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Department of Mathematics,
University of Rhode Island,

Kingston, RI 02881,
USA
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1 Introduction and Preliminaries

In this paper we investigate the global dynamics of the following difference equation

xn+1 =
F

bxnxn−1 + cx2n−1 + f
= H(xn, xn−1), n = 0, 1, . . . (1)

where
F, b, c, f ∈ (0,∞) ,

and where the initial conditions x−1 and x0 are arbitrary nonnegative real numbers. Equation (1)
is the special case of a general second order quadratic fractional equation of the form

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1 +Dxn + Exn−1 + F

ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f
, n = 0, 1, . . . (2)

with non-negative parameters and initial conditions such that A+B+C > 0, a+b+c+d+e+f > 0
and ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f > 0, n = 0, 1, . . .. Several global asymptotic results
for some special cases of Eq.(2) were obtained in [4, 5, 6, 15]. The systematic theory of the linear
fractional difference equation

xn+1 =
Dxn + Exn−1 + F

dxn + exn−1 + f
, n = 0, 1, . . . (3)

with non-negative parameters and initial conditions such that D + E + F > 0, d + e + f > 0
and dxn + exn−1 + f > 0, n = 0, 1, . . . was presented in [7] where it was shown that Eq.(3) does
not exhibit Naimark-Sacker bifurcation and can only exhibit either conservative chaos or period
doubling bifurcation, see [7, 10, 11]. In the case of quadratic fractional difference equation (2) we
showed that Naimark-Sacker bifurcation is very common, see [12]. First systematic study of global
dynamics of a special case of Eq.(2) where A = C = D = a = c = d = 0 was performed in [1, 2].

The global attractivity result in [7, 9], which is the fixed point theorem for monotone maps that
will be used here is the following result.

Theorem 1 Assume that the difference equation

xn+1 = G(xn, . . . , xn−k), n = 0, 1, . . . , (4)

where G is nondecreasing functions in all its arguments has the unique equilibrium x ∈ I, where I
is an invariant interval, that is G : Ik+1 → I. Then x is globally asymptotically stable.

In this paper we perform the local stability analysis of the unique equilibrium and give the
necessary and sufficient conditions for the equilibrium to be locally asymptotically stable, a repeller
or a non-hyperbolic equilibrium. The local stability analysis indicates that some possible dynamic
scenarios for Eq.(1) include Naimark-Sacker bifurcation. We apply Theorem 1 in the part of the
region of local asymptotic stability to obtain global asymptotic stability result. In the complement
of the parametric region where the equilibrium is locally stable the equilibrium becomes repeller
with two characteristic values to be complex conjugate numbers and on the boundary of this region
two characteristic values are complex conjugate numbers on the unit circle. We show that in this
case Eq.(1) exhibits Naimark-Sacker bifurcation resulting in the existence of locally stable periodic
solution of unknown period.
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2 Linearized Stability Analysis

In this section we present the local stability of the unique positive equilibrium of Eq.(1).
In view of the above restriction on the initial conditions of Eq.(1), the equilibrium points of

Eq.(1) are the positive solutions of the equation

x =
F

(b+ c)x2 + f
, (5)

or equivalently
(b+ c)x3 + fx− F = 0. (6)

By Descartes rule of sign Eq.(6) has the unique positive solution x given as

x = 3

√
1

2(b+c)

(
F +

√
F 2 + 4f3

27(b+c)

)
− f

3(b+c) 3

√√√√ 1
2(b+c)

(
F+

√
F 2+

4f3

27(b+c)

) . (7)

Now we investigate the stability of the positive equilibrium of Eq.(1). Set

H(u, v) =
F

buv + cv2 + f

and observe that

H ′u(u, v) =
−bFv

(buv + cv2 + f)2
, H ′v(u, v) =

−F (bu+ 2cv)

(buv + cv2 + f)2
.

If x denotes an equilibrium point of Eq.(1), then the linearized equation associated with Eq.(1)
about the equilibrium point x is

zn+1 = szn + tzn−1

where
s = H ′u(x, x) and t = H ′v(x, x).

Theorem 2 The unique equilibrium point x of Eq.(1) given by (7) is:

i) locally asymptotically stable if f3 >
c3F 2

(b+ 2c)2
;

ii) a repeller if f3 <
c3F 2

(b+ 2c)2
;

iii) a non-hyperbolic point of elliptic type if f3 =
c3F 2

(b+ 2c)2
.
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Proof. A straightforward calculation yields

s = H ′u(x, x) =
−bFx(

(b+ c)x2 + f
)2 =

−bx3

F
< 0

and

t = H ′v(x, x) =
−F (b+ 2c)x(
(b+ c)x2 + f

)2 =
− (b+ 2c)x3

F
< 0.

