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Abstract

We analyze the set of periods of a class of maps ¢q . : Za — Za defined by ¢4 .(x) = dr+k, d,k € Zp,
where A is an integer greater than 1. This study is important to characterize completely the period sets of
alternated systems f, g, f, g, ..., where f,g:S! — S! are affine circle maps that commute, and to solve the
converse problem of constructing commuting affine circle maps having a prescribed set of periods. (©2016
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1. Introduction

In general, a non autonomous discrete dynamical system (X, (f),) is a pair where X is a topological
space, called phase space, N = {1,2,...} is the set of natural numbers and ( f,,)nen is a sequence of continuous
functions f,, : X — X. By C(X) we denote the set of continuous maps from X into itself. Write (X, (f),) =
(X, fi,00). The main goal when dealing with non-autonomous dynamical systems is to analyze, for any z € X,
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the asymptotic behavior of the orbits
Orbfl,oo (CU) = {.'130, L1, L2y --+3Lpy- - .}7

where g = x and z,, = fr(zp—1) = frno...0 fi(z) = f{'(z) for n > 1, or equivalently to study how the
orbits of the system behave when n goes to infinity. When f,, = f for any n € N, then we denote the system
(X, fi,00) by (X, f) and we receive the classical notion of (autonomous) dynamical system.

The easiest asymptotical behavior occurs when x is a periodic point of period p € N, that is, fﬁ o)==z
and f{loo(:r) # x for any 0 < n < p (when a point € X has finite, but not periodic, orbit we say that x
is eventually periodic). In the case of autonomous discrete systems the above conditions read as fP(z) = z
and f"(x) # x for any 0 < n < p, being f© the identity map and f™ = f o f™~ 1 m > 1. Observe that for
p = 1 we obtain the definition of fized point.

An interesting problem is to compute its periods set, that is,

Per(f1,00) = {n € N : there exists a periodic point = € (X, f1,0) of period n}.

This problem has a long tradition in the setting of autonomous dynamical systems: when X = I := [0, 1]
and f, = f is continuous, n € N, the result which describes the set Per(f) is the celebrated Sharkovsky’s
theorem (see [7H9]). A lot of works in this direction has appeared in the literature by changing the phase
space or by considering non-autonomous dynamical systems, a wide review on this subject was made in
[6]. A remarkable case consists of studying the periodicity of systems (X, f) when X = S! is the circle
(see [I, Ch. 3]). In addition, when we consider non-autonomous dynamical systems on X = I and (fy)n, =
(f,9,f,9,f,9,-..), this system is called alternated system and is represented by [f, g]. In [4] the set Per[f, g]
is completely characterized. So, it is a natural question to extend the results from [4] for alternated systems
[f, 9], where f and g are continuous circle maps. However, as we pointed out in [5], this problem for arbitrary
continuous circle maps seems to be quite difficult. Then, we started by analyzing the particular case of affine
circle maps. Before explaining it, we recall some basic notations on circle maps.

Let e : R — S! be the standard universal covering given by e(z) = 2™, If f € C(S'), we find a

(non-unique) map F' : [0, 1] — R such that the diagram

0,1 5 R

el le

st Los
commutes. We call F' a lifting of f. Notice that e(0) = e(1) = 1 and then e(F(1)) = f(e(1)) = f(e(0)) =
e(F(0)), which implies that d := F(1) — F(0) € Z. The integer d is said to be the degree of f, denoted
by deg(f). Moreover, it is possible to extend the lifting F' from [0, 1] to R by considering F:R > Ras
F(z) = F(x — [2]) + [#] deg(f), where [] is the entire part of a real number . To simplify the notation we
denote F by F'.

In [5], the present authors have studied alternated systems [f, g] for affine circle maps, that is, continuous
circle maps whose liftings F,G : R — R are of the form F(z) = diz + a and G(z) = dyz + 5. The
main difficulty in characterizing the set Per[f,g] is to show the existence of odd periods, that is, the set
A = Per[f,g] N O, where O denotes the set of odd non-negative integers. We proved that f and g must
commute to have A # (), see [5, Theorems A-B]. In addition, A is finite and characterized by the set of
periods of an affine map defined on a commutative finite group as follows.

As usual, given integers a, b and m, we write a|b if a divides b, the congruence a = bmod (m) means that
a — b is an integer multiple of m; also bmod (m) (when it is not in a congruence) denotes the remainder of
the Euclidean division between b and m, thus bmod (m) € Z,, = {0,1,...,m — 1}. Let A = |d; — d2| and
k= p(dy — 1) — a(da — 1). The affine circle maps f and g commute if and only if k € Z. Then, we define
¢di,n AN — T, T E {1,2}, by

¢d; x(m) = (dym + k) mod (A). (1.1)
Since d; = da mod (A), we have
¢d1,m = ¢d2,m = ¢
and the following result connects A and Per(¢).
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Theorem 1.1 ([5]). Let f,g € C(S!) be with associate liftings F(z) = dix + o and G(x) = dex + 8 and
dy #£dy. If K €7, then A =0, otherwise, k € Z and A = Per(¢) N O.

Additionally, for the case k € Z, di # da, di € {—1,0,1}, A is either empty or a singleton, A = {N},
see [B, Theorem C-(1)], and it is possible to construct affine maps having the desired set of periods, see [5,
Table 4, Proposition 32 and Corollary 33].

However, in the case k € Z, dy # da, {d1,d2} N{—1,0,1} = 0, for which Per[f, g] = 2NUA ([5, Theorem
C-(2)]), again in [5, Section 7] we mention that given a finite set  C N of odd numbers, “it would be
interesting to analyze if it is possible to find affine circle maps, f and g, with liftings F(x) = djz + « and
G(z) = doz + B in such a way that Per[f, g] = 2N U Q" and we affirm that “to this end, it is necessary to
improve the knowledge of the set Per(¢) N O, which is our main objective for the near future”. The present
work answers this question (consult Proposition and Theorem @ via the analysis of the periodic
structure of ¢.

Although the map ¢ is quite natural, its periodic structure is unknown, probably due to finite sets
cannot exhibit any complicated dynamic behavior (in fact, only periodic and eventually periodic points can
appear). Our main goal in this paper is to establish such characterization, which allows us to finish the
study of the periodic structure of affine circle maps started in [5]. It is worth pointing out that our present
study on the set Per(¢) will rely on a combinatorial approach based on elementary number theory, and no
topological structure on the phase space X = Zna is needed.

Recall that ged is the (positive) greatest common divisor of two positive integer numbers, additionally, it
is assumed gcd(0, a) = a for any a € N. By lem(ny, ..., ng) we denote the least common multiple of natural
numbers ny,...,n; for k > 2. Two natural numbers p, s and the following are given:

1 ifpisoddorp=2ands=2,
o(p:5) = { 2 otherwise.

We characterize the periods of ¢ = ¢4, by the following two main theorems, jointly with Theorems @ and E
(stated in Sections {4| and [5| respectively), where the reader can find a more precise description of the set of
periods, which is too technical for an introduction.

Theorem A. Let A = p°® where p is a prime and s > 1 and let ¢4, : Za — Za be defined by ¢q () = de+k,
d,k € Za. Then Per(¢q,) is one of the following sets:

(A-1) {1} U {ij}§:0 where N is a divisor of p—1 and £ € {0,1,...,s —o(p,s)};

(A-2) {p} for some £ € {0,1,...,s}.

