
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 5000–5010

Research Article

Existence of solutions for fractional integral
boundary value problems with p(t)-Laplacian
operator

Tengfei Shen, Wenbin Liu∗

College of Sciences, China University of Mining and Technology, Xuzhou 221116, P. R. China.

Communicated by M. De la Sen

Abstract

This paper aims to investigate the existence of solutions for fractional integral boundary value problems
(BVPs for short) with p(t)-Laplacian operator. By using the fixed point theorem and the coincidence degree
theory, two existence results are obtained, which enrich existing literatures. Some examples are supplied to
verify our main results. c©2016 All rights reserved.
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1. Introduction

In the recent years, fractional differential equations have been applied in many research fields (see [4, 20,
23, 24, 30]). For example, Leszczynski and Blaszczyk [23] discussed the following fractional mathematical
model which can be used to describe the height of granular material decreasing over time in a silo:

CDα
T−D

α
a+h

∗(t) + βh∗(t) = 0, t ∈ [0, T ],

where CDα
T− is the right Caputo fractional derivative, Dα

a+ is the left Riemann-Liouville fractional derivative,
α ∈ (0, 1). Furthermore, some valuable results which are related to the stability of fractional functional
equations (see [10, 17, 28]) and the existence and multiplicity of solutions for fractional boundary value
problems (see [1–3, 5, 6, 15, 18]) have been achieved by some scholars. For example, Cabada and Wang [6]
considered the existence of positive solutions for the following fractional integral BVP by Guo-Krasnoselskii

∗Corresponding author
Email addresses: stfcool@126.com (Tengfei Shen), cumt_equations@126.com (Wenbin Liu)

Received 2016-01-14



T. Shen, W. Liu, J. Nonlinear Sci. Appl. 9 (2016), 5000–5010 5001

fixed point theorem: {
CDαx(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′′(0) = 0, x(1) = λ
∫ 1

0 x(s)ds,

where 2 < α ≤ 3, 0 < λ < 2, CDα is a Caputo fractional derivative, f : [0, 1]× [0,∞)→ [0,∞) is continuous.
It is well-known that p-Laplacian operator is a nonlinear operator and occurs in the course of considering

glacial sliding (see [27]), torsional creep (see [19]), porous medium (see [22]), etc. For solvability of BVPs
for integer differential equations with p-Laplacian operator, we provide readers with some articles (see
[11, 13, 14]).

Recently, some scholars have paid more attention to fractional p-Laplacian equations and got some
interesting results (see [7, 9, 16, 25]). For example, Chen and Liu [9] investigated the existence of solutions
for the anti-periodic BVP of fractional differential equation with p-Laplacian operator by Schaefer’s fixed
point theorem: {

Dβ
0+
ϕp(D

α
0+x(t)) = f(t, x(t)), t ∈ [0, 1],

x(0) = −x(1), Dα
0+x(0) = −Dα

0+x(1),

where 0 < β, α ≤ 1, 1 < α+ β ≤ 2, Dα
0+ is a Caputo fractional derivative, ϕp(·) is a p-Laplacian operator,

f : [0, 1]× R→ R is continuous.
Mahmudov and Unul [25] studied the existence and uniqueness of solutions for integral BVP of fractional

differential equation with p-Laplacian operator by Green’s functions and some fixed point theorems:
Dβ

0+
ϕp(D

α
0+x(t)) = f(t, x(t), Dγ

0+
x(t)), t ∈ [0, 1],

x(0) + µ1x(1) = σ1

∫ 1
0 g(s, x(s))ds,

x′(0) + µ2x
′(1) = σ2

∫ 1
0 h(s, x(s))ds,

Dα
0+x(0) = 0, Dα

0+x(1) = νDα
0+x(η),

where 1 < α ≤ 2, 0 < β, γ ≤ 1, 0 < η < 1, ν, µi, σi > 0 (i = 1, 2), Dα
0+ is a Caputo fractional derivative,

ϕp(·) is a p-Laplacian operator, f, g, h are continuous.
Motivated by the work above, our paper aims to investigate the existence of solutions for the following

fractional integral BVP with p(t)-Laplacian operator under the non-resonance case and resonance case:{
Dβ