Thus s− t > 0 and
s2 − (1− t)2 = (s+ t− 1) (s− t+ 1) < 0,

i.e.
|s| < |1− t| .

The unique equilibrium point x is a non-hyperbolic point of elliptic type for t = −1. Eigenvalues
are given by

λ1,2 =
−b± i

√
4 (b+ 2c)2 − b2

2 (b+ 2c)
, (8)

and so |λ1,2| = 1. Hence, for

t = −1⇔ − (b+ 2c)x3

F
= −1⇔ x = 3

√
F

b+ 2c
.

Thus

(b+ c)
F

b+ 2c
+ f 3

√
F

b+ 2c
− F = 0⇔ f3 =

c3F 2

(b+ 2c)2

so

x = 3

√
F

b+ 2c
=

√
f

c
and f = c

(
3

√
F

b+ 2c

)2

.

Then

s =
−bx3

F
=
−b
F

F

b+ 2c
= − b

b+ 2c

and

λ2 +
b

b+ 2c
λ+ 1 = 0,

which solutions are given with (8). If f3 >
c3F 2

(b+ 2c)2
the equilibrium point x is locally asymp-

totically stable (t ∈ (−1, 0)), and if f3 <
c3F 2

(b+ 2c)2
the equilibrium point x is a repeller (t < −1).

Finally, if f3 =
c3F 2

(b+ 2c)2
, then |λ1,2| = 1. 2
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3 Global Asymptotic Stability

In this section we give global asymptotic stability result for Eq.(1). We show that the unique
equilibrium point is globally asymptotically stable in the subregion of the parametric region of
local asymptotic stability.

Theorem 3 The unique equilibrium point x of Eq.(1) is globally asymptotically stable if the fol-
lowing condition holds

f3 >
1

4
(b+ c)F 2. (9)

Proof. Every solution of Eq.(1) satisfies the fourth order difference equation

xn+1 = H(xn, xn−1) = H(H(xn−1, xn−2), H(xn−2, xn−3)) = H1(xn−1, xn−2, xn−3), n = 0, . . .
(10)

where H1 is increasing function in all its arguments. Simplifying the right hand side of Eq.(10) we
obtain

xn+1 =
FD(xn−1, xn−2)D(xn−2, xn−3)

2

bF 2D(xn−2, xn−3) + cF 2D(xn−1, xn−2) + fD(xn−1, xn−2)D(xn−2, xn−3)2
, (11)

where
D(u, v) = buv + v2 + f.

The equilibrium solution of Eq.(11) satisfies the equation(
(b+ c)F 2 + f((b+ c)x2 + f)2

)
x− F ((b+ c)x2 + f)2 = 0. (12)

Since the left hand side of Eq.(12) can be factored as(
(b+ c)x3 + fx− F

) (
(b+ c)fx2 − (b+ c)Fx+ f2

)
we conclude that the equilibrium solutions of Eq.(11) are either equilibrium solutions of Eq.(1) or
the solutions of the quadratic equation

(b+ c)fx2 − (b+ c)Fx+ f2 = 0. (13)

Equation (13) has no real solutions under the condition (9). Now in view of the fact that [0, Ff ] is
an invariant interval for H and so for H1, an application of Theorem 1 completes the proof. 2

Remark 1 By Theorem 2 the equilibrium point x is locally asymptotically stable if

f3 >
c3F 2

(b+ 2c)2
, (14)

and by Theorem 3 the equilibrium point x is globally asymptotically stable if the condition (9)
holds. It can be shown that condition (9) implies (14), that is global asymptotic stability implies
the local. We conjecture that the converse is true.

Conjecture 1 The equilibrium point x of Eq.(1) is globally asymptotically stable if it is locally
asymptotically stable.
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4 Naimark-Sacker Bifurcation for Eq.(1)

In this section we consider bifurcation of a fixed point of a map associated to Eq.(1) in the case
where the eigenvalues are complex conjugate numbers on the unit circle.

The Naimark-Sacker bifurcation occurs for a discrete system depending on a parameter, λ, with
a fixed point whose Jacobian matrix has a pair of complex conjugate eigenvalues µ(λ), µ̄(λ) which
cross the unit circle transversally at λ = λ0

For the sake of completeness we include the Naimark-Sacker bifurcation theorem of the interior
fixed point. See [3, 8, 13, 14, 16] for detailed description and especially [13] for the detailed proof
of the result.

