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1 Introduction

In [1] Guo and Lakshamikantham proved the �rst important result for
coupled �xed points of nonlinear operators and presented some appli-
cations in di¤erential equations. After that in [2] Bhaskar and Lak-
shamikantham prove the following;
Thoerem[2] Let F : X�X ! X be a continuous mapping having the

mixed monotone property on X: Assume that there exists a k 2 [0; 1)
with

d (F (x; y) ; F (u; v)) � k

2
[d(x; u) + d(y; v)];

for all x � u; y � v: If there exists x0; y0 2 X such that x0 � F (x0; y0)
and y � F (y0; x0): Then there exist x; y 2 X such that x = F (x; y) and
y = F (y; x):
The coupled �xed point theory has many applications in the existence

theory of many types of operators. Many authors divert their e¤orts in
this direction and generalize and present many variants of the above
result in many directions. A mutivalued result is presented in [3] by
Samet and Vetro. Some researchers proved coupled �xed point results
without monotone property (see [4-9]). In [10] Samet et al. show that
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most of the coupled �xed point theorems on ordered metric spaces are
infact immediate consequences of well-known �xed point theorems in the
literature. In this article we explain how our results nullify the discussion
in [10]. We de�ne mixed monotone property for multivalued mappings
and generalized it. We provide a graphical presentation of sequences
which are neither increasing nor decreasing but converge at one point,
that is the sequence having compareable terms. We prove existence of
solution of a certain type of integral equations and provide an example
to validate the signi�cance of our results.

2 Preliminaries

Let E be a real Banach space with its zero element �. A nonempty subset
K of E is called a cone if
(a): K is nonempty closed and K 6= f�g.
(b): K \ (�K) = f�g;
(c): if �; � are nonnegative real numbers and x; y 2 K; then �x+�y 2 K:
For a given cone K � E; we de�ne a partial ordering 4 with respect

to K by x 4 y if and only if y � x 2 K; x � y stands for x 4 y and
x 6= y; while x � y stands for y � x 2 intK, where intK denotes the
interior of K: The coneK is said to be solid if it has a nonempty interior.
The following de�nitions and lemmas will be used to prove our main

results:
De�nition 2.1. [11] Let X be a nonempty set. A vector-valued

function d : X � X ! E is said to be a cone metric if the following
conditions hold:
(M1) � 4 d(x; y) for all x; y 2 X and d(x; y) = � if and only if x = y;
(M2) d(x; y) = d(y; x) for all x; y 2 X;
(M3) d(x; z) 4 d(x; y) + d(y; z) for all x; y; z 2 X:
The pair (X; d) is then called a cone metric space.
The cone metric d in X generate a topology � d. The base of topology

� d consist of the sets

Bc(y) = fx 2 X : d(x; y)� cg for some c 2 E with � � c:

For x0 2 X and � � r; we de�ne closed ball

�B(x0; r) := fx 2 X : d(x0; x) 4 rg;

in cone metric space (X; d): A set A � (X; d) is called closed if, for any
sequence fxng � A converges to x; we have x 2 A:
De�nition 2.2. [11] Let(X; d) be a cone metric space, x 2 X and

let fxng be a sequence in X: Then
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(i) fxng converges to x if for every c 2 E with � � c there is a
natural number n0 such that d(xn; x) � c for all n � n0. We denote
this by lim

n!1
xn = x;

(ii) fxng is a Cauchy sequence if for every c 2 E with � � c there is
a natural number n0 such that d(xn; xm)� c for all n;m � n0;
(iii) (X; d) is complete if every Cauchy sequence in X is convergent.
Let (X; d) be a cone metric space. The following properties will be

used very often (for more details, see [12, 13]).
(P1) If u 4 v and v � w; then u� w:
(P2) If c 2 intK; an 2 E and an ! �; then there exists an n0 such

that, for all n > n0; we have an � c:
De�nition 2.3. [14] A partially ordered set consists of a set X and

a binary relation � on X which satis�es the following conditions:
(i). x � x (re�exivity),
(ii). if x � y and y � x, then x = y (antisymmetric),
(iii). if x � y and y � z, then x � z (transitivity),
for all x; y and z in X. A set with a partial order � is called a partially
ordered set. Let (X;�) be a partially ordered set and x; y 2 X. Elements
x and y are said to be comparable elements of X if either x � y or y � x.
De�nition 2.4. [15] Let A and B be two non-empty subsets of (X;�

), the relations between A and B are denoted and de�ned as follows:
(i). A �1 B : if for every a 2 A there exists b 2 B such that a � b,
(ii). A �2 B : if for every b 2 B there exists a 2 A such that a � b,
(iii). A �3 B : if A �1 B and A �2 B.
In addition we de�ne the following relations
(iv): A �4 B : if for every a 2 A there exists b 2 B such that a � b;
(read as; "a is compareable with b").
(v): A �5 B : if for every b 2 B there exists a 2 A such that a � b:
De�nition 2.5. An ordered cone metric space is said to have a

subsequential limit comparison property if for every non decreasing se-
quence fxng in X with xn ! x; there exists a subsequence fxnkg of fxng
such that xnk � x for all n:

De�nition 2.6. An ordered cone metric space is said to have a se-
quential limit comparison property if for every non decreasing sequence
fxng in X with xn ! x; we have xn � x for all n:

LetC(X) denotes the family of nonempty closed subsets ofX:According
to [16], let us denote for p 2 E

s (p) = fq 2 E : p 4 qg for q 2 E
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For A;B 2 C(X); we denote and de�ne

�(A;B) = \
a2A;b2B

s (d (a; b)) :

Lemma 2.1 Let (X; d) be a cone metric space with a cone K: If
q 2 �(A;B); then d(a; b) 4 q for all a 2 A; b 2 B:
Proof: Since q 2 �(A;B) = \

a2A;b2B
s (d (a; b)) ; which means q 2

s (d (a; b)) for all a 2 A and b 2 B: This further implies that

d (a; b) 4 q

for all a 2 A and b 2 B:
Remark 2.1 [12] The vector cone metric is not continuous in the gen-

eral case, i.e. from xn ! x, yn ! y it need not follow that d(xn; yn)!
d(x; y):

Remark: 2.2 Let (X; d) be a tvs-cone metric space. If E = R
and P = [0;+1); then (X; d) is a metric space. Moreover, for A;B 2
CB(X), H(A;B) = inf s(A;B) is the Hausdor¤ distance induced by d:
Also note that inf �(A;B) = sup fd(a; b) : a 2 A; b 2 Bg :

3 Set valued results

De�nition 3.1 Let (X;�) be a partially ordered set and F : X �X !
2X be a set valued mapping. We say that F has comparable combined
monotone (CCM) property if for any x; y 2 X;

x1; x2; y1; y2 2 X; x1 � x2 and y1 � y2 ) F (x1; y1) �4 F (x2; y2):

De�nition 3.2 Let (X;�) be a partially ordered set and F : X �
X ! 2X be a set valued mapping. We say that F has combined
monotone (CM) property if for any x; y 2 X;

x1; x2; y1; y2 2 X; x1 � x2 and y1 � y2 ) F (x1; y1) �1 F (x2; y2):

Note that (CM) property implies (CCM) property.
Remark: 3.1 Above de�nition of combined monotone property is

equivalent to the mixed monotone property in multivalued mappings.
Let (X;�) be a partially ordered set and F : X � X ! 2X be a set
valued mapping. From litrature we say that F has mixed monotone
(MM) property if for any x; y 2 X;

x1; x2 2 X; x1 � x2 ) F (x1; y) �1 F (x2; y) (a)

and
y1; y2 2 X; y1 � y2 ) F (x; y2) �1 F (x; y1): (b)
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From (a) we have for x1 � x2 ) F (x1; y1) �1 F (x2; y1) and (b) implies
y2 � y1 ) F (x2; y1) �1 F (x2; y2); thus we have F (x1; y1) �1 F (x2; y2):
Hence (MM) implies (CM).
Conversely: For x1 � x2 and y1 � y2 ) F (x1; y1) �1 F (x2; y2) )