Conversely, let p be a prime, A = p® with s > 1, and A be one of the above sets, then there exists
Gdr i Za — T such that Per(¢q,) = A.

As a consequence of this theorem and a technical result we obtain the set of periods for the general case.

Theorem B. Let A = pi'p5?..p;* be a decomposition into prime factors. Then, n € Per(¢q,) if and only
if n = lem(nq,ng, ...,nk) for some n; € Per(dq ;).

The paper is organized as follows: In Section [2| we present some basic facts about number theory and
prove a characterization for the periodic points of ¢4 .. In Section [3| we describe the sets of periods for the
case d € {0,1,A — 1}. The case A = p® with p prime, s > 1, is analyzed in Section {4} Here, we distinguish
two subsections devoted to the cases ged(d, A) > 1 and ged(d,A) = 1. In this last subsection it is also
necessary to study separately the cases ged(d — 1,A) = 1 and ged(d — 1,A) > 1. Sections |3| and |4 are
summarized in Theorem [C] from which we derive the proof of Theorem [A] Finally, in Section [5] we consider
the general case with A an arbitrary positive integer, and prove Theorems [B] and

2. Preliminaries

For a given set A C R and n € N, by nA we denote the set {na : a € A} and CardA denotes the
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cardinality of A. In what follows, ¢ : N — N indicates the Euler function, that is, p(n) is Card{m € N :
1 <m < n,ged(m,n) = 1}. In particular, p(p*) = p*~1(p — 1) if p is prime, s > 1, and p(ab) = ¢(a)p(b)
whenever ged(a,b) =1 (see [2]).

As usual, given a positive integer A, Za = {amod (A) : a € Z} is the ring of the residues modulo A
and Z3 = {amod (A) : a € Z and gcd(a,A) = 1} is the Abelian multiplicative group of residues modulo
A. Recall that (Za,+,-) is a commutative ring with A elements (+ and - refer the sum and the product
of integers modulo A, respectively). Moreover, (Z},-) is an Abelian group with Card(Z}) = ¢(A) (in the
literature, it is also called Euler group, see [3, 10]). The following well-known result can be found in [2}
Theorem 5.17].

Lemma 2.1 (Euler’s Theorem). Let a,m be integers with ged(a,m) = 1. Then
a?™ = 1mod (m).
The following elementary results will be fruitful in our study.

Lemma 2.2. Let p,q € Z\ {0}. Then ged(q,p) = 1 if and only if
¢" = 1mod(p)
for somen € N.

Proof. Let d = ged(q, p). The condition ¢ = 1 mod(p) for some positive integer n (or ¢" — 1 = up for some
n € N and some u € Z) is equivalent to have L~ —*2 = 1 for some n € N and some u € Z. Being - — 2 € Z

the initial condition is equivalent to have d = 1. O

Remark 2.3. From the above result, if gcd(g, p) = 1 we define the order of g modulo p as the smallest positive
integer s satisfying ¢° = 1 mod(p). Notice that if N is this order, and we have ¢" = 1 mod(p), then necessarily
N|n ([2, Theorem 10.1]). In particular, N|¢(p) by Lemma [2.1] O

Lemma 2.4. Let a,b be positive integers. For any non-negative integer k,

Card{(ja + k)mod(b) : j=0,1,...,b—1} (2.1)

~ ged(a )’
In particular, this cardinal is b whenever ged(a,b) = 1.

Proof. Let i,j € {0,...,b — 1}, with ¢« > j. Since ja + k = ia + kmod(b) is equivalent to have (i —
j)gC d‘(la’b) = Ug; d€a7b) for some non-negative integer u, we deduce that the first congruence holds if and only

if 1 = jmod(m) as a consequence of gc d?a,b) and w d?a’b) being coprime. Additionally, by a similar
reasoning we have that all the elements k,a + &, ..., (m — 1) a + K are pairwise distinct and Eq. 1’
follows.

If (Z3,-) is a cyclic group, we say that g € Z} is a generator whenever {g"mod(A) : n > 1} = Z}.
Necessarily, the order of a generator ¢ modulo A is equal to ¢(A). In [2], a generator g is also called a
primitive root.

Next result establishes when (Z}, -) is cyclic.

Theorem 2.5 ([2]). (Z},-) is a cyclic group if and only if A € {p®: p is an odd prime and s € N} U {2p® :
p is an odd prime and s € N} U {1,2,4}.

It is well-known that the number of generators of these cyclic groups is given by ¢(¢(A)). We will
be interested in the search of primitive roots g for (Zzs, -), with p > 3 prime, s > 1, such that they also
generate the cyclic group (Z;, -). To this end, we need the following result whose proof can be consulted in
[2, Theorem 10.6].



J. S. Cénovas Pena, A. Linero Bas, G. Soler Lépez, J. Nonlinear Sci. Appl. 9 (2016), 5041-5060 5045

Theorem 2.6. Let p be an odd prime. Then:

(a) If g is a primitive root modp then g is also a primitive root modp® for all s > 1, if and only if,
gP~1 # 1mod(p?).

(b) There is at least one primitive root gmod p which satisfies the above condition, hence there exists at
least one primitive root mod p® if s > 2.

The next significant property in our study relates the orders of d modulo p/, j > 1, in the following way.

Lemma 2.7. Let p,d be positive integers, with ged(p,d) = 1, p prime and d # 1. Denote the order of d
modulo p’ by 05, = 1. If d —1 = p™.q, for some positive integers o > 1 and q, with ged(p, q) = 1, then
forp>3 orp=2 and a > 2 we have that

01 =20 for je{l,...,a}

and
O0pr1=p-06p for r>a.

Proof. From ged(d, p) =1, Lemmayields the existence of §; for all j > 1. Assume that d% = 1+4p“-q, with
ged(p, ) = 1 and a > 1. To establish 6; = 0, for all j € {1,..., a}, take into account that dr—1 = pipeiqg
and simply use the definition of the order as the smallest positive integer n satisfying the congruence

" = 1mod(p’).
We now prove that da41 = p - 0q. Since d’»+1 — 1 is a multiple of p®*!, at the same time p® divides
d%+1 — 1, so by the definition of order and its properties (see Remark [2.3) we obtain

Oa < 5a+1 and 5&’504—&-1 (22)

(notice that the inequality is strict because d’> —1 # 0 mod(p®*1)). On the other hand, from d° = 1mod(p®)
we deduce the existence of some non-negative integer u (in fact, u = ¢) such that (d°*)? = (p®-u +1)?, and
by the binomial formula we find

<d5a)p = (p® u+ 1)
p(P2— 1)p2a

-1
—14pol .y <1 + (p?)pa w4 pPe L 22 g e up—1>

=14p* - +p*r)=14+p* w5

=1+4+p-p* - u+ cul 4 4p-pPTDA P e P

for suitable positive integers 7, s (realize that ap > a + 1 in the cases p > 3 or p = 2, > 2). Notice that
s =1+ p%r is coprime with p, so we can write

dp6a 1= pa+1 q

o+1) and consequently

for some positive integer ¢; holding ged(p, ¢1) = 1. Then dP% =1 mod (p
5a+1 S péa with 5a+1‘p5a- (23)

Since p is prime, by and we conclude that 6441 = pds. Additionally, we observed that do+1 —1 =
p**tlqr, with ged(p, q1) = 1.