0+
ϕp(t)(D

α
0+x(t)) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, Dα−1
0+

x(1) = γIα−1
0+

x(η), Dα
0+x(0) = 0,

(1.1)

where Dα
0+ is a Riemann-Liouville fractional derivative, 1 < α ≤ 2, 0 < β ≤ 1, γ > 0, 0 < η < 1,

f : [0, 1]× R→ R is continuous. ϕp(t)(·) is a p(t)-Laplacian operator, p(t) > 1, p(t) ∈ C1[0, 1].
Noting that the p(t)-Laplacian operator is the non-standard growth operator which arises from nonlinear

electrorheological fluids (see [29]), image restoration (see [8]), elasticity theory (see [32]), etc. There are
many valuable results with respect to this type problems (see [12, 31] and references therein). Compared
with constant growth operator, it will bring many difficulties. It can turn into the well-known p-Laplacian
operator when p(t) = p, so our results extend and enrich some existing papers. Moreover, there are almost
no papers which considered fractional integral BVPs with p(t)-Laplacian operator. For the non-resonance
case, by constructing the Green function, we show a new existence result for BVP (1.1) by the Schaefer’s
fixed point theorem. For the resonance case, by investigating the following equivalence problem (see Lemma
2.8) {

Dα
0+x(t) = −ϕ−1

p(t)(I
β
0+
f(t, x(t)), t ∈ (0, 1),

x(0) = 0, Dα−1
0+

x(1) = γIα−1
0+

x(η),

we obtain a new existence result for BVP (1.1) by the coincidence degree theory of Mawhin (see [26]).

2. Preliminaries

For basic definitions of Riemann-Liouville fractional integral and fractional derivative, please see [20].
Here, we show some important properties, lemmas and definitions as follows.
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Lemma 2.1 ([31]). For any (t, x) ∈ [0, 1]× R, ϕp(t)(x) = |x|p(t)−2x, is a homeomorphism from R to R and

strictly monotone increasing for any fixed t. Moreover, its inverse operator ϕ−1
p(t)(·) is defined by

ϕ−1
p(t)(x) = |x|

2−p(t)
p(t)−1x, x ∈ R \ {0},

ϕ−1
p(t)(0) = 0, x = 0,

which is continuous and sends bounded sets to bounded sets.

Definition 2.2 ([26]). Let X and Y be real Banach spaces and let L : domL ⊂ X → Y be a Fredholm
operator with index zero. Let P : X → X, Q : Y → Y be continuous linear projectors such that ImP =
KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ. It follows that L|domL∩KerP : domL ∩KerP →
ImL is invertible. Its inverse is defined by KP . If Ω is an open bounded subset of X, and domL∩Ω 6= ∅, the
map N : X → Y will be called L−compact on Ω if QN : Ω→ Y is bounded and KP,QN := KP (I −Q)N :
Ω→ X is compact.

Lemma 2.3 ([26]). Let L : domL ⊂ X → Y be a Fredholm operator of index zero and N : X → Y be
L−compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(domL \KerL)] ∩ ∂Ω× (0, 1);

(ii) Nx 6∈ ImL for every x ∈ KerL ∩ ∂Ω;

(iii) deg(QN |KerL,KerL ∩ Ω, 0) 6= 0, where Q : Y → Y is a projection such that ImL = KerQ. Then the
equation Lx = Nx has at least one solution in domL ∩ Ω.

Lemma 2.4 ([20]). Some properties for the Riemann-Liouville fractional integral and fractional derivative
are as follows:

(i) If α ≥ 0, λ > −1, λ 6= α− i, i = 1, 2, ..., [α] + 1, we have

Dα
0+t

λ =
Γ(λ+ 1)

Γ(λ− α+ 1)
tλ−α.

Moreover, Dα
0+t

α−i = 0, i = 1, 2, ..., [α] + 1.

(ii) If α > 0, λ > −1, we have

Iα0+t
λ =

Γ(λ+ 1)

Γ(λ+ α+ 1)
tλ+α.

