the sequences {\,} C (0,1) and {60,,} C (0, 1) satisty
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(i) An(146,) <1 and 350 Apb, = oc;

.. . . An . kn—1 _ 71 On—0p— .
(11) limy, 00 O = limy, 00 0, — limy, 00 0, = limy, 00 02 L= limy oo 02

Furthermore, Chidume and Zegeye showed the strong convergence of the above algorithm ((1.5) under
some more assumptions on the mapping 7' in Banach spaces.

Definition 1.10. An operator T : C' — C is said to be quasi-asymptotically pseudo-contractive if F(T) # ()
and there exists a sequence {k,} C [1,00) with lim,, o kn, = 1 such that

(T — p,a —p) < kn [lz —p]? (1.6)
for all z € C,p € F(T) and for all n > 1.

Remark 1.11. Tt is easy to check that (|1.6]) equals
1Tz = pl* < (2kn — 1) [l = p||* + [l& = T"x|? (1.7)

for all z € C,p € F(T) and for all n > 1.
Thus, every asymptotically pseudo-contractive mapping with F(T') # () is quasi-asymptotically pseudo-
contractive, but the converse may not be true.

Recently, Zhou and Su [19] established a demi-closedness principle for quasi-asymptotic pseudo-contract
-ions in Hilbert spaces. By utilizing the demi-closedness principle, they suggested a C'Q algorithm and
proved its strong convergence. Some related work, please refer to [11HI4].

Inspired by the results in the literature, the main purpose of this article is to construct an iterative method
to find the fixed points of quasi-asymptotically pseudo-contractive mappings. We suggest an algorithm based
on the algorithms and . Under some mild conditions, we prove that the suggested algorithm
converges strongly to the fixed point of quasi-asymptotically pseudo-contractive mapping 7.

2. Lemmas
In Hilbert spaces, the following results are well known.
Lemma 2.1. Let H be a Hilbert space, then we have
w4+ w2 < flull® + 2(ul, u + ul) (2.1)

and
16w+ (1 = 8)ul|> = 8lju)l® + (1 = &) [Jul|* = 6(1 — 6)Ju — uf||? (2.2)

for all u,u’ € H and § € [0,1].

Lemma 2.2 ([I8]). Let C' be a nonempty bounded and closed convex subset of a real Hilbert space H. Let
T:C — C be a uniformly L-Lipschitzian and asymptotically pseudo-contraction. Then I —T is demiclosed
at zero.

Lemma 2.3 ([]). Let {on,}n>1 be a sequence of real numbers. Assume {o,} does not decrease at infinity,
that is, there exists at least a subsequence {0y, } of {on} such that oy, < op,+1 for all k > 0. For every
n > N, define an integer sequence {T(n)} as

T(n) =max{i <n:o,, < op,4+1}-
Then T(n) — oo as n — oo, and for alln > N

max {UT(n),O'n} < Or(n)+1-



Y. Yao, X. Zheng, L. Leng, Y.-C. Liou, J. Nonlinear Sci. Appl. 9 (2016), 4580-4588 4583

Lemma 2.4 ([9]). Let {¢,} C [0,00), {sn} C (0,1) and {o,} be three sequences such that

Cor1 S (1 —=6u)Cn+0n, Yn2>1.
Assume the following restrictions are satisfied
(1) 22021 sn = 005
(i) Hmsup, o & <0 or 302 |on] < oco.

Then lim,, o (, = 0.

3. Main results

In the sequel, let C be a nonempty, closed and convex subset of a real Hilbert space H, let T': C'— C be
a uniformly L-Lipschitzian and quasi-asymptotic pseudo-contraction with coefficient {k,} and f: C — C a
p-contractive mapping. Let {a,}, {8} and {v,} be three real number sequences in [0, 1].

Algorithm 3.1. For z; € C, define the sequence {z,} by
{yn = (1 - 'Yn)xn + Ty,

Tnt1 = A f(xn) + (1 — an)[(1 = Bn)xn + BT yn], ¥ > 1.

Next, we prove our main result as follows.