To finish the proof, we proceed by the induction. Suppose that d,4; = P10, and dloti — 1 = potd gj with
ged(p,qj) =1 for all j € {1,...,jo}, and prove that da4j,11 = pOF18, and doetiott — 1 = patiotlg, . for
some positive integer gj,+1 such that ged(p, ¢jo+1) = 1.



J. S. Cénovas Pena, A. Linero Bas, G. Soler Lépez, J. Nonlinear Sci. Appl. 9 (2016), 5041-5060 5046

A similar reasoning to that given at the beginning of the first step of the induction leads us to
Satjoldatjo+1 and datjo+1|Pdatij,- Consequently, since p is prime, either da4jo41 = Oatjo O Jatjot+1 =
POastjo-

If 6a+jo+1 = datj,, we would obtain ddetiott = 1 4 p*tiotlg for some integer §, and on the other
hand d%+io = 1 + p"‘*joqjo. Thus, ¢j, = pg, which contradicts that gj, and p are coprime. Therefore,
da+jo+1 = POa+j,- To establish that ddetiott — 1 = ptiotly for some integer w coprime with p, develop
(d%+io )P = (1 + q;j,p®T70)P as in the case of §o1. O

Remark 2.8. The above result does not work if p = 2 and o = 1. For instance, take d = 3. In this case
d—1=2and o = 1. Here, 6o = 2 but 63 = 2. Nevertheless, notice that d, = 22, §5 = 23, and in general,
§n =2""2if n > 3. O

The particular case p = 2 and a = 1 requires to be analyzed separately.

Lemma 2.9. Let d = 2q + 1, with ged(2,q) =1, ¢ > 1, and let §; be the order of d modulo 29. Then
51 =1, 5= 063 = 2. (2.4)
Moreover, if d*> — 1 = 27qy with qo odd (by force v > 3),

0; =2 forall j=2,...,7, (2.5)
i = 2 for all i > 1. (2.6)

Proof. By definition of order, it is immediate to see that §; = 1. To obtain ds = 2, notice that d — 1 #
0mod(2%) and that d?> — 1 = (d—1)(d+ 1) is the product of two even natural numbers. Moreover, note that
(d—1)2 =d?>—2d+1 = 4¢?, then d*> — 1 = 4¢q(q+ 1) with ¢+ 1 even and we obtain d3 = 2. This proves .
To obtain , simply use that d?> — 1 = 27¢y with v > 3 and ¢» odd, and apply the definition of order
of d modulo 27.
Finally, the proof of proceeds by the induction in an analogous way to that done at the proof of
Lemma (realize that now > 3, hence yp > v + 1), so we will omit it. O

Since Zpa is finite, the dynamics of ¢g, is simple: any point x € Za is either periodic or eventually
periodic. Moreover, the following result is immediate.

Lemma 2.10. Let ¢q, : Za — Z be defined by .
(a) If A= 1, Per(da,e) = {1}.
(b) If A =2, Per(¢o,) = {1} for k € {0,1}, Per(¢1,0) = {1}, Per(¢11) = {2}.

So, in the sequel we assume that A > 3.
To analyze the set of periods of ¢4, notice that by the induction it is easily seen that

-1
b () = <d”x + /{dd 1 > mod(A) foralln > 1, ifd#1 (2.7)
and
1x(r) = (x +nk) mod(A) for all n > 1, ifd=1. (2.8)

Next, we distinguish between periodic and eventually periodic points.

Proposition 2.11. Let x,d,k € Za, d & {0,1}. The following statements are equivalent.

(a) z is a periodic point of ¢q .;

d—1)A
(b) ged(d, gcd(A(,(d—)l)a:—‘rm)) =1

Additionally, if x is periodic, its period N is exactly the order of d modulo %.
Proof. (a) = (b). Assume that x € Za is a periodic point of order N. If N =1 (so (d—1)z+x = 0mod(A))
the result follows directly from the facts ged(A, (d — 1)z + k) = A and ged(d,d — 1) = 1. So, we suppose
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that N > 2. According to (2.7)) we find

N _
Qbé\j,{(ﬂ?) = (de + Kdd — ) = xmod(A> (2.9)
and .
¢il,,{(33) = <dix +K 7 __1 ) # rmod(A) for all 0 <i < N. (2.10)
From (2.9) we have
-1 ((d-Dz+r) A

- f Z.
d—1 gcd(A,(d—Dz+r)  Vgedd,(d—_Dain) roomewe

. A (d—1)z+k . .
Since 2ed (A (d=T)7TR) and (A (d—T)aTr) 1€ coprime, we obtain

aN —1 A
71 EomOd(gcd(A,(d—l)x+K)>’
or N (d—1)A
d :1m0d<gcd(A,(d—1)m+ﬂ))' (2.11)

By Lemma [2.2) we deduce that ged(d, %) = 1. This ends the proof of (a) = (b).

Additionally, notice that if « is N-periodic, from ([2.10) we obtain

(d-1)A
ged(A, (d— 1)z + k)

d' # 1mod ( > for 0 <i< N. (2.12)

Thus, by (2.11) and (2.12) N is the order of d modulo %.

(b) = (a). By Lemma there exists the order, say N, of d modulo D& We claim that
V

ged(A,(d—1)x+k)
x is then periodic of period V. Reasonini in a similar way that done in the previous implication, from

—1)A . i —1A .
dV = 1mod (W) we obtain 1' and d' # 1mod (WM) (0 < i < N) leads to

(2.10). Therefore, x is a periodic point of ¢4, of period N. O

3. The dynamics for d € {0,1, A — 1}
The set of periods of ¢g . (x) in these cases is obtained in the following result.
Proposition 3.1. Let A be a positive integer and let ¢q4, be defined as in .
(') Per(¢ox) = {1} for all k;
Per(¢1,4) = {m} for all k (remember that we take ged(A,0) = A);

(i)
(iii) when A > 3 is even, then Per(¢a—1,.) = {1,2} if k is even, and Per(¢pa—_1,) = {2} if k is odd;
(iv) when A > 3 is odd, then Per(¢a—1,.) = {1,2} for all k.

Proof.

(i). Note that ¢g(x) = & for all € Za. Then the unique periodic point of ¢ is k, a fixed point, i.e., a
periodic point of period 1.

(ii). Let € Za and A > 3. By (2.8)), ¢} .(z) = z + nsmod(A) for all n > 1, and ¢, () = z if and only
if nk = 0mod(A), that is, nk = sA for some integer s. If K = 0 then ¢; ,(z) = x for all z € Za and
Per(¢1,.) = {1}.
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Assume that £ # 0. We claim that % is the smallest positive integer n such that nk = 0mod(A).
It is obvious that mn = 0mod(A). Let s < m be a positive integer satisfying sk = 0mod(A),

that is, sk = gA for some (positive) integer q. Then Sgcd(A,n) qgcd(AA,n) and gcd(AA ) divides sm

Since and o d(AAﬁ) are coprime, we deduce that m divides s and consequently s =

gcd(HA,n) gcd(A k)’
which ends the claim. Hence, it is easily seen that Per(¢; ) = {M} The case A < 2 follows from

Lemma 2.101

(iii)-(iv). Suppose that d = A — 1 and A > 3. Note that ¢2A_1’K(ZL‘) =z for all € Za and since pa_1, is
not the identity, we have 2 € Per(¢a_1,). Now, let € Za be such that ¢a_1 .(z) = =, which is equivalent
to 2x = k mod (A). This equation has solution if and only if gcd(A,2) divides k. Now, if A is odd, then
ged(A, 2) = 1, which obviously divides « and hence 1 € Per(¢a_1,) and Part (iv) is proved. Assume that A
is even. Then, gcd(A,2) = 2, which divides & if and only if it is even. Then, we have that 1 € Per(¢a_14)
if and only if x is even, which proves Part (iii) and finishes the proof.