Lemma 2.5. If y(t) ∈ C[0, 1] and 0 < γη2α−2 < Γ(2α− 1), the unique solution of{
Dβ

0+
ϕp(t)(D

α
0+x(t)) + y(t) = 0, t ∈ (0, 1),

x(0) = 0, Dα−1
0+

x(1) = γIα−1
0+

x(η), Dα
0+x(0) = 0,

can be expressed as the following integral equation

x(t) =

∫ 1

0
G(t, s)ϕ−1

p(s)(I
β
0+
y(s))ds, (2.1)

where

G(t, s) =



tα−1Γ(2α−1)−γtα−1(η−s)2α−2−(t−s)α−1(Γ(2α−1)−γη2α−2)
Γ(α)(Γ(2α−1)−γη2α−2)

, 0 ≤ s ≤ t ≤ 1, s ≤ η,

tα−1Γ(2α−1)−γtα−1(η−s)2α−2

Γ(α)(Γ(2α−1)−γη2α−2)
, 0 ≤ t ≤ s ≤ η < 1,

tα−1Γ(2α−1)−(t−s)α−1(Γ(2α−1)−γη2α−2)
Γ(α)(Γ(2α−1)−γη2α−2)

, 0 < η ≤ s ≤ t ≤ 1,

tα−1Γ(2α−1)
Γ(α)(Γ(2α−1)−γη2α−2)

, 0 ≤ t ≤ s ≤ 1, s ≥ η.
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Proof. Based on the definitions of Riemann-Liouville fractional integral, we have

ϕp(t)(D
α
0+x(t)) = −Iβ

0+
y(t) + ctβ−1, c ∈ R.

Combining with Dα
0+x(0) = 0, for fixed t = 0, we have c = 0 and

x(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1ϕ−1

p(s)(I
β
0+
y(s))ds+ c1t

α−1 + c2t
α−2,

where ci ∈ R, i = 1, 2. By x(0) = 0, we obtain c2 = 0. In view of Lemma 2.4, it follows that

Iα−1
0+

x(t) = − 1

Γ(2α− 1)

∫ t

0
(t− s)2α−2ϕ−1

p(s)(I
β
0+
y(s))ds+ c1

Γ(α)

Γ(2α− 1)
t2α−2,

and

Dα−1
0+

x(t) = −
∫ t

0
ϕ−1
p(s)(I

β
0+
y(s))ds+ c1Γ(α).

Based on the boundary value condition Dα−1
0+

x(1) = γIα−1
0+

x(η), it follows

c1 =
Γ(2α− 1)

Γ(α)(Γ(2α− 1)− γη2α−2)

[∫ 1

0
ϕ−1
p(s)(I

β
0+
y(s))ds− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2ϕ−1

p(s)(I
β
0+
y(s))ds

]
.

Thus, we have

x(t) = − 1

Γ(α)

∫ t

0
(t− s)α−1ϕ−1

p(s)(I
β
0+
y(s))ds+

tα−1Γ(2α− 1)

Γ(α)(Γ(2α− 1)− γη2α−2)

[∫ 1

0
ϕ−1
p(s)(I

β
0+
y(s))ds

− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2ϕ−1

p(s)(I
β
0+
y(s))ds

]
.

Therefore, (2.1) holds.

Lemma 2.6. If 0 < γη2α−2 < Γ(2α− 1), G(t, s) satisfies the condition

0 < G(t, s) <
Γ(2α− 1)

Γ(α)(Γ(2α− 1)− γη2α−2)
, ∀s, t ∈ (0, 1).

Proof. By definition of G(t, s), it is clear that G(t, s) < Γ(2α−1)
Γ(α)(Γ(2α−1)−γη2α−2)

for all s, t ∈ (0, 1). On the other

hand, if s ≤ t, s ≤ η, then set

g(t, s) = tα−1Γ(2α− 1)− γtα−1(η − s)2α−2 − (t− s)α−1(Γ(2α− 1)− γη2α−2).

We can obtain

g(t, s) ≥ tα−1Γ(2α− 1)− tα−1γη2α−2 − (t− s)α−1(Γ(2α− 1)− γη2α−2)

= (Γ(2α− 1)− γη2α−2)[tα−1 − (t− s)α−1]

≥ (Γ(2α− 1)− γη2α−2)[tα−1 − (t− ts)α−1]

= tα−1(Γ(2α− 1)− γη2α−2)[1− (1− s)α−1] > 0.

For other situations, it is clear that G(t, s) > 0, so we omit the proof.