F (x1; y) �1 F (x2; y) for y1 = y2 = y: Also F (x; y1) �1 F (x; y2) for
x1 = x2 = x: Thus (CM) implies (MM).
So we have

(MM), (CM)) (CCM):

Example 3.1. Let X = [�1; 1] and F : X �X ! 2X be a mapping
de�ned by

F (x; y) = [�1; x � sin(1
y
)]

We need to show that F does not satisfy (a) and (b):
For any y 2 X and for x1; x2 2 X; x1 � x2 ) F (x1; y) �1 F (x2; y)

i:e:; [�1; x1 � sin( 1y )] � [�1; x2 � sin( 1y )] but for any x 2 X; take y1 =
0:211; y2 = 0:573 2 X the clearly y1 � y2 6) F (x; y2) = [�1; 0:988x] �1
F (x; y1) = [�1;�0:999]: Thus F does not satisfy (MM) property, but
satisfy (CCM) property.
Theorem 3.1 Let (X; d) be a complete cone metric space endowed

with a partial order � on X. Let F : X �X ! C(X) be a multivalued
mapping having CCM- property on X. Assume that there exists a k 2
[0; 1) such that

k

2
[d(x; u) + d(y; v)] 2 �(F (x; y); F (u; v)]

for all x � u; y � v: If there exist x0; y0 2 X; such that

fx0g �4 F (x0; y0) and F (y0; x0) �5 fy0g :

If X has limit comparison property then there exist �x; �y 2 X; such that

�x 2 F (�x; �y) and �y 2 F (�y; �x):

Proof: Since fx0g �4 F (x0; y0) and F (y0; x0) �5 fy0g ; then there exist
some x1 2 F (x0; y0) and y1 2 F (y0; x0) such that

x0 � x1 and y1 � y0; (1)

so by given condition we have

k

2
[d(x0; x1) + d(y0; y1)] 2 �(F (x0; y0); F (x1; y1)];

and
k

2
[d(y0; y1) + d(x0; x1)] 2 �(F (y0; x0); F (y1; x1)]:
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As

x0 � x1 and y1 � y0 ) F (x0; y0) �4 F (x1; y1) and F (y0; x0) �4 F (y1; x1)

then there exist x2 2 F (x1; y1) and y2 2 F (y1; x1) such that x1 � x2;
and y1 � y2; so using lemma 2.1 we have

k

2
[d(x0; x1) + d(y0; y1)] 2 �(d(x1; x2))

which gives

d(x1; x2) 4
k

2
[d(x0; x1) + d(y0; y1)];

also
k

2
[d(y0; y1) + d(x0; x1)] 2 s(d(y1; y2))

this gives

d(y1; y2) 4
k

2
[d(y0; y1) + d(x0; x1)]:

Continuing in this way we will get, xn+2 2 F (xn+1; yn+1) and yn+2 2
F (yn+1; xn+1) such that xn+1 � xn+2; and yn+1 � yn+2; so we have

d(xn+2; xn+1)4
k

2
[d(xn+1; xn) + d(yn+1; yn)]

4 k
2
d(xn+1; xn) +

k

2
d(yn+1; yn):

and

d(yn+2; yn+1)4
k

2
[d(yn+1; yn) + d(xn+1; xn)]

4 k
2
d(yn+1; yn) +

k

2
d(xn+1; xn):

Consider,

d(yn+2; yn+1)4
k

2
[d(yn+1; yn) + d(xn+1; xn)]

4 k
2
d(yn+1; yn) +

k

2
d(xn+1; xn)