O

4. The case A = p®, with p prime, s > 1

According to the previous section, besides A > 3, we assume that d ¢ {0,1, A — 1}. In this section, we
are going to obtain the different sets of periods of ¢4, when A = p* is a power of a prime number p, with
s> 1.

If Kk =0, then ¢q0 : Zan — Zp, ¢q0(z) = dz, is a group homomorphism. As ¢q0(0) = 0, we have
1 € Per(¢q0). Recall that the kernel of ¢4 is defined as Ker(¢q0) = {z € Za : dz = 0}. It is well-known
that Ker(¢) is a subgroup of Za. On the other hand, since Zx is finite, any point x € Zx is either periodic
or eventually periodic. The kernel of ¢4 allows us to characterize when eventually periodic points do exist.
By P(:) we denote the set of periodic points of a map.

Lemma 4.1. Let ¢q0 : Zan — Za, ¢q0(x) = dx. Suppose that d # 0. Then, the following statements are
equivalent:

(a) P(¢ao) = Zn;
(b) Ker(¢q,0) = {0};
(c) ged(d,A) = 1.
In this case, the period of any point x # 0 divides the order of d modulo A.

Proof. (a) = (b). Suppose that P(¢40) = Za. Let x € Ker(¢q0). Then ¢40(x) = 0. Since ¢40(0) = 0 and
x is not eventually periodic, we deduce that x = 0, so Ker(¢q0) = {0}.
(b) = (c). Put & := ged(d, A). Then ¢q0(5) = d5 = $A = 0mod(A). Since Ker(¢qo) = {0}, we have
= O0mod(A) and hence § = 1.
(c) = (a). If ged(d, A) = 1, by Lemma [2.2] d™ = 1 mod(A) for some positive integers n. In this case, we
obtain ¢} (z) = d"x = xmod(A) for all € Za, and consequently, P(¢40) = Za. Notice that the period
of z divides the order of d modulo A. O

For instance, if A =15 and d = 8, it is immediate to check that the set of periods of ¢40 is {1,2,4}. In
this case, the order of d = 8 modulo A = 15 is 4. Recall that the period of a periodic point = is given by
the order of d modulo % (see Proposition [2.11)).

However, if A is prime and ged(d, A) = 1, we guarantee that aside from the fixed point = 0, all non-zero
elements of Za are periodic of the same period, namely, the order N of d modulo A. Indeed, by Lemma [4.T]
we already know that the period of x # 0, say ¢, divides N. On the other hand, Proposition yields
di= =1 mod(%), or d% = 1mod((d — 1)A) since A and (d — 1)x are coprime. Consequently, also
d% = 1mod(A) and by the definition of order (see Remark [2.3)), we obtain N|g, and hence g, = N. Thus,

we obtain the following:
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Lemma 4.2. Assume that A is prime. Let d € Za,d # 0. Then Per(¢q0) = {1, N}, where N is the order
of d modulo A, that is, the smallest positive integer n satisfying d” = 1 mod(A).

In the following two subsections, we assume that A = p®, with p prime and s > 1, A > 3.
4.1. The case ged(d, A) > 1

Let k € {0,1,....,A — 1} and fix d # 0 such that ged(d,A) > 1, that is, d = p’q with v > 1 and
ged(p, q) = 1.

Proposition 4.3. Consider A = p® > 3, p prime, s > 1, and d # 1 such that ged(d,A) > 1. Then,
Per(¢q,) = {1} for all k.

Proof. Let x € Za be a periodic point of ¢4, of period N, so qﬁfl\’lﬁ(ac) = z. Since d # 1, by 1) we deduce

av —1
d—1

((d—1)x+ k) = 0mod(A)
(I+d+...+d¥ H(d -1z + k) =0mod(A).

Taking into account that ged(1+d+...+d™ 1, p) = ged(1+d+...+d¥ =1, A) = 1 because 1+d+...+dV !
14p-u for some integer u, the last congruence holds only if ((d—1)z+~x) = 0mod(A), or ¢4 (z) = zmod(A
Hence, N =1 and ¢4 has only fixed points.

~—

O

4.2. The case ged(d,p) =1

Let k € {0,1,...,A — 1} and fix d such that ged(d,A) =1 and d ¢ {0,1, A — 1} (realize that the sets of
periods Per(¢q,) with d = 0,1, A — 1, have been obtained in Proposition . In turn we distinguish two
cases:

a) If ged(d —1,p) = 1.
b) If ged(d —1,p) > 1.

4.2.1. The case ged(d —1,p) =1

Recall that by J; we denote the order of d modulo p’, 7 €{l,...,s}. Realize that, necessarily, it must
be p > 3.

Theorem 4.4. Let A = p® > 3, with p prime and s > 1. Let d ¢ {0,1}, with ged(d,p) = ged(d — 1,p) = 1.
Then

Per(¢q,) = {1} U{;}i; = {1} U {o1p/ }?:ag{o,s—a}

for all k € {0,1,2,...,A — 1}, where d — 1 = p®qq with gcd(p, qq) = 1, and §; is the order of d modulo p’,
j=1,...,s.

Proof. Firstly, notice that all the elements of Z are periodic points of ¢4, since ged <d, %) =1
and Proposition applies.

Next, use Lemma to deduce that the cardinality of the set {(d — 1)x + kmod(A) : = € Za} is A.
Consequently,

{ng(Av (d - 1)$ + K’) HEAS ZA} = {va v 7ps}'

Let x; € Za satisfy ged(A, (d — 1)z + k) =p’, j =0,1,...,s, and denote by N;, j =0,1,...,s — 1,s, the
order of d modulo W—I)I)Amﬁm) = (d—1)p*~J. Again Proposition [2.11|jointly with the above observation
lead to

Per(¢q,) ={N;:7=0,1,...,s}.
For j = s we obtain Ngy = 1, because d = 1 mod(d — 1).
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On the other hand, denote by &;, i = 1,...,s the order of d modulo p’. We claim that N, = §,_, for
r=0,1,...,5 — 1. Since dV = 1mod((d — 1)p*™"), we deduce that also d™ = 1mod(p*~"). Therefore,
ds—r| Ny by Remark To finish the claim, again the definition of order gives d%-* = 1 mod(p*~"), and since
d—1 and p are coprime and d%-" —1 = (d—1)(14d+...+d% 1) we deduce that p*~"|(14+d+. . . +d%—1),
and also p*~"|(d%-" — 1), which implies d’- = 1 mod((d — 1)p*~"), and N,|ds_,, thus the claim is proved.

Finally, by Lemma (it holds for p > 3), we have d; oo = 0n, and St = p'dn = pidy, for
t=1,...,5s — . O

Corollary 4.5. Let A = p > 3 be a prime integer. Let d ¢ {0,1, A —1}. Then Per(¢q,.) = {1, N} for all
k€ {0,1,2,...., A — 1}, where N is the order of d modulo A.