Remark 2.7. Noting that if γη2α−2 = Γ(2α − 1), BVP (1.1) is the resonance case. However, the Mawhin’s
continuation theorem is not suitable for the nonlinear operator case. Thus, we need the following lemma to
turn the nonlinear operator case into the linear operator case.
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Lemma 2.8. BVP (1.1) is equivalent to the following problem{
Dα

0+x(t) = −ϕ−1
p(t)(I

β
0+
f(t, x(t)), t ∈ (0, 1),

x(0) = 0, Dα−1
0+

x(1) = γIα−1
0+

x(η).
(2.2)

Proof. On one hand, based on the boundary condition Dα
0+x(0) = 0, we conclude (2.2) from (1.1). On

the other hand, if Dα
0+x(t) = −ϕ−1

p(t)(I
β
0+
f(t, x(t)), substituting t = 0 into the above equality, we obtain

Dα
0+x(0) = 0. Moreover, applying the operator ϕ−1

p(t) and Dβ
0+

to the both side of above equality, we have

Dβ
0+
ϕp(t)(D

α
0+x(t)) + f(t, x(t)) = 0. Thus, the claim is proved.

3. Main result

3.1. The non-resonance case

Let X = C[0, 1] with norm ‖x‖∞ = maxt∈[0,1] |x(t)|. In the sequel, we assume that 0 < γη2α−2 <
Γ(2α− 1). Furthermore, in order to state Theorem 3.1, let PL := mint∈[0,1] p(t), PM := maxt∈[0,1] p(t).

Theorem 3.1. Assume that the following condition holds.

(H1) There exist constants a, b > 0 such that

|f(t, x)| ≤ a+ b|x|θ−1, 1 < θ ≤ PL.

Then BVP (1.1) has at least one solution, provided that

2
1

PL−1 Γ(2α− 1) max{b
1

PL−1 , b
1

PM−1 }

(Γ(β + 1))
1

PM−1 Γ(α)(Γ(2α− 1)− γη2α−2)
< 1. (3.1)

Proof. The operator T : C[0, 1]→ C[0, 1] is defined by

Tx(t) =

∫ 1

0
G(t, s)ϕ−1

p(s)(I
β
0+
f(s, x(s)))ds.

By the continuity of f , it is easy to find that T is continuous. Let Ω be any bounded open subset of C[0, 1].

Since ϕ−1
p(t)(·) and f are continuous, there exists a constant M > 0 such that |ϕ−1

p(t)(I
β
0+
f(t, x(t)))| ≤ M on

[0, 1]× Ω. Thus, we can obtain

‖Tx‖ = max
t∈[0,1]

|Tx| ≤
∫ 1

0

MΓ(2α− 1)

Γ(α)(Γ(2α− 1)− γη2α−2)
ds =

MΓ(2α− 1)

Γ(α)(Γ(2α− 1)− γη2α−2)
.

Thus, TΩ is uniformly bounded. On the other hand, for all t1, t2 ∈ [0, 1], assume that t1 ≤ t2, for any
x ∈ Ω, we have

|Tx(t2)− Tx(t1)| =
∣∣∣∣∫ 1

0
G(t2, s)ϕ

−1
p(s)(I

β
0+
f(s, x(s)))ds−

∫ 1

0
G(t1, s)ϕ

−1
p(s)(I

β
0+
f(s, x(s)))ds

∣∣∣∣
≤ M

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]ds+

M

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+
(Γ(2α) + γη2α−1)M

Γ(α)[Γ(2α)− (2α− 1)γη2α−2]
(tα−1

2 − tα−1
1 )

=
M

Γ(α+ 1)
(tα2 − tα1 ) +

(Γ(2α) + γη2α−1)M

Γ(α)[Γ(2α)− (2α− 1)γη2α−2]
(tα−1

2 − tα−1
1 ).



T. Shen, W. Liu, J. Nonlinear Sci. Appl. 9 (2016), 5000–5010 5005

Thus, one has
|Tx(t2)− Tx(t1)| → 0 uniformly as t1 → t2.

Therefore, T is equicontinuous on Ω. By the Arzelá-Ascoli theorem, we can obtain T is completely
continuous. Define

V = {x ∈ X|x = λTx, λ ∈ (0, 1)}.

According to Schaefer’s fixed point theorem, we just need to prove that V is bounded. For x ∈ V , we
have

|Iβ
0+
f(t, x(t))| ≤ 1

Γ(β)

∫ t

0
(t− s)β−1|f(s, x(s))|ds

≤ 1

Γ(β)

∫ 1

0
(t− s)β−1(a+ b|x(s)|θ−1)ds

≤ 1

Γ(β + 1)
(a+ b‖x‖θ−1

∞ ).

