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1 Introduction

In [1] Guo and Lakshamikantham proved the first important result for
coupled fixed points of nonlinear operators and presented some appli-
cations in differential equations. After that in [2] Bhaskar and Lak-
shamikantham prove the following;

Thoerem|2] Let ' : X x X — X be a continuous mapping having the
mixed monotone property on X. Assume that there exists a k € [0,1)
with k’

d (F (l‘, y) ) F (u’ U)) < §[d($, u) + d(yv U)]v

for all > wu, y < v. If there exists g, yo € X such that zo < F(xg,yo)
and y > F(yo,zo). Then there exist z,y € X such that = F(z,y) and
y=F(y,z).

The coupled fixed point theory has many applications in the existence
theory of many types of operators. Many authors divert their efforts in
this direction and generalize and present many variants of the above
result in many directions. A mutivalued result is presented in [3] by
Samet and Vetro. Some researchers proved coupled fixed point results
without monotone property (see [4-9]). In [10] Samet et al. show that



most of the coupled fixed point theorems on ordered metric spaces are
infact immediate consequences of well-known fixed point theorems in the
literature. In this article we explain how our results nullify the discussion
in [10]. We define mixed monotone property for multivalued mappings
and generalized it. We provide a graphical presentation of sequences
which are neither increasing nor decreasing but converge at one point,
that is the sequence having compareable terms. We prove existence of
solution of a certain type of integral equations and provide an example
to validate the significance of our results.

2 Preliminaries

Let E be a real Banach space with its zero element 6. A nonempty subset
K of E is called a cone if

(a). K is nonempty closed and K # {6}.

(b). K 01(—K) = {0):

(¢). if o, B are nonnegative real numbers and z,y € K, then ax+py € K.

For a given cone K C E, we define a partial ordering < with respect
to K by x < y if and only if y — 2z € K; x < y stands for z < y and
x # y, while x < y stands for y — x € int K, where int K denotes the
interior of K. The cone K is said to be solid if it has a nonempty interior.

The following definitions and lemmas will be used to prove our main
results:

Definition 2.1. [11] Let X be a nonempty set. A vector-valued
function d : X x X — E is said to be a cone metric if the following
conditions hold:

(M1) 0 g d(x,y) forall z,y € X and d(x,y) = 6 if and only if x = y;
(M2) d(z,y) = d(y,z) forall z,y € X;
(M3) d(z,2) < d(z,y) +d(y, z) forall z,y,z € X.

The pair (X, d) is then called a cone metric space.

The cone metric d in X generate a topology 7,. The base of topology
T4 consist of the sets

B.(y) ={z € X : d(x,y) < ¢} for some ¢ € E with 0§ < c.

For zp € X and 0 < r, we define closed ball

B(zg,r) :={x € X : d(zg,x) I 1},

in cone metric space (X, d). A set A C (X, d) is called closed if, for any
sequence {x,} C A converges to z, we have = € A.

Definition 2.2. [11] Let(X,d) be a cone metric space, x € X and
let {x,} be a sequence in X. Then



(1) {x,} converges to x if for every ¢ € E with § < ¢ there is a
natural number ng such that d(x,,z) < ¢ for all n > ny. We denote
this by limx, = z;