Theorem 4 (Poincare-Andronov-Hopf bifurcation or Naimark-Sacker bifurcation for Maps) Let

F : R× R2 → R2; (λ, x)→ F (λ, x)

be a C4 map depending on real parameter λ satisfying the following conditions:

(i) F (λ, 0) = 0 for λ near some fixed λ0;

(ii) DF (λ, 0) has two non-real eigenvalues µ(λ) and µ(λ) for λ near λ0 with |µ(λ0)| = 1;

(iii) d
dλ |µ(λ)| = d(λ0) 6= 0 at λ = λ0;

(iv) µk(λ0) 6= 1 for k = 1, 2, 3, 4.

Then there is a smooth λ-dependent change of coordinate bringing f into the form

F (λ, x) = F(λ, x) +O(||x||5)

and there are smooth function a(λ), b(λ) and ω(λ) so that in polar coordinates the function F(λ, x)
is given by (

r

θ

)
=

(
|µ(λ)|r − a(λ)r3

θ + ω(λ) + b(λ)r2

)
. (15)

If a(λ0) > 0, then there is a neighborhood U of the origin and a δ > 0 such that for |λ − λ0| < δ
and x0 ∈ U , then ω-limit set of x0 is the origin if λ < λ0 and belongs to a closed invariant C1

curve Γ(λ) encircling the origin if λ > λ0. Furthermore, Γ(λ0) = 0.
If a(λ0) < 0, then there is a neighborhood U of the origin and a δ > 0 such that for |λ − λ0| < δ
and x0 ∈ U , then α-limit set of x0 is the origin if λ > λ0 and belongs to a closed invariant C1

curve Γ(λ) encircling the origin if λ < λ0. Furthermore, Γ(λ0) = 0.

Consider a general map F (λ, x) that has a fixed point at the origin with complex eigenvalues
µ(λ) = α(λ) + iβ(λ) and µ(λ) = α(λ) − iβ(λ) satisfying (α(λ))2 + (β(λ))2 = 1 and β(λ) 6= 0. By
transforming the linear part of such a map into Jordan normal form, we may assume F to have the
following form near the origin

F (λ, x) =

(
α(λ) −β(λ)
β(λ) α(λ)

)(
x1
x2

)
+

(
g1 (λ, x1, x2)
g2 (λ, x1, x2)

)
. (16)
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Then the coefficient a(λ0) of the cubic term in Eq.(15) in polar coordinates is equal to

a (λ0) = Re

(
(1− 2µ (λ0))µ (λ0)

2

1− µ (λ0)
ξ11ξ20

)
+

1

2
|ξ11|2 + |ξ02|2 −Re

(
µ (λ0)ξ21

)
, (17)

where

ξ20 = 1
8

(
∂2g1(0,0)
∂x21

− ∂2g1(0,0)
∂x22

+ 2∂
2g2(0,0)
∂x1∂x2

+ i
(
∂2g2(0,0)
∂x21

− ∂2g2(0,0)
∂x22

− 2∂
2g1(0,0)
∂x1∂x2

))
, (18)

ξ11 = 1
4

(
∂2g1(0,0)
∂x21

+ ∂2g1(0,0)
∂x22

+ i
(
∂2g2(0,0)
∂x21

+ ∂2g2(0,0)
∂x22

))
, (19)

ξ02 = 1
8

(
∂2g1(0,0)
∂x21

− ∂2g1(0,0)
∂x22

− 2∂
2g2(0,0)
∂x1∂x2

+ i
(
∂2g2(0,0)
∂x21

− ∂2g2(0,0)
∂x22

+ 2∂
2g1(0,0)
∂x1∂x2

))
, (20)

and
ξ21 = 1

16

(
∂3g1
∂x31

+ ∂3g1
∂x1∂x22

+ ∂3g2
∂x21∂x2

+ ∂3g2
∂x32

+ i
(
∂3g2
∂x31

+ ∂3g2
∂x1∂x22

− ∂3g1
∂x21∂x2

− ∂3g1
∂x32

))
. (21)

Figure 1: Bifurcation diagrams in (F, x) plane for b = 4.8, c = 1, f = 1.9, generated by Dynamica
3 [8].