Theorem 3.2. Suppose F(T) # 0 and I — T is demiclosed at zero. Assume the sequences {an,}, {Bn} and
{1} satisfy the following conditions:

(1) limp—yoo an =0 and Y o0 | oy = 00;
(i) Bn < n, 0 <liminf, oo By and > 07 (ky — 1) < 00;

< < 1 > 1.
(i) 0<a<y, <b< T, for alln >1

Then the sequence {xn} defined by (3.1) converges strongly to u = Ppr)f(u), which is the unique solution
of the variational inequality (I — flu,z —u) > 0,Va € F(T).

Proof. Note that u = Pp(r)f(u) is unique due to the mapping f being contractive. From (3.1]), we have

[Zn1 — ull = llanf(@n) + (1 —an) [(1 = Bp)an + BT yn] — ull
= [l (f(2n) —u) + (1 = an) [(1 = Bn)(zn — w) + BTy — u)| (3:2)
< an[[f(zn) —ull + (1 = an) [[(1 = B)(zn — ) + Bu(T"yn — w)]| .

By 2), we get

(1 = Bo) (@ — ) + Bu(T™yn = w)l* = (1 = Ba) |z — u|® + Bn | T"yn — ul? (3.3)
- /Bn(]- - ,Bn) HJUTL - jjnynn2 .

Choosing y = w in (|1.7)) to derive
1Tz = ul|* < 2k = 1) [|lz — ul)* + |l — T"z|? (3.4)

for all x € C.
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From (3.1), (3.4) and (2.2)), we obtain

1Ty — ull® < (2kn — 1) lyn — ull® + lyn — T"ynll?
= (2kn -1) H(l — Yn)Tn + YT Ty — UH2 + H(l - ’Yn)xn + Tz, — T"ynH2
= (2kn — ) (1T = v )(wn — ) + v (T" 20, — u)||2

(1= 3m) @ = T"yn) + (T 20 — T"y0)|1*
= (2k, — 1) [(1 = Yn)|Tn — “||2 + | T" 2 — UH2 — Y (1 =) ||2n — T"xn]ﬂ (3.5)
+ (1 =)z = Tynl® + 3l 720 = T"ynl® = (1 = n)llwn — T
< (2kn — 1) [(1 — Yn) |20 — uH2 + ¥ (2kp — D)f|lzn — u||2 + llzn — TnanQ
— (L =)z = T |?] + (1 =)z — T"nll* + 3| T 20 — T"yn
= Yn(L =) |lzn — Tnan2'
Observe that
20 — ol = Yallzn — T4l (3.6)
Since T' is uniformly L-Lipschitzian, from and , we deduce
1Ty — UH2 < (2kn = D[ =) [lzn — uH2 + ¥ (2kn — D)2 — uH2 + Y llzn — TnfrnHz
~ Yl = )20 = T"al*) + (1 = ) l2n — T yal?
+ 'YnL2”xn - yn||2 — Y (L =y |lzn — Tn$nH2
= (2kn — D1 — ) llzn — u||2 + W (2kn — 1)||zn — UH2 + Ynllzn — Tnanz

— (L= y)llen = T} + (1= ) |20 — Tynll” + 3 L2 |20 — T B0
= (1 —vn)llzn — TnfEnH2
= [1+2(2knyn — Yo + 1) (kn — D] |z — ull® + (1 =) |20 — Ty
— Yn(1 = 2knyn — 7721L2)H$n - annHZ-
By condition (iii), we know that ~, < b < m for all n > 1. Then, we deduce that
1 — 2kpyn — v2L2 > 0 for all n > 1. Thus, compute to deduce
1Ty — ull* < [1+ 22k — Yo+ Dk = D]llzn — ull® + (1 = y0) |20 — Tyal|>. (3.8)
Substituting into to get
(1 = Bn)(@n —u) + Bu(T"yn — U)H2 < Bnll +2(2knyn — o + 1) (kn — D]|lzn — qu
+ (1 =) Ballzn — Tyl + (1 = Ba)llzn — ul?
= Bn(1 = Bn)l|zn — T"yn
= [1 4 280 (2knyn — 0 + 1) (kn — D]llzn — qu
+ Bn(Bn — n)l|m — Ty
< [1+ 28,2k — Yo + 1) (kn — D][|lzn — ul*.
So,
11 = Ba) (@n = w) + Ba(T"yn — W)l < V/1+ 2802k — Y + 1) (kn = 1) |20 — ull (3.9)