n—oo

(17) {x,} is a Cauchy sequence if for every ¢ € E with 6 < ¢ there is
a natural number ng such that d(x,, z,,) < c for all n,m > ng;
(13i) (X, d) is complete if every Cauchy sequence in X is convergent.
Let (X, d) be a cone metric space. The following properties will be
used very often (for more details, see [12, 13]).
(P1) If u g v and v < w, then u < w.
(P2) If ¢ € intK, a, € E and a,, — 6, then there exists an ng such
that, for all n > ng, we have a,, < c.
Definition 2.3. [14] A partially ordered set consists of a set X and
a binary relation < on X which satisfies the following conditions:
(7). = < x (reflexivity),
(7). if z <y and y < x, then x = y (antisymmetric),
(737). if z <y and y < z, then x < z (transitivity),
for all z,y and z in X. A set with a partial order < is called a partially
ordered set. Let (X, <) be a partially ordered set and z,y € X. Elements
x and y are said to be comparable elements of X if either x < y ory < z.
Definition 2.4. [15] Let A and B be two non-empty subsets of (X, <
), the relations between A and B are denoted and defined as follows:
(7). A<y B :if for every a € A there exists b € B such that a < b,
(17). A <o B : if for every b € B there exists a € A such that a < b,
(i11). A<3 B:if A<y Band A <; B.
In addition we define the following relations
(). A <4 . if for every a € A there exists b € B such that a < b,
(read as; "a is compareable with b”).
(v). A <5 B :if for every b € B there exists a € A such that a < b.
Definition 2.5. An ordered cone metric space is said to have a
subsequential limit comparison property if for every non decreasing se-
quence {z,} in X with x,, — z, there exists a subsequence {z,, } of {z,}
such that z,, =< x for all n.

Definition 2.6. An ordered cone metric space is said to have a se-
quential limit comparison property if for every non decreasing sequence
{z,} in X with x,, — z, we have z,, < x for all n.

Let C'(X) denotes the family of nonempty closed subsets of X. According
to [16], let us denote for p € E

s(p)={¢€B:p<q}forgek



For A, B € C'(X), we denote and define
oc(A,B)= N s(d(a,b)).

a€AbeB

Lemma 2.1 Let (X, d) be a cone metric space with a cone K. If
q € 0(A, B), then d(a,b) g g forallae A, b€ B.

Proof: Since ¢ € 0(A,B) = n.s (d(a,b)), which means ¢ €
acA,be

s(d(a,b)) for all a € A and b € B. This further implies that
d(a,b) < q

foralla € Aand b € B.
Remark 2.1 [12] The vector cone metric is not continuous in the gen-
eral case, i.e. from z,, — z, y, — y it need not follow that d(z,,y,) —

d(z,y).

Remark: 2.2 Let (X,d) be a tvs-cone metric space. If £ = R
and P = [0,400), then (X,d) is a metric space. Moreover, for A, B €
CB(X), H(A, B) = inf s(A, B) is the Hausdorff distance induced by d.
Also note that inf o(A, B) = sup{d(a,b) : a € A,b € B}.

3 Set valued results

Definition 3.1 Let (X, <) be a partially ordered set and F': X x X —
2% be a set valued mapping. We say that ' has comparable combined
monotone (CCM) property if for any z,y € X,

X1, T2, Y1, Y2 € X, w1 =X 29 and Y1 X Yo = F(w1,11) <4 F(22,72).

Definition 3.2 Let (X, <) be a partially ordered set and F' : X x
X — 2% be a set valued mapping. We say that F has combined
monotone (CM) property if for any x,y € X,

1, %2, Y1, Y2 € X, 11 < x9 and yy > yo = F(x1,y1) <1 F(23,92).

Note that (CM) property implies (CCM) property.

Remark: 3.1 Above definition of combined monotone property is
equivalent to the mixed monotone property in multivalued mappings.
Let (X, <) be a partially ordered set and F' : X x X — 2% be a set
valued mapping. From litrature we say that F' has mixed monotone
(MM) property if for any =,y € X,

T, € X, 21 <29 = F(x1,y) <1 F(22,7) (a)

and
yLp € X, 1 <y = F(z,y2) <1 Fa, ). (b)

4



From (a) we have for 1 <z = F(z1,y1) <1 F(22,y1) and (b) implies
Yo <y1 = F(wg,y1) <1 F(x2,y2), thus we have F'(z1,y1) <1 F(x2,y2)-
Hence (MM) implies (CM).

Conversely: For x1 < x9 and y1 > yo = F(x1,11) <1 F(22,92) =
F(x1,y) <1 F(az,y) for y1 = yp = y. Also F(z,y1) <1 F(x,y,) for
x1 = x5 = x. Thus (CM) implies (MM).

So we have

(MM) < (CM) = (CCM).

Example 3.1. Let X =[-1,1] and F: X x X — 2% be a mapping

defined by

Flay) = [l -sin()
We need to show that F' does not satisty (a) and (b).