Theorem 5 Assume that b, c, f > 0 and

F0 =
f
√
f (b+ 2c)

c
√
c

and x =

√
f√
c
.

i) If 0 < b <
(
2
3 + 4 cos 1

3

(
arctan 1

53

√
107
))
c, then there is a neighborhood U of the equilibrium

point x and a ρ > 0 such that for |F − F0| < ρ and x0, x−1 ∈ U, then ω-limit set of solution
of Eq(1), with initial condition x0, x−1 is the equilibrium point x if F < F0 and belongs to a
closed invariant C1 curve Γ (F0) encircling the equilibrium point x if F > F0. Furthermore,
Γ (F0) = 0.

ii) If b >
(
2
3 + 4 cos 1

3

(
arctan 1

53

√
107
))
c, then there is a neighborhood U of the equilibrium point

x and a ρ > 0 such that for |F − F0| < ρ and x0, x−1 ∈ U, then α-limit set of x0, x−1 is the
equilibrium point x if F > F0 and belongs to a closed invariant C1 curve Γ (F0) encircling the
equilibrium point x if F < F0. Furthermore, Γ (F0) = 0.
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Figure 2: Phase portraits when F = 17 < F0(c = 1, f = 1.9, b = 4.8 > 2/3 +
cos((1/3)arctan

√
107/53), x−1 = x0 = 1.4 (green), x−1 = x0 = 3.1 (red), generated by Dynamica

3 [8].

Proof. In order to apply Theorem (4) we make a change of variable yn = xn − x. Then, the
new equation is given by

yn+1 =
F

b (yn + x) (yn−1 + x) + c (yn−1 + x)2 + f
− x.

Set
un = yn−1 and vn = yn for n = 0, 1, . . .

and write
un+1 = vn
vn+1 = F

b(vn+x)(un+x)+c(un+x)
2+f
− x,

}
(22)

where

F (u, v) =

(
v

F
b(v+x)(u+x)+c(u+x)2+f

− x

)
.

Then F (u, v) has the unique fixed point (0, 0). The Jacobian matrix of F (u, v) is given by

JF (u, v) =

(
0 1

−F (b(v+x)+2c(u+x))

(b(v+x)(u+x)+c(u+x)2+f)
2

−Fb(u+x)
(b(v+x)(u+x)+c(u+x)2+f)

2

)
,
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Figure 3: Phase portraits when F = 19.4 > F0(c = 1, f = 1.9, b = 4.8 > 2/3 +
cos((1/3)arctan

√
107/53), x−1 = x0 = 1.4 (green) x−1 = x0 = 3.1 (red), generated by Dynamica 3

[8].

and its value at the zero equilibrium is

J0 = JF (0, 0) =

(
0 1

−F (b+2c)x

(bx2+cx2+f)
2

−Fbx
(bx2+cx2+f)

2

)
=

(
0 1

−(b+2c)
F x3 −b

F x
3

)
.

The eigenvalues are µ (F ) and µ (F ) where

µ (F ) =
−bx3 ± i

√
x3
(
4F (b+ 2c)− b2x3

)
2F

,

and
4F (b+ 2c)− b2x3 = 4

(
(b+ c)x3 + fx

)
(b+ 2c)− b2x3 > 0.

Then we have that

F

(
u
v

)
=

(
0 1

−(b+2c)
F x3 −b

F x
3

)(
u
v

)
+

(
f1 (F, u, v)
f2 (F, u, v)

)
,
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and

f1 (F, u, v) = 0,

f2 (F, u, v) =
F

b (v + x) (u+ x) + c (u+ x)2 + f
+

(b+ 2c)u

F
x3 +

bv

F
x3 − x.

Let

F0 =
f
√
f (b+ 2c)

c
√
c

.

For F = F0 we obtain

x =

√
f√
c
, x3 =

F0

b+ 2c
.

The eigenvalues of J0 are µ (F0) and µ (F0) where

µ (F0) =
−b+ i

√
(3b+ 4c) (b+ 4c)

2 (b+ 2c)
, |µ (F0)| = 1.

The eigenvectors coresponding to µ (F0) and µ (F0) are v (F0) and v (F0) where

v (F0) =

(
−b− i

√
(3b+ 4c) (b+ 4c)

2 (b+ 2c)
, 1

)
.

Then

|µ (F0)| = 1,

µ2 (F0) = −8bc+ b2 + 8c2

2 (b+ 2c)2
− ib

√
(3b+ 4c) (b+ 4c)

2 (b+ 2c)2
,

µ3 (F0) = b
6bc+ b2 + 6c2

(b+ 2c)3
− i

2c (b+ c)
√

(3b+ 4c) (b+ 4c)

(b+ 2c)3
,

µ4 (F0) =
64bc3 + 32b2c2 − b4 + 32c4

2 (b+ 2c)4
+ i

(
8bc+ b2 + 8c2

)
b
√

(3b+ 4c) (b+ 4c)

2 (b+ 2c)4

and µk (F0) 6= 1 for k = 1, 2, 3, 4.