4 k
2

22
[d(yn; yn�1) + d(xn; xn�1)] +

k2

22
[d(yn; yn�1) + d(xn; xn�1))]

4 k
2

2
[d(yn; yn�1) + d(xn; xn�1)]

�
�
�

4 k
n+1

2
[d(y1; y0) + d(x1; x0)]
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Similarly

d(xn+2; xn+1) 4
kn+1

2
[d(x1; x0) + d(y1; y0)]

Now for m > n; consider

d(xn; xm)4 d(xn; xn+1) + d(xn+1; xn+2) + � � � + d(xm�1; xm)

4 1
2
[kn + kn+1 + � � � + km�1][d(x1; x0) + d(y1; y0)]

� kn

2(1� k) [d(x1; x0) + d(y1; y0)]:

Since kn ! 0 as n!1; this gives us kn

2(1�k) [d(x1; x0)+d(y1; y0)]! �

as n ! 1. Now, using properties (P1) and (P2) of cone metric space;
for every c 2 E with � � c there is a natural number n1 such that
d(xn; xm) � c for all m;n � n1, so fxng is a Cauchy sequence. As
(X; d) is complete, fxng is convergent in X and lim

n!1
xn = �x. Hence, for

every c 2 E with � � c; there is a natural number k1 such that

d (�x; xn+1)�
c

3
; for all n � k1:

Similarly we can prove that fyng is cauchy sequence in X, by complete-
ness of (X; d) we have lim

n!1
yn = �y: Hence, for every c 2 E with � � c;

there is a natural number k2 such that

d (y; yn+1)�
c

3
; for all n � k2:

Now to prove �x 2 F (�x; �y) and �y 2 F (�y; �x): By limit comparison
property of X; we have xn � �x and yn � �y for all n; we have

k

2
[d(xn; �x) + d(yn; �y)] 2 �(F (xn; yn); F (�x; �y)]

and
k

2
[d(yn; �y) + d(xn; �x)] 2 �(F (yn; xn); F (�y; �x)]

there exists a sequence vn in F (�x; �y) such that

d(xn+1; vn) 4
k

2
[d(xn; �x) + d(yn; �y)]

and a sequence un in F (�y; �x) such that

d(yn+1; un) 4
k

2
[d(yn; �y) + d(xn; �x)]:
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Now consider,

d(�x; vn) 4 d(xn+1; �x) + d(xn+1; vn)

4 d(xn+1; �x) +
k

2
[d(xn; �x) + d(yn; �y)]

� c for all v � k3(c); where k3 = max fk1; k2g

Which iplies vn ! �x; since F (�x; �y) is closed so �x 2 F (�x; �y): Similarly
un ! �y; and F (�y; �x) is closed so �y 2 F (�y; �x):
Corollary 3.1. Let (X; d) be a complete cone metric space endowed

with a partial order � on X. Let F : X �X ! C(X) be a multivalued
mapping having CCM- property on X. Assume that there exists a k 2
[0; 1) such that

k

2
[d(x; u) + d(y; v)] 2 �(F (x; y); F (u; v)]

for all x � u; y � v: If there exists x0; y0 2 X; such that

fx0g �4 F (x0; y0) and F (y0; x0) �5 fy0g :

If X has limit comparison property then there exist �x; �y 2 X; such that

�x 2 F (�x; �y) and �y 2 F (�y; �x):

Corollary 3.2. Let (X; d) be a complete metric space endowed with
a partial order � on X. Let F : X � X ! CB(X) be a multivalued
mapping having CCM- property on X. Assume that there exists a k 2
[0; 1) such that

�(F (x; y); F (u; v)) � k

2
[d(x; u) + d(y; v)]

for all x � u; y � v: If there exists x0; y0 2 X; such that

fx0g �1 F (x0; y0) and F (y0; x0) �2 fy0g :

If X has limit comparison property then there exist �x; �y 2 X; such that

�x 2 F (�x; �y) and �y 2 F (�y; �x):