For any y € X and for x1,25 € X, 21 <12y = F(x1,y) <1 F(x2,7)
i.e., -1,z - sin(i)] C [-1,zy - sin(%)] but for any x € X, take y; =
0.211,y, = 0.573 € X the clearly y; < ys %A F(z,y2) = [—1,0.988z] <4
F(z,y1) = [-1,-0.999]. Thus F does not satisfy (MM) property, but
satisfy (CCM) property.

Theorem 3.1 Let (X, d) be a complete cone metric space endowed
with a partial order < on X. Let F': X x X — C(X) be a multivalued

mapping having CCM- property on X. Assume that there exists a k €
[0,1) such that

g[d(x, u) +d(y,v)] € o(F(,y), F(u,v)]

for all x < u, y < v. If there exist xg,yg € X, such that
{zo} <4 F(xo,y0) and F(yo,0) <5 {yo} -
If X has limit comparison property then there exist z,y € X, such that
T € F(z,y)and y € F(y,).

Proof: Since {xo} <4 F(z0,v0) and F(yo,x0) <5 {y0}, then there exist
some x1 € F(z9,y0) and y; € F(yo, xo) such that

o < x1 and y; X ¥, (1)

so by given condition we have

o 20) + dlyo, )] € o(Fwo, ). Flar, )],
and

S1d(yo, y1) + d(zo, x1)] € o (F (o, 7o), F(y1, 1)].

Do | =



As
zo < x1and y1 X yo = F(xo, yo) <4 F(z1,y1) and F(yo, o) <4 F(y1,71)

then there exist zo € F(z1,y1) and yo € F(y;, 1) such that z; < w9,
and y; < 19, so using lemma 2.1 we have

k
§[d($0, r1) 4+ d(yo, y1)] € o(d(z1, 72))
which gives

d(x1, 72) <

(o, m1) + d(uo, )]

also

Do |

_[d(y(b yl) + d([[‘o, $1)] € S(d(yla y2))
this gives

k
d(y1,92) < §[d(y07yl> + d(z0, 71)].
Continuing in this way we will get, x,12 € F(2n11,Yns1) and Yo €

F(Yns1,Tne1) such that x,11 < 2,49, and y,11 X Ypy0, s0 we have

o

d($n+2a $n+1) < —[d(9€n+1, 33n) + d<yn+1a yn)}

2
k k
# _d(anrla xn) + _d(yn+17 yn)
2 2
and
k
d(yn+27 ynJrl) < §{d<yn+17 yn) + d<xn+17 mn)]
k k
=< §d(yn+1, Yn) + §d($n+17 Tn)-
Consider,
k
d<yn+27 yn+1> # E[d(ynJrl: yn) + d(xn+17 xn)]
k k
< §d(yn+17 Yn) + §d($n+1a Tn)
k? k2
< ?[d(%% ynfl) + d(SL’n, xnfl)] + ?[d(yTh ynfl) + d(‘TTH ‘T'nfl))]
k2
4 ?[d(yna ynfl) + d(l’n, $n,1)]
.kn—l—l
< 5 [d(y1,y0) + d(z1, 70)]



Similarly

kn+1
d(Tnt2; Tngr1) < 5 [d(z1, z0) + d(y1,Y0)]
Now for m > n, consider
d<xn7 xm) % d(xn7 xn—i—l) + d($n+17 xn+2) + -+ d(ajm—la xm)

1
4 é[kn + kn+1 + c + kmil][d(xh I‘O) _'_ d(y17 yO)]
kn
< m[d(mb xO) + d<y17 yO)]'

Since k™ — 0 as n — 00, this gives us %[d(m, xo)+d(y1,y0)] — 0

as n — 00. Now, using properties (P1) and (P2) of cone metric space,
for every ¢ € E with § < ¢ there is a natural number n; such that
d(xp, xm) < ¢ for all m,n > ny, so {z,} is a Cauchy sequence. As
(X,d) is complete, {z,} is convergent in X and lim x,, = Z. Hence, for

every ¢ € [E with 6 < ¢, there is a natural number k; such that
d(T,x,11) < g, for all n > ky.