By the basic inequality (x+ y)p ≤ 2p(xp + yp) for x, y, p > 0 (see [21]), we have

|x(t)| = λ|Tx(t)| ≤
∫ 1

0
G(t, s)ϕ−1

p(s)(I
β
0+
|f(s, x(s))|)ds

≤ Γ(2α− 1)

Γ(α)(Γ(2α− 1)− γη2α−2)

∫ 1

0
[

2
1

p(s)−1

(Γ(β + 1))
1

p(s)−1

(a
1

p(s)−1 + b
1

p(s)−1 ‖x‖
θ−1
p(s)−1
∞ )]ds.

Since θ−1
p(t)−1 ∈ (0, 1], by the basic inequality xκ ≤ x+ 1 for x > 0, κ ∈ (0, 1], we have

‖x‖∞ ≤
2

1
PL−1 Γ(2α− 1)

(Γ(β + 1))
1

PM−1 Γ(α)(Γ(2α− 1)− γη2α−2)

∫ 1

0
[a

1
p(s)−1 + b

1
p(s)−1 (‖x‖∞ + 1)]ds.

By (3.1), there exists a constant M1 > 0 such that ‖x‖∞ ≤M1. Thus, the operator T has a fixed point,
which implies BVP (1.1) has at least one solution.

Example 3.2. Consider the following BVP:{
D

3
4

0+
ϕt2+2(D

3
2

0+
x(t)) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = 0, D
1
2

0+
x(1) = 1

2I
1
2

0+
x(1

2), D
3
2

0+
x(0) = 0,

where α = 3
2 , β = 3

4 , p(t) = t2 + 2, θ = 2, η = 1
2 , γ = 1

2 , f(t, x(t)) = 9
64x

2, a = 0, b = 9
64 . Clearly, (H1)

holds. Moreover, in view of (3.1), we have

1

Γ(3
2)(Γ(7

4))
1
2

< 1.

Thus, it has at least one solution.

3.2. The resonance case

In this part, let X = Y = C[0, 1] with the norm ‖x‖∞ = maxt∈[0,1] |x(t)|. Noting that if γη2α−2 =
Γ(2α− 1), BVP (1.1) turns into resonance case.

By Lemma 2.8, the original problem can be turned into the following problem:{
Dα

0+x(t) = −ϕ−1
p(t)(I

β
0+
f(t, x(t)), t ∈ (0, 1),

x(0) = 0, Dα−1
0+

x(1) = γIα−1
0+

x(η).
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Define the operator L : domL ⊂ X → Y by

Lx = Dα
0+x,

where
domL = {x ∈ X|Dα

0+x(t) ∈ Y, x(0) = 0, Dα−1
0+

x(1) = γIα−1
0+

x(η)}.

Let N : X → Y be the Nemytski operator

Nx(t) = −ϕ−1
p(t)(I

β
0+
f(t, x(t)), ∀t ∈ [0, 1].

Then BVP (1.1) is equivalent to the operator equation

Lx = Nx, x ∈ domL.

It is clear that

KerL = {x ∈ X|x(t) = ctα−1, ∀t ∈ [0, 1], c ∈ R},

ImL = {y ∈ Y |
∫ 1

0
y(s)ds− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2y(s)ds = 0}.

Define the linear continuous projection operators P : X → X and Q : Y → Y :

Px(t) =
Dα−1

0+
x(0)

Γ(α)
tα−1, ∀t ∈ [0, 1],

Qy(t) = ∆[

∫ 1

0
y(s)ds− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2y(s)ds], ∀t ∈ [0, 1],

where

∆ :=
Γ(2α)

Γ(2α)− γη2α−1
=

Γ(2α)

Γ(2α)− ηΓ(2α− 1)
=

2α− 1

2α− 1− η
> 0.

It is easy to find that P 2 = P , Q2 = Q,

X = KerL⊕KerP, and Y = ImL⊕ ImQ.

Noting that
dim KerL = dim ImQ = codim ImL = 1.

Thus, L is a Fredholm operator of index zero. Let KP : ImL → domL ∩ KerP , which can be given by
KP y = Iα0+y. KP is the inverse of L|domL∩KerP . Since f and ϕ−1

p(t)(·) are continuous, it is easy to obtain

that N is L-compact on Ω whose proof is similar to some parts of Lemma 3.3 in [15], so we omit it here.