Notice that the above result extends Lemma |4.2] to arbitrary values of .
Next, we characterize the periods of ¢4, when A is a prime number and d ¢ {0,1}.

Theorem 4.6. Let A be prime and A > 3. Let n # 1 be a diwvisor of A —1 = @(A). Then, there exists
de{2,...,A =1} such that Per(¢q,) = {1,n} for all k € {0,1,...,A —1}. In fact,

U

de{2,...,A—1}

Per(¢q0) = {divisors of ¢(A)}.

Proof. By Theorem it suffices to prove the result for k = 0. Let Z} = Za \ {0} be the Abelian
multiplicative group with generator § of order A — 1, that is, A — 1 is the smallest positive integer such that
6271 = 1mod(A). Take n # 1 dividing A — 1 and let d = 5o Then, the order of d is n, that is, n is the
smallest positive integer such that d” = 1 mod(A). Take ¢40. By Theorem we have Per(¢q0) = {1,n}.
To finish, notice that the reasoning can be applied to all divisors of p(A) = A — 1. O

Table [1| shows the periods for several prime numbers A when d € {2,3,...,A — 1}. We take xk = 0 and
write Py := Per(¢q,0).

Table 1: Set of periods of ¢g . when ged(d,A) =1 and ged(d —1,A) = 1.

A 5 7
d 2 3 4 2 3 4 5 6
elements in
Pao 14 |14 |12 |13 |16 |13 |16 |12
A 11
d 2 3 4 5 6 7 8 9 [ 10
elements in
Puo 1,10 |15 |15 | 1,5 | 1,10 | 1,10 | 1,10 | 1,5 | 1,2
A 33
d 2 [ 5 [ 8 11 | 14 [ 17 ] 20 | 23 | 26
elements in || 1,2 1.2 | 1,2 | 1,2 1.2 | 1,2 | 1,2 1,2
Pao 618|618 | 6 |6,18|6,18| 6 |6,18] 6,18 12
A 52
d || 234789 12[13][14]17]18]19[ 2223 24
1|1 [t 111|111t [t 11 [1]1
Piollala|2|alal2ala2]a]a]|2]4|4]|2
"l 2020 10 20|10 | 20|20 | 10 | 20 10 [ 20 | 20
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4.2.2. The case ged(d —1,p) > 1

Now, we assume that
d—1=pqq

for some positive integer o, s —1 > «, and an integer g4 coprime with p. Recall that we use the notation J;
to denote the order of d modulo p’, j > 1. By Lemma we have

01=...=0a=1 and 6o, =p 01 =p" for r>1 (4.1)
if either p > 3 or p = 2, @ > 2, whereas Lemma [2.9| gives

S1=1,00=...=8,=2 and 0,p; = 2" for i > 1, (4.2)
whenever p = 2,a =1 and d? — 1 = 27qo, with ged(2, ¢2) = 1.

In this new setting we cannot guarantee the existence of fixed points, it will be depended on the corre-
sponding value of k.

Lemma 4.7. Let A = p*, s > 1 and d € {2,...,A — 1} with gcd(A,d) = 1 and ged(d — 1,A) = p°,
1<a<s—1. Taker € {1,...,A}. Then 1 € Per(¢q,) if and only if p“|k.

Proof. Suppose that = € Zn is a fixed point of ¢q,,. Using Proposition [2.11] gives

. (d—1)A
d = lmod (gcd(A, (d—1)z + n)) '

Hence,
(d—1)A A
( ) qgcd(A, (d—1)zx+ k) qgcd(A, (d—1z+ k) ( )
for some integers g. Since the previous three factors are positive integers we deduce that ¢ = 1 and

ged(A, (d — 1)z + k) = A, which means (d — 1)z + £ = p®u for some integer u > 1. Now it is immediate to
establish that p® divides x.

Conversely, suppose that p®|k, that is, kK = p*h for some h > 1. Since ged(p, gq) = 1 (recall that d — 1 =
p“qq), by Lemmathere exists x € Za such that ggz+h = p*~*mod(A), so ggx+h = p*~*+wA for some
integer w. In this case, (d—1)z+kx = (p“qq)x+(hp*) = p*(qaz+h) = p*+wAp®, and (d—1)z+k = 0mod(A).
Therefore, x is a fixed point of ¢g . O

Lemma 4.8. Let A =p° and s > 1 and d € {2,...,A — 1} with ged(A,d) =1 and ged(d — 1,A) = p°,
d—1=p%q, and 1 < a < s—1. Let k € {1,...,A}. Suppose that x € Za is a periodic point of ¢4, of
period N, with ged(A, (d — 1)z + k) = p’ for some 0 < j < s. Then

N =dsta-j,
the order of d modulo p*T*~7. In particular:
(a) N=p* T ifp>3 orp=2,a>2;
(b) If p=2,a=1 and d*> — 1 = p7qa, with gcd(2,q2) =1 (by force v > 3), in turn:

(b.1) N=1ifj=s;
(b2) N=2ifl1<s—j<y—1;
(b.3) N=25"7"7%2 jfs —j >y —1.
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Pr((;of.1 By Proposition [2.11} N is the order of d modulo % =p*TIqy. So, d¥ =1 mod(p*t* 7 qq)
and also

dY = 1mod(p*To).

Therefore, by the definition of order
5s+afj ’N :

To short the notation, write ¢ := ds44—;. Next, we proceed to show that qﬁg .() =z, and according to the
definition of period N we will obtain N|§, and thus N = = dsq—j.

By 1' gb‘;,n(x) —x = % (d=1Dzx+k) = %quj, where we have used the definition of ¢, so

d? — 1 = p®T5~Jy for some integer u, and that ged(A, (d — 1)z + k) = p7, s0 (d — 1)z + Kk = p/g; for some

s Ugj

integer ¢;. Then ¢Zﬁ(m) —z=p° 7, and taking into account qbgﬁ(m) —x € Z and ged(gq,p) = 1, we deduce
that ¢Z7H(x) — 2 = 0mod(A), hence N|d.
By using Lemmas and we obtain the descriptions for N in cases (a) and (b), respectively. O]

Theorem 4.9. Let A = p® > 3, with p prime and s > 1. Let d € {2,...,A — 1} verify ged(d,p) = 1 and
d—1=p% with 1 < a < s and ged(p,qq) = 1. Put & = pPq, 0 < Kk < p*, with ged(p, qx) = 1 and
0 < pB<s. Then:

(a) If B <o,

(a.l) If p>3orp=2,a>2,
Per((ﬁd,n) = {ps—ﬁ}.

(a.2) If p=2,a=1 (thus, B =0), with d*> —1 = 2Vqa, v > 3 and g2 odd,
Per(¢d,n) _ {Qmax{l,s—'y+2}}'

> «, Per ={0a,0041,---,05_1,05, Where 0q1; 1s the order of d modulo I i=0,1,...,s—
(b) If/B ) P (de,n) {5 )5 —+1 )5 )6 }7 h’ 5 +7 h d fd d l pa+j7 ) 05 ) )
a. In particular:

(b.1) Ifp>3orp=2,a > 2,
Per(¢qx) ={1,p,...,p° “}.

(b.2) If p=2 and a = 1, with d> — 1 = 27qa, v > 3 and q2 odd,

Per(¢g.) = {2/ :5=0,1,...,max{l,s — v+ 1}}.