< [1 + 2671(21971771 — Yn + 1)(]{?” - 1)] Hl'n - UH

Since k,, — 1, without loss of generality, we assume that k, < 2 for all n > 1. It follows from (3.2)) and (3.9)
that

[2n41 = ull < anlf(zn) =l + (1 = an) 1+ 22Ky — 30 + D (kn = D] [0 — ull
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< an| f(zn) = F)| 4+ anl[ f(w) —ull + (1 = on) [1 + 22knyn — 0 + 1) (kn — )] lzn — vl
< appllzn — ull + an f(u) —ull + (1 = an) [1+ 2(2kn v — o + 1) (kn — D] |20 — ul]
< apllf(u) —ull +[1 = (1 = p)an] |zn — ull +2 (2knyn — 0 + 1) (kn — 1)|lzn — ul

< (1= o ML,

1— +[1 = (1 = p)an] lzn — ull + 10(ky — 1)[|2y — ul.

An induction induces that

et —ull < [1+ 10k, — 1>]max{||xn ul, 1) puu}

i 1)) max {ro — M
< T+ 1005 s o, G

This implies that the sequence {z,} is bounded by the condition Y 7, (k, — 1) < .

From (2.1)) and (3.1)), we have
[2n1 = ul® = [[(1 = o) (@n — 1) = Bu(l — an)(@n — T"Yn) + o (f(2n) — u)||?
< = ap)(@n —u) = Bl — ap)(2n — Tnyn)||2 + 200 (f(70) — U, Tpy1 — u)
= (1- O‘n)2”xn - uH2 —2B8,(1— an)2<xn — T"Yp, Ty — u)
+ 57%(1 - an)szn - TnynH2 + 2an<f(xn) — U, Tn4+1 — u>
From (3.7), we deduce
2<35n - Tnynvxn - U> > ’Yonn - Tnyn||2 + 'Yn(l - an’}/n - ’772LL2)||$71 - Tnan2

- 2(2kn7n — Tn + 1)(kn - I)Hxn - u”2 (3‘11)
> ')’n(l - an')’n - '773L2)||$n - TnanQ + 'Ynuxn - TnynH2'

(3.10)

By condition (ii), we have 7, > 3, > 0 for all n > 1. Hence, by (3.10) and (3.11]), we get

[zn1 — ul® < (1= an)?[lzn — ul® = Bava(1 = an)?lzn — T ynll® + B2 (1 — an)? |20 — T"ya?
- 517,(1 - an)27n(1 — 2knYn — 'YELLQ)Hxn - TnanQ + 20¢n<f<37n) — Uy Tp41 — u)

) (3.12)
< (1 - Oén)HZL'n - UH + 2an<f($n) — U, Tp4+1 — ’LL>
- Bn(l - an)2'7n(1 - an')/n - 772LL2)H$7L - TnanZ.
It follows that
|Zns1 — uH2 — ||zn — UH2 + Bn(1 — an)Q’Yn(l — 2kpn — 77%L2)H$n - TanHQ
< oy (2<f($n) — Uy Tyg1 — U) — [|[Tn — UHQ) .
Since {z,} and {f(z,)} are bounded, there exists M > 0 such that
sup {2<f(:cn) — Uy Ty — u) — ||z — uH2} < M.
n
So,
Bu(1 = an)* (1 = 2knyn — 1o L?) |20 — T 20 |* + lzns1 — ul]® — [Jon — ul® < an . (3.13)

Next, we consider two possible cases.