Theorem 3.3. Assume that (H1) and the following condition hold.

(H2) there exists a constant B > 0 such that if |x(t)| > B for any t ∈ [η, 1], either

sgn{x(t)}QN(x(t)) < 0,

or
sgn{x(t)}QN(x(t)) > 0.

Then BVP (1.1) has at least one solution, provided that

b2θ(1 + ηα−1)θ−1

Γ(β + 1)(Γ(α+ 1)ηα−1)θ−1
< 1. (3.2)
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Proof. Let
Ω1 = {x ∈ domL \KerL | Lx = λNx, λ ∈ (0, 1)}.

Since x ∈ Ω1, we have Nx ∈ ImL = KerQ. Thus, QNx = 0. By (H2), there exists a constant ξ ∈ [η, 1]
such that |x(ξ)| ≤ B. By x(0) = 0, we have

x(t) = Iα0+D
α
0+x(t) + c1t

α−1.

Hence, we can obtain

|c1| ≤
1

ξα−1
[|x(ξ)|+ 1

Γ(α)

∫ ξ

0
(ξ − s)α−1|Dα

0+x(s)|ds] ≤ 1

ηα−1
(B +

1

Γ(α+ 1)
‖Dα

0+x‖∞),

and

‖x‖∞ ≤
1 + ηα−1

Γ(α+ 1)ηα−1
‖Dα

0+x‖∞ +
B

ηα−1
. (3.3)

Based on Lu = λNu, we can get

Dα
0+x(t) = −λϕ−1

p(t)(I
β
0+
f(t, x(t))).

Applying the operator ϕ−1
p(t) to the both side of above equality, one has

ϕp(t)(D
α
0+x(t)) = −λp(t)−1(Iβ

0+
f(t, x(t))).

From (H1) and λ ∈ (0, 1), we have

|Dα
0+x(t)|p(t)−1 ≤ 1

Γ(β)

∫ t

0
(t− s)β−1 |f(t, x(t))|ds ≤ 1

Γ(β + 1)
(a+ b ‖x‖θ−1

∞ ).

In view of (3.3), we have

|Dα
0+x(t)|p(t)−1 ≤ 1

Γ(β + 1)
[a+ b(

1 + ηα−1

Γ(α+ 1)ηα−1
‖Dα

0+x‖∞ +
B

ηα−1
)θ−1].

By the basic inequality (x+ y)p ≤ 2p(xp + yp), x, y, p > 0, we have

|Dα
0+x(t)|p(t)−1 ≤ Λ1 + Λ2 ‖Dα

0+x‖
θ−1
∞ ,

where

Λ1 =
b(2B)θ−1 + aη(α−1)(θ−1)

Γ(β + 1)η(α−1)(θ−1)
, Λ2 =

b2θ−1(1 + ηα−1)θ−1

Γ(β + 1)(Γ(α+ 1)ηα−1)θ−1
.

Hence, we can obtain

‖Dα
0+x‖∞ ≤ 2

1
p(t)−1 (Λ

1
p(t)−1

1 + Λ
1

p(t)−1

2 ‖Dα
0+x‖

θ−1
p(t)−1
∞ ).

Since θ−1
p(t)−1 ∈ (0, 1], by the basic inequality xκ ≤ x+ 1 for x > 0, κ ∈ (0, 1], we have

‖Dα
0+x‖∞ ≤ 2

1
p(t)−1 Λ

1
p(t)−1

1 + 2
1

p(t)−1 Λ
1

p(t)−1

2 (‖Dα
0+x‖∞ + 1).

In view of (3.2), we can obtain that there exists a constant M2 > 0 such that

‖Dα
0+x‖∞ ≤M2, ‖x‖∞ ≤

1 + ηα−1

Γ(α+ 1)ηα−1
M2 +

B

ηα−1
:= M3.
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So, Ω1 is bounded. Let
Ω2 = {x|x ∈ KerL, Nx ∈ ImL}.