Proof.
(a) Let x be an arbitrary periodic point of ¢4 ,. Then

(d—Da+r = p*qaz + pg = p° <Qk + pa’ﬁqcz:c)
with o — 8 > 1 and ged(p, gx +p*Pqqz) = 1. Consequently, ged(A, (d— 1)z + k) = p® for any periodic point

x € Z and part-(a) follows directly from Lemma (notice that case-(b.1) of Lemma |4.8|is not admissible
because s +a — 5 > 1).

(b) First, since (d — 1)z + k = p“ (pﬁ_aqk + qdat) and ged(gq, p) = 1, use Lemma to state that

Card ({(pﬁ_aqk + gqx)mod(A) : x € ZA}> = A.
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From here, we deduce that there exist x; € Za so that
(d— 1)z + K = p* (PP “qp + qaz;) = p* (p] + w;p®) = P+ @pt (4.3)

for some integers wj,w; = p®w;, 0 < j < s—a. If j = s —«, it is obvious that ged((d — 1)z5—a + K, A) =p°
and it is a simple matter to see that ged((d — 1)x; + K, A) = p*™J if 0 < j < s — a. The point z; is either
periodic or eventually periodic, j =0,1,...,s5 — a.
If z; is a periodic point of ¢q4, of period Nj, being gcd(A, (d — 1)x; + k) = p°tI, Lemma ensures
that N; = d,_;, being d5_; the order of d modulo p*I.
If z; is eventually periodic, not periodic, we observe that also ¢4 . (z;) verifies the property ged(A, (d —
D¢a () + k) = p**/. Indeed, by (4.3),
(d—1Dpgp(zj)+r=r+(d—-1)(k+dzx;) =r+ (d—1)zj + K+ (d — 1)z;]
=k +(d = Dfz; +p*7 + @p°]
= [ +(d = Vag] + (d = )p™* + (d = V)ayp®
= p™M + Qp* + (d = D)p™H + (d = D@p°
_ dpa+j 4 d(:)jps — d(pa+j _i_a]jps%
thus ged(A, (d —1)¢a . (z;) +K) = p*T7, because ged(d, A) = 1. Similarly, by the induction on n (we assume
that (d — 1)¢g . (z;) + K = d™(p* ™t + @;p*), with ged(A, (d — D)y . (x5) + k) = p**7) we find

(d = V)¢t (ag) + =k + (d = 1)(r + doff . (2;))

= ot (d = DI l;) + G + 3]

= [k + (d = 1) . (7)) + (d = DA (™M + &;p°)

= d"(p*" + ;%) + (d = VA" (™ + @;p%)

— dn+1(pa+j —l—(,Ndjps)
with ged(A, (d— 1)¢”+1(:Uj) +£) = p**tJ. Following this process and taking into account that z; is eventually
periodic, for some m we finally obtain a periodic point z; = ¢}, _(z;) such that ged(A, (d—1)7;+ k) = p**,
and by Lemma [4.§]its period is 05 ;.

Being j an arbitrary value, 0 < j < s — «, we have proved that {d,,d5-1,...,0a} € Per(¢q,). To
finish, realize that if o is periodic of period N, being 8 > o we find ged(A, (d — 1)z + k) = p**J for some
0<j<s—a,and Lemmayields N = §5_;. Therefore, Per(¢q ) = {ds,0s—1,--.,0a}

In particular:

(b.1) if p=3or p=2,a>2, by Lemma n 2.7 or (4.1)), we obtain d,.; = p' for i > 0. Therefore,
Per(¢q,) = {Lp,-...p" "}
(b.2) if p=2 and o = 1, then Per(¢q,) = {0s,05-1,...,0a}. If v > s, by Lemma (or ),
Per(¢q,) = {1,2}.
If v < s, again Lemmayields S1=1,00=...=06,=2,0,41=22 ..., 05 =0,4(5—y) =271 50

Per(pa,) = {1,2,2%,...,25 71}

In Table [2| we show some examples of the set of periods for different values of d, p and s.
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Table 2: Set of periods of ¢gq,, when ged(d,A) =1 and ged(d — 1,A) > 1.

A 23
d 3 )
K 2|k || 21K || 4k || 2|k, 4tk || 21K
elements in
Per(pas) || 12 | 4 1,2 4 8
A 32 33
d 47 4,7.13,16,22,25 10,19
K 3k || 31k || 3|k 31K 9k || 3|k, 91k || 31K
elements in
Per(gas) || 13 | 9 13,9 27 1,3 9 27

4.8. Converse result

When A = p* for a prime p we characterize the set of periods for a given map ¢4, : ZA — Za. We now
investigate what fixed sets can be obtained as the periods of a map ¢4, : ZaA — Zn.

Proposition 4.10. Let p be a prime number, s € N and A = p® > 3, then it holds:

1. Let N be a divisor of p—1 and either M € {0,1,...,s—1}ifp#2or A =22 or M € {0,1,...,5—2}
if A =2" m > 3. Then there exist d,x € Za such that {1} U {ij}j]\/io = Per(¢q)-
2. Let M €{0,1,2,...,s} then there exist d,r € Za such that {pM} = Per(¢q.).

Proof. We prove the first item of the result for N # 1, N|(p — 1). In this case, by force p # 2 and
Theorem we can choose a generator, g, of the multiplicative group ZJ. Moreover, g can be chosen
in the set of generators of Z; by Theore Recall that Card(Z%) = ¢(A) = p*}(p — 1) and then

gps_l(p_l) = 1mod (A). Let, as in Lemma 0; be the order of g modulo p’,j€{1,2,...,s}, and observe
that g is a generator of Z7, so §; = p — 1 and by Lemmadj =(p—1)p’~!foranyjc{2,...,s}.

If M =0, Theorem [4.6) ends the proof of the first item. If M > 1, consider u =s—M,so 1 <u <s—1.
Since N divides p — 1, take the natural ¢ for which tN = p — 1, then tNp*~! = (p — 1)p*~! = §,. Take
d:= ¢*""" and observe that

dN = gNt?"" = g% = 1mod (p¥). (4.4)

Since ¢ is a generator then ged(g,A) = 1 and ged(d,A) = 1. Also d = g # 1mod (p™) for any
ne€{l,2,...,s— 1}, otherwise by Remarkwe have 8, = p"~(p — 1)[tp*~ !, so tp~! = hp"~L(p — 1) for
some h € Z, or p* ™" = hp%l which implies t = p — 1 (taking into account that ged(p,p — 1) and u > n),
that is, N = 1, a contradiction. Therefore, ged(d — 1, A) = 1.

In order to apply Theorem we show that the order of d modulo p, say 51, is N. From 1) and
Remarli we have 6;|N. On the other hand, d = ¢! = 1mod (p), again by Remark o =
p — 1]té1p*~ ! and then p — 1|td; since ged(p,p — 1) = 1. Considering that p — 1 = tN we obtain N|§; and
therefore 5~1 = N.

Additionally, it is easy to check that d”¥ # 1mod (p**!) and then dV — 1 = p¥qy with ged(p, qq) = 1.
Finally, we apply Theorem to obtain {1} U N{p’ Zo={1u N{pj}j]\/io = Per(¢q,) for any k € Za and
we are done.