CASE 1. Assume there exists some integer m > 0 such that {|z, — u||} is decreasing for all n > m.
In this case, we know that lim,, . ||z, — u|| exists. From (3.13]), we deduce

B (1 — an)Q'Yn(l — 2knyn — 7721112)”33?1 - TnanQ < |lzn — UHZ — |1 — UH2 + Moy, (3.14)
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By conditions (ii) and (iii), we have liminf, o Bn(1 — an)?yn (1 — 2knyn — 42L?) > 0. Thus, from (3.14),
we get

lim ||z, — T"zy,| = 0. (3.15)
n—oo
It follows from (3.6)) and (3.15)) that
nlLHgO |zrn — ynll = 0. (3.16)

Since T is uniformly L-Lipschitzian, we have || 17"y, —T" x| < L||xn —yn||. This together with (3.16)) imply
that

lim || Ty, —T"zy,| = 0. (3.17)
n—o0
Note that
[2n = T"ynl < [lon — T"@nll + [T 20 — T"yn||- (3.18)

Combining (3.15)), (3.17) and (3.18)), we have

lim |z, — T"y,|| = 0. (3.19)

n—oo
From (3.1)), we have
[Zn1 = @nll < anl[f(2n) = 2all + (1 = n) Bal[T"yn — 2nll-

Therefore,
ILm |Znt1 — znl = 0. (3.20)

Since T is uniformly L-Lipschitzian, we can derive

lnst = Tmst ]l < fomr — T |+ 1T gy — T 4+ [T — T
< #ns1 = T angall + Llepsr = @l + LI T 20 — 2o | (3.21)
< nss = T ]| + 2L i1 — ol + LI — 2.

By , and , we have immediately that
nh_)rgo |z — Txy|| = 0. (3.22)
Since {z,} is bounded, there exists a subsequence {zy, } of {z,} satisfying
Tn, =T €C,
and

limsup(f(u) — u, z, —u) = klim (f(uw) —u, zp, —u).

By the assumption of Lemma and (3.22)), we obtain

i€ F(T).
So,
tim sup{f () — 2 — ) = lim (F(u) — w2, — )
= (f(u) —u, 2 —u)
<0.

Returning to (3.12) to obtain

1 = ull® < (1= an)llzn = ull* + 200 (f () = u, Tns1 — u)
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= (1 - an)llzn — ul® + 200 (f(zn) — f(u), Tnt1 —u)
+ 200, (f (v) — w, Tpi1 — u)

< (1 - an)llzn — ull® + 2anpllzn — ull|zn41 — ull
+ 200 (f(u) = u, Zny1 — )

< (1= an)llzn —ul? + anp([len — wl)* + |@n1 —ul?)
+ 20, (f(u) — uy Tpt1 — u).

It follows that

2au,

Jenss — ull® < [1— (1= pan]lle, — ull® + () = t, 21— ). (3.23)

1 —app
Applying Lemma [2.4] to deduce z,, — u.

CASE 2. Assume there exists an integer ng such that ||z, — u|| < ||2ne+1 — u||. In this case, we set
wn, = {||xr, — u||}. Then, we have wp, < wpy+1. Define an integer sequence {7,} for all n > ng as follows:

7(n) =max{l € Njng <! <n,w; <w1}.
It is clear that 7(n) is a non-decreasing sequence satisfying

lim 7(n) = oo
n—oo

and
Wr(n) < Wr(n)+1

for all n > ng. From (3.22)), we get

Jim {27y = T27() || = 0.
This implies that wy(7,(,)) C F(T). Thus, we obtain

lim sup(f(u) — u, 2;(n) —u) <0. (3.24)

n—oo

Since wr () < Wr(n)41, We have from (3.23) that

2@7— n
Wiy S Wiy < 1= (1= p)armw?,, + Hi(i)pﬁ(u) — Uy T ()1 — U)-
It follows that 5
w? <f(u) — Uy Tr(n)+1 — ’LL> (325)

<
() = (1 - aT(n)p)(l - p)
Combining (3.24]) and (3.25)), we have

limsup w; () <0,
n—oo
and hence
lim wT(n) = 0. (326)

n—oo

From (3.23)), we obtain
2 2, 2%
oyl < 1= (0= Py w2+ ) = s )

It follows that

lim sup wy ()41 < limsup wy ().
n—oo n—oo
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This together with (3.26)) imply that

0, r(+1 = 0

Applying Lemma [2.3] to get

0 < wn < max{wr(n), Wr(n)+1}-

Therefore, w,, — 0. That is, z,, — u. The proof is completed. O
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