For x ∈ Ω2, we have x(t) = ctα−1, c ∈ R and Nx ∈ ImL. Thus, we can obtain QN(ctα−1) = 0, which
together with (H2) implies |c| ≤ B

ηα−1 . Hence, Ω2 is bounded. Let

Ω3 = {x ∈ KerL| − λJx+ (1− λ)QNx = 0, λ ∈ [0, 1]},

where J : KerL→ ImQ is defined by J(ctα−1) = c, c ∈ R , t ∈ [0, 1]. Thus, we have

λc+ (1− λ)∆

[∫ 1

0
ϕ−1
p(s)(I

β
0+
f(s, csα−1))ds− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2ϕ−1

p(s)(I
β
0+
f(s, csα−1))ds

]
= 0. (3.4)

If λ = 0, by the first part of (H2), we have |c| ≤ B
ηα−1 . If λ ∈ (0, 1], we can also obtain |c| ≤ B

ηα−1 .

Otherwise, if |c| > B
ηα−1 , in view of the first part of (H2), one has

λsgn(ctα−1)c+ (1− λ)∆sgn(ctα−1)

[∫ 1

0
ϕ−1
p(s)(I

β
0+
f(s, csα−1))ds

− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2ϕ−1

p(s)(I
β
0+
f(s, csα−1))ds

]
> 0

for any t ∈ [η, 1]. Thus, by choosing t = 1, we obtain

λsgn(c)c+ (1− λ)∆sgn(c)

[∫ 1

0
ϕ−1
p(s)(I

β
0+
f(s, csα−1))ds

− γ

Γ(2α− 1)

∫ η

0
(η − s)2α−2ϕ−1

p(s)(I
β
0+
f(s, csα−1))ds

]
> 0,

which contradicts to (3.4). Thus, Ω3 is bounded. Let

Ω′3 = {x ∈ KerL|λJx+ (1− λ)QNx = 0, λ ∈ [0, 1]}.

Similarly, we can prove that Ω′3 is bounded by the second part of (H2).
Let Ω = {x ∈ X|‖x‖∞ < max{M3,

B
ηα−1 } + 1}. Since L is a Fredholm operator of index zero and N is

L-compact on Ω, then by the previous proof, we have

(i) Lx 6= λNx, for every (x, λ) ∈ [(domL \KerL) ∩ ∂Ω]× (0, 1).

(ii) Nx /∈ ImL, for every x ∈ KerL ∩ ∂Ω.

Let
H(x, λ) = ±λJ(x) + (1− λ)QNx.

We can obtain H(x, λ) 6= 0 for x ∈ KerL ∩ ∂Ω. Therefore,

deg(QN |KerL,Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)

= deg(H(·, 1),Ω ∩KerL, 0)

= deg(±J,Ω ∩KerL, 0) 6= 0.

Hence, the conditions of Lemma 2.3 are satisfied. Therefore, we can obtain that Lx = Nx has at least
one solution in domL ∩ Ω. Then BVP (1.1) has at least one solution.
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Example 3.4. Consider the following BVP: D
2
3

0+
ϕ(t2+2)(D

3
2

0+
x(t)) + 1

10 −
1
10x(t) = 0, t ∈ (0, 1),

x(0) = 0, D
1
2

0+
x(1) = γI

1
2

0+
x(η), D

1
2

0+
x(0) = 0,

where p(t) = t2 + 2, α = 3
2 , β = 2

3 , θ = 2, f(t, x(t)) = 1
10 −

1
10 |x(t)| a = b = 1

10 . Clearly, (H1) holds. By
choosing γ = 2, η = 1

2 , B = 20, it is easy to verify Γ(2α− 1) = γη2α−2. Moreover, if x(t) > 20, we have

−f(t, x(t)) = − 1

10
+

1

10
|x(t)| > 0.

Thus, we obtain Nx(t) = −ϕ−1
(t2+2)

(I
2
3

0+
f(t, x(t))) > 0 and

QNx(t) = ∆[

∫ 1

0
Nx(s)ds− 2

Γ(2)

∫ 1
2

0
(
1

2
− s)Nx(s)ds]

= ∆[

∫ 1

0
Nx(s)ds−

∫ 1
2

0
(1− 2s)Nx(s)ds]

= ∆{
∫ 1

1
2

Nx(s)ds+

∫ 1
2

0
[1− (1− 2s)]Nx(s)ds} > 0.

Hence, we have
sgn{x(t)}QN(x(t)) > 0. (3.5)

If x(t) < −20, it can be found that (3.5) is also true. Thus, the first part of (H2) holds. In view of (3.2),
we have

2 +
√

2

5Γ(5
3)Γ(5

2)
< 1.

Therefore, it has at least one solution.
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