If N =1 in case (1) we define d = p* ™ + 1, kK = p*M and then @« = 8 = s — M in Theorem
Ifp>3orp=2s—M2>2 thatis, p >3 or p =2 M < s— 2, use Theorem [4.9 (b) to obtain
Per(¢q,) = {pj};;(()s_M) = {p7}JM:0 To complete case (1) with N = 1, it remains to analyze p = 2,s—M =1
and A = 22 (if A = 2™, m > 3, the above reasoning covers the range for M € {0,1,...,s—2}). Now, s = 2,
M =1,d =3,k =2 and it is direct to check that Per(¢32) = {1,2} in Z4.
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For the proof of the second item, simply apply Proposition (i) to obtain Per(¢; ps-o) = {pffja} =

{p“}. O
We summarize all the results of Sections [3| and [4 on the sets of periods of ¢4, in the next theorem.

Theorem C. Let A be a positive integer, d,k € Za and let ¢4 : Zn — Za be defined by ¢q,.(x)=dr + k.
Then we distinguish the following cases:

1. For any A € N we have Per(¢o ) = {1} and Per(¢; ) = {m}.

2. When A > 3 is even, then Per(pa_1,) = {1,2} if k is even and Per(éa_1,) = {2} if k is odd.
3. When A >3 is odd, then Per(¢a_1,) = {1,2}.

4. For A = p® and p prime, we have:

Conditions on d, A, k Per(¢q,x)

ged(d—1,A) =1

N — (e
1 e k=t (1JUN . {prpreios=)
N is the order of d modulo p
ged(d —1,A) > 1
d=1 mod (p®), d# 1 mod (p**?!)
x=0 mod (p?), K #0 mod (p°*) {20 f B>«
1<a<s, 08 <s,
If p = 2 this only works when a > 1

ged(d,A) =1

{rrliff<a
ged(d,A) > 1 {1}

5. For A = 2° > 3, the missing cases corresponding to p =2, = 1 are:

Conditions on d, A, k Per(¢g,x)
d=1 mod (2), d#1 mod (2%)
k=0 mod (2°), Kk Z0 mod (2°+1) .
@=1 mod (), %1 mod @) | P=0 {2} ifs<v—1
0<p<s,v>3

{25772 if s >y —1

iymax{l,s—vy+1
B>1 {27 nastlsr)

Conversely, let p be a prime and let A = p* with s > 1 then:

1. For any divisor N of p—1 and any o € {0,1,2...,s =1} ifp#2 or A =22, a €{0,1,2...,5 — 2}
if p=2, there exist d,k € Za such that Per(¢q,) = {1} U {ij}?‘zo.
2. For any a € {0,1,2...,s} there exist d,x € Za such that Per(¢q,) = {p®}.

Proof. Apply Lemma [2.10] Propositions [3.1] [4.3] [£.10] and Theorems [4.4] [£.9] O
As a consequence of this result we obtain Theorem [A]
proof of Theorem[A4] Take A = p* and ¢q : Za — Zp, then Per(¢q,) is provided by Theorem

e If Theorem |C| (1) is applied then Per(¢,,) is either {1} or {p’} for some j € {0,1,...,s}; both sets
are of the type (A-2).
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e When Theorem [C] (2) holds, then p = 2 with s > 2, and Per(¢q,) is either {1,2} or {2}, being {1,2}
of type (A-1) (notice that « =1 < s — (2, s) for all s > 2) and {2} is of type (A-2).

e In the case of Theorem [C| (3), p # 2 and we have Per(¢,,) = {1,2}, of type (A-1) for N = 2 (note
that it divides p — 1) and o = 0.

e The fourth item of Theorem [C] provides as period sets either
- {1}UN - {p]}max{os o} of type (A-1) in Theorem [A|since & > 1, 0 < max{0,s —a} <s—1=

5 — o(p,5); or
— {p7}] o, of type (A-1) since 1 <s—a<s—1=s—0(p,s); 0

— {p*~P}, of type (A-2) because B < a < s, a>1,802<s—f<s.
— To finish case (4), notice that {1} is type of both (A-1) and (A-2).
e The sets given by Theorem |C| (5) are {2}, {25772} (both sets are of type (A-2) since s > 2 and

2<s—y+2<s—1, weapply here vy >3 and s >y —1) or {2J}max{18 v} (of type (A-1) because
1 < max{1, 8—7+1}S8—2§S—0(p, s), we apply v > 3).

The converse follows directly from Proposition [4.10 O

5. The general case and Theorems [B| and

Let A = pi'p3?.. .pzk be a decomposition into prime factors and let ¢g4, : Zan — Za defined by
¢dk(x) = dr + k. Our interest is to relate the set Per(¢gq,) with the sets Per(¢g, »,) analyzed before, where
Dy i - Zp?i — Zp;i. To perform this relation we need some technical results.

Lemma 5.1. Let A = pi'p5? ...pi* be a decomposition into prime factors and let g : Zn — Hle pri be
defined by g(x) = (xmod (p;*)),. Then g is a ring isomorphism.

Proof. 1t is straightforward to check that g is a homomorphism, that is, g preserves the sum, the product and
the unit elements. From the Chinese Remainder Theorem, (see [2, Th. 5.26]), the system of congruences = =
armodpi', ...,z = a; mod p;* has exactly one solution z modulo the product A. Since g(z) = (a1,...,ax),
we obtain both the injectivity and the surjectivity of ¢ and we are done. O

Proof of Theorem[B. Let us now take d; = dmod (p;*), k; = kmod (p*) and @, x, Zysi — L, defined by
Gdy k() = dijx + K for any ¢ € {1,2,...,k}. Let Hle ¢d,.r; be the product map defined from Hle L5
into itself by

k
LT @t i ((@)s) = (dii + mi)iy
=1

Then, taking into account that dz + k = djz + k; mod (p]*) for all x € Zx, it is a simple matter to verify

k
g © (bd,l*i = H(ybdi,lii © g7 (51)
i=1
that is, the systems are topologically conjugate. As a direct consequence of Lemma [5.1 .5.1 and go @' =
k m . d,k
(Hi:l ¢d¢,m) o g for all m > 1, we obtain

Per(¢q,) = Per (H ¢d1,m>

and then Theorem [Bl follows. O
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As a consequence of this theorem we will obtain the proof of the below Theorem [D] a more precise
description of the set of periods in the general case. For given sets of natural numbers Ay, Ao, ... A, we use
the following definition:

lem{A}E | = {lem{a;}F_, : a; € A;}.

Let A = pi'p3?...p;* be a decomposition into prime numbers with s; > 0 and ged(p;, p;) = 1 for any
i # j, 1,5 € {1,2,...k}. Let Q be a set, a partition of Q which is a pair of subsets (R, 7T) such that
Q=RUT,RNT =0 (eventually R or T can be the empty set). Fix a partition (R,T) of {1,2,...,k}.
Let N = {n;}icr be a (fixed) set of positive integers. Consider a subset F € P(R) and the corresponding
subset {n;};cg C N. Then we define

Dg = lem{n;}icp

if E# 0 and D =1if E = 0.
Write the decomposition of Dg ar into prime factors as follows

LE PBoE Bk, Br+1,E Bug,E

Denx=p1" Dy " oo D PRy e Do s

where 3; g > 0if 1 <4 <k and B; g > 0 whenever the prime p;, with ¢t > k, appears in the decomposition
of DE‘,N-
Next, fix a set of natural numbers A = {a;}%_; and for the case R # 0, T # (), define

PJ\E/,A = {DE,N’ ) Hp;nax{O,ji—ﬁi,E} ) Hp?lax{o’ai_ﬁi’E} 0< i < Oéi}
S €T

and

1] R max{(],ai}
€T

If T =0 or R =0 we consider that the products [[;,c+ inax{o’ai_ﬂi’E} and [[;cp inax{o’ji_ﬂi‘E} are equal to
1, respectively. We are now in a position to describe and prove the following main result.