Remark: 3.2. Samet et al [10] ,with the help of their lemma
2.1, showed that most of the coupled �xed point theorems for single
valued mappings (on ordered metric spaces) are in fact immediate con-
sequences of well-known �xed point theorems. However in cone metric
spaces lemma 2.1(a) of [10] is not valid. Moreover in the case of mul-
tivalued mappings validity of lemma 2.1(b) of [10] is also suspicious.
Therefore, the extensions of coupled �xed point results to multivalued
mappings in cone metric spaces are reasonable.
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4 Single valued results

De�nition 4.1 Let (X;�) be a partially ordered set and F : X�X ! X
be a mapping. We say that F has comparable combined monotone
(CCM) property if for any x; y 2 X;

x1; x2; y1; y2 2 X; x1 � x2 and y1 � y2 ) F (x1; y1) � F (x2; y2):

De�nition 4.2 Let (X;�) be a partially ordered set and F : X �
X ! X be a mapping. We say that F has combined monotone (CM)
property if for any x; y 2 X;

x1; x2; y1; y2 2 X; x1 � x2 and y1 � y2 ) F (x1; y1) � F (x2; y2):

Clearly also for single valued mappings

(MM), (CM)) (CCM):

Remark 4.1 In the litrature many authors discuss the convergent se-
quences having compareable terms, we provide an example for a con-
vergent sequence which is niether nonincreasing nor nondecreasing but
have comparable terms. The sequence

xn =
1

n
sin(n); n = 1; 2; 3 � ��

has comparable terms and converges to 0.

The following graph shows the comparable terms of the sequence for
some values of n;
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Corollary 4.1 Let (X; d) be a complete cone metric space endowed
with a partial order � on X. Let F : X � X ! X be a multivalued
mapping having CCM- property on X. Assume that there exists a k 2
[0; 1) such that

d(F (x; y); F (u; v)) 4 k

2
[d(x; u) + d(y; v)]

for all x � u; y � v: If there exists x0; y0 2 X; such that
x0 � F (x0; y0) and F (y0; x0) � y0;

If X has limit comparison property then there exist �x; �y 2 X; such that
�x = F (�x; �y) and �y = F (�y; �x):

Proof: In theorem 3.1 take F as a single valued mapping as:

k

2
[d(x; u) + d(y; v)]2�(F (x; y); F (u; v)] = \

a=F (x;y);b=F (u;v)
s(d(a; b))

k

2
[d(x; u) + d(y; v)]2 s(d(F (x; y); F (u; v))

which implies

d(F (x; y); F (u; v)) 4 k

2
[d(x; u) + d(y; v)]:

Thus following the proof of theorem 3.1 we will get the result.
Corollary 4.2 Let (X; d) be a complete metric space endowed with

a partial order � on X. Let F : X � X ! X be a mapping having
CCM- property on X. Assume that there exists a k 2 [0; 1) such that

d(F (x; y); F (u; v)) � k

2
[d(x; u) + d(y; v)]

for all x � u; y � v: If there exists x0; y0 2 X; such that
x0 � F (x0; y0) and F (y0; x0) � y0;

If X has limit comparison property then there exist �x; �y 2 X; such that
�x = F (�x; �y) and �y = F (�y; �x):

Corollary 4.3 [2] Let (X; d) be a complete metric space endowed with
a partial order � on X. Let F : X �X ! X be a continuous mapping
having the mixed monotone property on X: Assume that there exists a
k 2 [0; 1) with

d (F (x; y) ; F (u; v)) � k

2
[d(x; u) + d(y; v)];

for all x � u; y � v: If there exists x0; y0 2 X such that x0 � F (x0; y0)
and y � F (y0; x0): Then there exist x; y 2 X such that x = F (x; y) and
y = F (y; x):
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5 Applications:

In the next theorem we provide some conditions for existence of solution
of a certain type of a nonlinear integral equation.
Theorem: Consider the nonlinear integral equation of fredholm

type:

u(x; y) = h(x; y)+

a bZZ
0 0

K1(x; y; � ; s)+K2(x; y; � ; s)] (f(� ; s; u(� ; s)) + g(� ; s; v(� ; s))) d�ds

(*)
whereK1; K2 2 C(Ia�Ib�Ia�Ib;R) and f; g 2 C(Ia�Ib�R;R), assume

that there exist �; � > 0 and � 2 [0; 1
2
) such that sup

(x;y)2Ia�Ib

������
a bZZ
0 0

K1(x; y; � ; s)d�ds

������ �
�

2(�+�)
and sup

(x;y)2Ia�Ib

������
a bZZ
0 0

K2(x; y; � ; s)d�ds

������ � �
2(�+�)

. For u1 � u2; for

all (x; y) 2 Ia � Ib; f and g satisfy

0 � f(x; y; u)� f(x; y; v) � �(u� v)

and
��(u� v) � g(x; y; u)� g(x; y; v) � 0;

If the coupled lower solution of (�) exists, then there exists a unique
solution of the integral equation (�) :

Proof: Let X = C(Ia � Ib;R); where Ia = [0; a] and Ib = [0; b]; then
X is a complete metric space with metric de�ned by;
for w1; w2 2 X , d(w1; w2)(x; y) = sup

(x;y)2Ia�Ib
jw1(x; y)� w2(x; y)j :

De�ne F : X�X ! X by (F (u; v))(x; y) =

a bZZ
0 0

K1(x; y; � ; s) (f(� ; s; u(� ; s)) + g(� ; s; v(� ; s))) d�ds

+

a bZZ
0 0

K2(x; y; � ; s) (f(� ; s; v(� ; s)) + g(� ; s; u(� ; s))) d�ds+h(x; y) for

all (x; y) 2 Ia � Ib and u; v 2 X: It is obvious that F satis�es CCM
property. For u; v 2 X de�ne a partial oeder u � v i¤ u(x; y) � v(x; y)
for all (x; y) 2 Ia � Ib: Now for u1; u2; v1; v2 2 X with u1 � u2 and
v1 � v2, consider

d (F (u1; v1); F (u2; v2)) = sup
(x;y)2Ia�Ib

jF (u1; v1)(x; y)� F (u2; v2)(x; y)j
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= sup
(x;y)2Ia�Ib

������������

a bZZ
0 0

K1(x; y; � ; s) (f(� ; s; u1(� ; s)) + g(� ; s; v1(� ; s))) d�ds+

a bZZ
0 0

K2(x; y; � ; s) (f(� ; s; v1(� ; s)) + g(� ; s; u1(� ; s))) d�ds

�
a bZZ
0 0

K1(x; y; � ; s) (f(� ; s; u2(� ; s)) + g(� ; s; v2(� ; s))) d�ds�

a bZZ
0 0

K2(x; y; � ; s) (f(� ; s; v2(� ; s)) + g(� ; s; u2(� ; s))) d�ds

������������
= sup

(x;y)2Ia�Ib

��������
a bZZ
0 0

K1(x; y; � ; s)[f(� ; s; u1(� ; s))� f(� ; s; u2(� ; s))+

g(� ; s; v1(� ; s))� g(� ; s; v2(� ; s))]d�ds

+

a bZZ
0 0

K2(x; y; � ; s)[f(� ; s; v1(� ; s))� f(� ; s; v2(� ; s))+

g(� ; s; u1(� ; s))� g(� ; s; u2(� ; s))]d�ds

��������
� sup
(x;y)2Ia�Ib

��������
a bZZ
0 0

K1(x; y; � ; s)[f(� ; s; u1(� ; s))� f(� ; s; u2(� ; s))

+g(� ; s; v1(� ; s))� g(� ; s; v2(� ; s))]d�ds

��������
+ sup
(x;y)2Ia�Ib

��������
a bZZ
0 0

K2(x; y; � ; s)[f(� ; s; v1(� ; s))� f(� ; s; v2(� ; s))