Similarly we can prove that {y,} is cauchy sequence in X, by complete-
ness of (X, d) we have limy, = §. Hence, for every ¢ € E with § < ¢,

there is a natural number &k, such that
c
d (Y, Yni1) < 3’ for all n > k.

Now to prove z € F(Z,y) and § € F(y,Z). By limit comparison
property of X, we have z,, < T and v, < ¢ for all n, we have

g[d(mn,:ﬁ) + d(yn, 7)) € O(F(n, y), F(7, 7))

and

g[d(ym 7) + d(z, 7)) € 0(F (Yo, 70), F(7, 7))

there exists a sequence v,, in F(Z, %) such that

d(pa1,vn) < g[d(xn,f) + d(Yn, 7))

and a sequence u,, in F (g, %) such that

A1, ) < 1y, 7) + 7).



Now consider,
d(z,v,) < d(Tpi1,Z) + d(Tpi1,vn)
< A, ) + 5 A, )+ (3, 9)]
< c for all v > k3(c), where ks = max {ky, k2}

Which iplies v, — T, since F(Z,7) is closed so & € F(Z,y). Similarly
u, — 4, and F(y,7) is closed so y € F(y, ).

Corollary 3.1. Let (X, d) be a complete cone metric space endowed
with a partial order < on X. Let F': X x X — C(X) be a multivalued
mapping having CCM- property on X. Assume that there exists a k €
[0,1) such that

g[d(x,u) +d(y,v)] € o(F(x,y), F(u,v)]

for all x < u, y < v. If there exists xg, yp € X, such that
{zo} <4 F(wo,90) and F(yo, 7o) <5 {%o} -
If X has limit comparison property then there exist z,y € X, such that
T € F(z,y) and y € F(y,7).

Corollary 3.2. Let (X,d) be a complete metric space endowed with
a partial order < on X. Let F: X x X — CB(X) be a multivalued
mapping having CCM- property on X. Assume that there exists a k €
[0,1) such that

S(F(x,y), F(u,v)) <

NN

[d(z, u) + d(y,v)]
for all x < u, y < v. If there exists xg, yp € X, such that

{zo} <1 F(20,90) and F(yo, zo) <2 {yo} -
If X has limit comparison property then there exist z,y € X, such that
T € F(z,y) and y € F(y,).

Remark: 3.2.  Samet et al [10] ,with the help of their lemma
2.1, showed that most of the coupled fixed point theorems for single
valued mappings (on ordered metric spaces) are in fact immediate con-
sequences of well-known fixed point theorems. However in cone metric
spaces lemma 2.1(a) of [10] is not valid. Moreover in the case of mul-
tivalued mappings validity of lemma 2.1(b) of [10] is also suspicious.
Therefore, the extensions of coupled fixed point results to multivalued
mappings in cone metric spaces are reasonable.
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4 Single valued results

Definition 4.1 Let (X, <) be a partially ordered set and F' : X x X — X
be a mapping. We say that F' has comparable combined monotone
(CCM) property if for any x,y € X,

T1,T2,Y1,Y2 € X, 1 X T2 and y1 X yp = F(x1,11) < F(22,42).

Definition 4.2 Let (X, <) be a partially ordered set and F' : X X
X — X be a mapping. We say that I’ has combined monotone (CM)
property if for any z,y € X,

T1,%2,Y1,Y2 € X, w1 <xp and yr > yo = F(z1,y1) < F(x2,42).
Clearly also for single valued mappings
(MM) < (CM) = (CCM).

Remark 4.1 In the litrature many authors discuss the convergent se-
quences having compareable terms, we provide an example for a con-
vergent sequence which is niether nonincreasing nor nondecreasing but
have comparable terms. The sequence

1

x, = —sin(n), n=1,2,3- -
n

has comparable terms and converges to 0.