Theorem D. Let A = p'p5?...p* be a decomposition into prime factors with s; > 0 and ged(p;, p;) = 1
foranyi#j,i4,5€{1,2,...k}. Let d,k € Za. Then, there exist:

(a) a partition (R, T) of {1,2,...,k},

(b) a set of positive integers A = {Ozi}f:l, with 0 < a; < s; ifi € T and 0 < oy < s; — o(ps, s;) whenever
1E€R,

(¢) a set N ={n;}icr of positive integers satisfying n;|(p; — 1),

for which

Per(dg,.) = U PNA
EeP(R

Conversely, let (R,T) be a partition of {1,2,...,k}, let {az} "1 and {n;}ier be sets of naturals verifying
the conditions (b) and (c) mentioned before. Then there exist d, s € A such that Per(¢ax) = Ugepr) P/\/,A'

Proof. We begin with the proof of the direct part. By applying Theorem [B| we obtain:
Per(¢4,) = lem{Per(¢q, ;) }1—1, where d; = dmod (p}'), k; = kmod (p{’).
Now Theorem [A]is applied to compute each Per(¢g, ,,). Let

R:={i:1<1i<k, Per(¢q,,,) is of type (A-1)},
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T:={i:1<1i<k, Per(dq, ) is of type (A-2)}.

Then if i € R there exist n;|(p; — 1) and 0 < a; < s — 0(p;, s;) such that Per(dg, .,) = {1} U {nzpj}o" If
i € T there exists 0 < a; < s; such that Per(¢g, »,) = {p;"}. We are going to prove now that Per(qbd N) =
Ugepr) Prra where N = {ni}icr, A = {a;}j_, and

P/J\E/,A = {DE,N . sznaX{Oyji_ﬂi,E} ) Hp;nax{o,ai—ﬂiﬂ} 0< i < 041} .
i€l €T

Let t € Per(¢q,), then Theoremlgives t = lem{m;}¥_, for some m; € Per(¢g, ,), 1 < i < k. Moreover,

if i € T then m; = pj, however, if i € R we have two possibilities: either m; = 1 or m; = n@p/ with
0<ji<a;. Let E={icR:m; #1}. If E =0, then t = [[,c7p}" € PNA If E # (), observe that if we
write lem{n; }icp = pfl Epgz e .p’gk’Ep’giﬁl’E .. pSZJEE (the decomposition into prime factors with ; g > 0
if 1 <i <k and ;g > 0 otherwise) then:
t = lem{m;}*_,
= lem{pS" ,nzpZ reT,ie R}

= lem{lem{n; : [ € E}, p>" ,pl :reT,i€E}

1(:m{pﬂ1 o ﬁQ e .pik‘Epifll’E pﬁZE E,p?T,pgi creT,i€E}
B, B E Br,E_Brk+1,E Bu E max{Jz Bi, g0} max{az Bi, E»O}
=p; Py D Py - o H H

i€l €T

Then t € P/{E/7A and we have shown that Per(¢q ) C UEGP(R) PAE/,A.
Let now t € UEep(R) PAE;’A, then there exists F € P(R) and values 0 < j; < «; such that

t=Dpn- H p;nax{jrﬂi,E»O} _ Hp;nax{aifﬁiﬂ,(]}

i€l €T
B B: ﬁk, B s Bu B maX{Jz ﬂz 70} maX{O‘z 61 70}
_pllEp22E“.pkE k++11E“ E H E H E
i€E €T
lcm{pﬁl JE 52 B ‘pfk,Epfl—c:il,E png E,p?s7pgi seT,i€E}

lcm{lcm{nl le B}, pSe,pl':seT,ieE}
= lcm{pss,nipZ’ :s€T,i€FE}.

For the indices 7 € R \ E we know that m, := 1 € Per(¢q, .,), because these sets of periods are of type
(A-1). Therefore,

t = lem{p2* ,nzpl cseT,i€ E}
= lcm{pss,nipi smp:s€T,i€R,re€R\E}
=lem{m,}5_,.

Thus UEeP PNA Per(¢q,x)-
Let us now prove the converse. For any ¢ € R, apply Theorem [A] . (A-1) to obtain ¢g, x; : Zp;si — Lpsi

such that Per(¢g, ) = {1} U {n,p7} Apply now Theorem [A| (A-2), for any ie T, to obtam qﬁd“,{l :
Lpysi — Lp,si satisfying Per(dg, x,) = {p ‘}. Now we use Lemma [5.1| and ) to obtain ¢g, : Za — Za,

Gdr = Hle Gd; k> satisfying Per(¢gq,.) = lcm{Per(QSdl.,,.%)}l:1 and finally repeatlng the argument of the
direct part we obtain

Per(pg,) = U PNA
EcP(R



J. S. Cénovas Pena, A. Linero Bas, G. Soler Lépez, J. Nonlinear Sci. Appl. 9 (2016), 5041-5060 5059

5.1. Examples
In the following table we show some examples of the set of periods in the general case.

A 10 15 45
d 3.7 2 2
K 2|k || 21K || any any

elements in

Per(gge) || 14 [ 24 | 124

1,2,4,6,12

We analyze now an example by using the converse part of Theorem @ Let A = 32.5-31-29 with
<p17p27p37p4) = (37 57317 29)7 <317 52,83, 34) - (27 17 17 1)7 R = {1a 27 374}7 T = wa

N={n1=2,np=2,n3=15n4 =7}
and

A={a1=1,as =0,a3 = 0,4 = 0}.
Then we obtain the existence of ¢g , : ZA — Za satisfying

Per(¢gr) = |J PE.a=1{1,2,6,7,14,15,30,42,105,210}.

EcP(R)

This set is obtained by applying the calculations of the following table:

E Dg P/{EfA E Dg P/\E;A
0 1 {1} {2,3} 30 {30}
{1} 2 {2,6} {2,4} 14 {14}
{2} 2 {2} {3,4} 105 {105}
{3} 15 {15} {1,2,3} 30 {30}
{4} 7 {7} {1,2,4} 14 {14,42}
{1,2} 2 {2,6} {1,3,4} 210 {210}
{1,3} 30 {30} {2,3,4} 210 {210}
{1,4} 14 {14,42} ||| {1,2,3,4} | 210 {210}

Let us find d and k. By applying Theorem Lemma and 1} we need to find maps ¢g, x, : Liysi —
pri satisfying Per(¢q, x,) = {1,2,6}, Per(¢a, r,) = {1,2}, Per(da, ;) = {1,156} and Per(¢q, ,) = {1,7}.
Next, by applying Theorem |C| we need to find d; € Zsi, 1 < i < 4, satisfying: (1) the order of d; modulo p;
is n; di' = 1(pi), (2) d'" # 1mod (p?). A solution of these relations is di = 2, dy =4, d5 = 7, dy = 7 and
the Chinese Remainder Theorem provides a unique d = 20684 € Za satisfying d = d; mod (p;*). Moreover,
by Theorem [C]k; =0, 1 <i <4, and kK = 0. O
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