+g(� ; s; u1(� ; s))� g(� ; s; u2(� ; s))]d�ds

��������
� sup
(x;y)2Ia�Ib

������
a bZZ
0 0

K1(x; y; � ; s)[�fu1(� ; s)� u2(� ; s)g+ �fv1(� ; s))� v2(� ; s)g]d�ds

������
+ sup
(x;y)2Ia�Ib

������
a bZZ
0 0

K2(x; y; � ; s)[�fv1(� ; s)� v2(� ; s)g+ �fu1(� ; s))� u2(� ; s)g]d�ds

������
� sup
(x;y)2Ia�Ib

������
a bZZ
0 0

K1(x; y; � ; s)[�d(u1; u2) + �d(v1; v2)]d�ds

������+
sup

(x;y)2Ia�Ib

������
a bZZ
0 0

K2(x; y; � ; s)[�d(v1; v2) + �(u1; u2)]d�ds

������
12



� sup
(x;y)2Ia�Ib

������
a bZZ
0 0

K1(x; y; � ; s)d�ds

������ � [�d(u1; u2) + �d(v1; v2)] +
sup

(x;y)2Ia�Ib

������
a bZZ
0 0

K2(x; y; � ; s)d�ds

������ � [�d(v1; v2) + �(u1; u2)]

� �

2(�+ �)
� [�d(u1; u2) + �d(v1; v2)] +

�

2(�+ �)
� [�d(v1; v2) + �(u1; u2)]

=
�

2(�+ �)
[(�+ �)d(u1; u2) + (�+ �)d(v1; v2)]

=
�

2
[d(u1; u2) + d(v1; v2)]

Now let �(x; y) and �(x; y) be the coupled upper-lower solutions of
(�) : We have

�(x; y) � F (�(x; y); �(x; y))
and

�(x; y) � F (�(x; y); �(x; y))
for all (x; y) 2 Ia � Ib: Thus all the hypothesis of the corollary 4.1 are
satis�ed, thus there exists a unique coupled solution (u; v) of (�) :
Example 4.1. Consider the nonlinear Fredholm integral equation

u(x; y) =
1

(1 + x+ y)2
� x

6(8 + y)
+

1 1ZZ
0 0

x

(8 + y)(1 + t+ s)
� u2(t; s)dtds

Here we have h(x; y) = 1
(1+x+y)2

� x
6(8+y)

; K1(x; y; � ; s) =
x

(8+y)(1+�+s)
and

f(� ; s; u(� ; s) = u2(� ; s):
Taking intial u0(t; s) = 1

1+t+s
; and using the iterative scheme;

un+1 =
1

(1 + x+ y)2
� x

6(8 + y)
+

1 1ZZ
0 0

x

(8 + y)(1 + t+ s)
� u2n dtds:

The exact solution is u(x; y) = 1
(1+x+y)2

:
The �gure-1 is the exact solution while the �gure-2 shows the ap-

13



proximate solution given after 5th iteration.

The error plot of exact and approximate solution is given below.
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[13] Shatanawi, W., Rajíc, V. Ć., Radenovíc, S., & Al-Rawashdeh,
A. (2012). Mizoguchi-Takahashi-type theorems in tvs-cone metric
spaces. Fixed Point Theory and Applications, 2012(1), 1-7.

[14] Altun, I, Durmaz, G: �Some �xed point theorems on ordered cone
metric spaces,�Rendiconti del Circolo Matematico di Palermo, vol.
58, no. 2, pp. 319�325, (2009).

[15] Beg, I, Butt, AR: �Common �xed point for generalized set valued
contractions satisfying an implicit relation in partially ordered met-
ric spaces�, Math. Commun, 15 (2010), 65-75.

[16] Cho, SH, Bae, JS: �Fixed point theorems for multivalued maps
in cone metric spaces�, Fixed Point Theory and Applications. 87
(2011).

15