The following graph shows the comparable terms of the sequence for
some values of n;

0.8+
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Corollary 4.1 Let (X, d) be a complete cone metric space endowed
with a partial order < on X. Let F': X x X — X be a multivalued
mapping having CCM- property on X. Assume that there exists a k €
[0,1) such that

A(P(2.), P, v) < > ld(e,u) + d(y, v)
for all x < u, y < v. If there exists xg, yp € X, such that
xo < F(x0,90) and F(yo,xo) =< Yo,
If X has limit comparison property then there exist z,y € X, such that
T=F(z,y) and y = F(y,).

Proof: In theorem 3.1 take F' as a single valued mapping as:

E[d(az:, u) +d(y,v)| €o(F(x,y), F(u,v)] = N s(d(a,b))

2 a=F(z,y),b=F (u,v)
Sld,u) + dly, v) € s(dF (o), Flu,0)
which implies
A(P (), P, 0) < 2 e, u) + d(y, )]

Thus following the proof of theorem 3.1 we will get the result.
Corollary 4.2 Let (X, d) be a complete metric space endowed with

a partial order < on X. Let F': X x X — X be a mapping having

CCM- property on X. Assume that there exists a k € [0, 1) such that

A(F (), F(u,v)) < ld(r,u) +d(y, v)]
for all x < u, y < v. If there exists zg, yp € X, such that
xo < F(x0,90) and F(yo, o) =< Yo,
If X has limit comparison property then there exist z,y € X, such that
T=F(z,y) and y = F(y,).

Corollary 4.3 [2] Let (X, d) be a complete metric space endowed with
a partial order < on X. Let F': X x X — X be a continuous mapping
having the mixed monotone property on X. Assume that there exists a
k € [0,1) with

A(F (a,9), F (w,0) < Sld(a,0) + d(y, )],

for all > u, y < v. If there exists g, yo € X such that o < F(xo,y0)
and y > F(yo,xo). Then there exist z,y € X such that z = F(x,y) and

Y= F(yam)'
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5 Applications:

In the next theorem we provide some conditions for existence of solution
of a certain type of a nonlinear integral equation.
Theorem: Consider the nonlinear integral equation of fredholm

type:

u(z,y) = h(x,y)—I—/ Ki(x,y,7,8)+Kao(z,y,7,5)] (f(r,s,u(r,s)) + g(1,s,v(r,))) drds

00
(*)
where K7, Ky € C(I,x Iy x I, x1,,R) and f,g € C(I,x I, xR, R), assume

that there exist A\, u > 0 and 6 € [0, %) such that  sup / Ki(z,y,7,8)drds| <
(I,y)EIQXIb

ab

9
——— and sup / Ky(z,y,7,s)drds| < For u; > wus, for
2(A+p) (w)elaxT ) 2(A+ )"

all (x,y) € I, x I, and g satisfy

0< f<$’y7u)_f($7y7v) < )\(u—v)

and

_:u<u - U) S g([E, y7u) - g(l'7y, U) S Oa
If the coupled lower solution of (x) exists, then there exists a unique
solution of the integral equation ().

Proof: Let X = C(I, x I, R), where I, = [0, a] and [, = [0, b], then
X is a complete metric space with metric defined by;

for Wy, W2 e X ; d(wlaw2)(’ray) = sup |w1(a7,y)—w2(m,y)|
(x,y)EIaXIb

Define F' : XxX — X by (F(u,v))(x,y) / Ky(z,y,7,8) (f(r,s,u(r,s)) + g(r,s,v(r,s))) drds

00

+/ Ky(x,y,7,8) (f(r,s,0(7,8)) + g(7,s,u(r,s))) drds+h(zx,y) for

00
all (z,y) € I, x I, and u,v € X. It is obvious that F' satisfies CCM

property. For u,v € X define a partial oeder u > v iff u(z,y) > v(z,y)
for all (x,y) € I, X I,. Now for uj,us,v1,v2 € X with u; > uy and
v1 > Vg, consider

d (F(uy,v1), Flug,v)) = sup  |F(ur,01)(z,y) — F(ug, v2)(2,y)]
(:E,y)EIaXIb

11



ab

//Kl(x, y, 7, 8) (f(7,s,u1(7,8)) + g(7,8,v1(7,))) drds+

00
sup ab

(z,y)ELy X Iy
//Kg(x, y, 7,8) (f(1,8,01(7,8)) + g(7, s,u1(7, s))) drds

00

//K1 x,y, 7,8) (f(1,8,u3(7,8)) + g(7, 8,v2(7, 5))) drds—

/ Ky(z,y,7,8) (f(1,s,v2(T,8)) + g(T,s,us(7, 5))) drds

= sup / Ki(z,y, 7, 8)[f(7,8,uy(7,5)) = f(7,8,uy(7,5))+

(z,y)€laxIy | 00
g(Ta S, Ul(T7 8)) - 9(7—7 S, UQ(T7 8))]d7—d8

+7]K2(w,ym S) (7, 8,0,(7,5)) = f(7,5,05(T, 5))+

g(1,8,u,(7,5)) — g(7, s, uy(7, 5))|drds

< sup / Ky(a,y, 7, 8)[f (7, 8,u(7,5)) = f(T, 8, us(7, 5))

(z,y)€laxIy | 00
+g(7,8,01(7,8)) — g(7, 8, 09(7, 5))|dTds

//K2 x,y, 7, 8)[f(7,8,01(7,5)) — f(7,5,02(T,5))

+ sup
(z,y)ElaxIy

+g(7, s,u1(7,8)) — g(1, 8, us(7, 8))]drds

< sup / Ki(x,y,7,8)[Mui(r,s) —ua(7,8)} + puf{vi(7,8)) — va(7, ) }drds

(l',y)EIaXIb

+ sup / Ky(z,y,7,8)[Muvi(r,8) —va(T, )} + p{ui(r, ) — ua(r, s)}|drds

(x,y)ELzXIb

< sup / Ki(x,y,7,s)[Ad(u, uz) + pd(vy, v2)|drds

(m,y)elaxlb

+

00

sup / Ks(x,y, 7, s)[Ad(v1,ve) + p(uy, ug)ldrds

(xvy)e]aXIb
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ab
< sup Ki(z,y,1,8)drds| - [Ad(uy,usz) + pd(vy,ve)] +
(x,y)elaxlb
ab
sup Ky(x,y, 7, s)drds| - [Ad(v1,v2) + p(ug,us)]
(z,y)€la X1y
00
<L [(Ad(ur, u2) + pd(vy, v )]—i—L [(Ad(v1, v2) + p(uq, us)]
=20+ ) 1, U2 palvy, U2 2O\ 1 1) 1, V2 p UL, Uz
= m[(/\ + p)d(ug, uz) + (A + p)d(vy, v2)]
0
= §[d(u1, UQ) + d(’Ul, ’Ug)]

Now let a(z,y) and [(z,y) be the coupled upper-lower solutions of

(%) . We have
a(z,y) < Fla(z,y), B(z,y))

and
B(z,y) < F(B(x,y), alz,y))

for all (x,y) € I, x I,. Thus all the hypothesis of the corollary 4.1 are
satisfied, thus there exists a unique coupled solution (u,v) of (x).
Example 4.1. Consider the nonlinear Fredholm integral equation

1 T ¥ T
ww,y) = 1+z+y)? _6(8+y)+{{(8+y)(1+t+3)

-u?(t, s)dtds

Here we have h(x,y) = (Hmler)g - 6(8911/); Ki(2,y,7,8) = .(8+y)(:f+‘r+s) and

f(r,s,u(r,s) = u*(r, s).
Taking intial ug(t, s) = ﬁtﬁ, and using the iterative scheme;

11
1 T T 9
el = . + -2 dtds.
T T ra4y)? 68+y) //(8+y)(1—l—t+s) U GLES
00

The exact solution is u(x,y) = m

The figure-1 is the exact solution while the figure-2 shows the ap-
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proximate solution given after 5th iteration.

Exact solution-Figure-1 Approximate solution-Figure-2

The error plot of exact and approximate solution is given below.

The error plot of exact and approximate solutions.
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