For F = F0 and x =
√
f√
c

we get

F

(
u
v

)
=

(
0 1

−1 −b
b+2c

)(
u
v

)
+

(
h1 (u, v)
h2 (u, v)

)
and

h1 (u, v) = f1 (F0, u, v) = 0,

h2 (u, v) = f2 (F0, u, v)

=

√
c
(
2c

5
2 u3+b2

√
fu2+b2

√
fv2+2c2

√
fu2+bc

3
2 u3+b2

√
cuv2+b2

√
cu2v+3bc

√
fu2+3bc

3
2 u2v+b2

√
fuv+2bc

√
fuv

)
(b+2c)

(
c2u2+bf+2cf+2c

3
2
√
fu+b

√
c
√
fu+b

√
c
√
fv+bcuv

) .
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Hence, for F = F0 system (22) takes the form(
un+1

vn+1

)
=

(
0 1

−1 −b
b+2c

)(
un
vn

)
+

(
h1 (un, vn)
h2 (un, vn)

)
. (23)

For (
un
vn

)
= P

(
ξn
ηn

)
,

where

P =

(
−b

2(b+2c)

√
(3b+4c)(b+4c)

2(b+2c)

1 0

)
, P−1 =

(
0 1

2(b+2c)√
(3b+4c)(b+4c)

b√
(3b+4c)(b+4c)

)
,

system (22) is equivalent to its normal form

(
ξn+1

ηn+1

)
=

 − b
2(b+2c) −

√
(3b+4c)(b+4c)

2(b+2c)√
(3b+4c)(b+4c)

2(b+2c) − b
2(b+2c)

( ξn
ηn

)
+ P−1H

(
P

(
ξn
ηn

))

where

H

(
u
v

)
:=

(
h1 (u, v)
h2 (u, v)

)
.

Let

G

(
u
v

)
=

(
g1 (u, v)
g2 (u, v)

)
= P−1H

(
P

(
u
v

))
.

By straightforward calculation we obtain that

g1 (u, v) =
√
c

b+2cΛ (u, v) ,

with

Λ (u, v) =
(b+2c)c

√
c(h(u,v))3+((b+c)(b+2c)

√
f+(b+3c)bu

√
c)(h(u,v))2+bu(bu

√
c+(b+2c)

√
f)h(u,v)+b2u2

√
f

c2(h(u,v))2+(bcu+(b+2c)
√
cf)h(u,v)+bu

√
cf+(b+2c)f

where

h (u, v) =
v
√

(3b+4c)(b+4c)−bu
2(b+2c)

and

g2 (u, v) =
b√

(3b+ 4c) (b+ 4c)
g1 (u, v) .

Another straightforward calculation gives

∂2g1 (0, 0)

∂u2
=
b2
√
c (3b+ 5c)

2
√
f (b+ 2c)3

,

∂2g1 (0, 0)

∂u∂v
=
bc

3
2

√
(3b+ 4c) (b+ 4c)

2
√
f (b+ 2c)3

,
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∂2g1 (0, 0)

∂v2
=

√
c (b+ 4c) (3b+ 4c) (b+ c)

2
√
f (b+ 2c)3

,

∂3g1 (0, 0)

∂u3
= −3b3c (5b+ 8c)

4f (b+ 2c)4
,

∂3g1 (0, 0)

∂u∂v2
=
b2c (3b+ 4c) (b+ 4c)

4f (b+ 2c)4
,

∂3g1 (0, 0)

∂u2∂v
= −b

2c (3b+ 8c)
√

16bc+ 3b2 + 16c2

4f (b+ 2c)4
,

∂3g1 (0, 0)

∂v3
= −

3bc
(√

16bc+ 3b2 + 16c2
)3

4f (b+ 2c)4
.

By using (17)-(21) for λ0 = F0, x1 = u and x2 = v we obtain

ξ11 =

√
c
(
3b2 + 6bc+ 4c2

)
4
√
f (b+ 2c)2

(
1 + i

b√
(3b+ 4c) (b+ 4c)

)
,

ξ20 =
1

8

(
−2 (
√
c)

3
(3b+ 2c)

(b+ 2c)2
√
f

+ i

(
−b (
√
c)

3 (
32bc+ 10b2 + 24c2

)
√

16bc+ 3b2 + 16c2
√
f (b+ 2c)3

))
,

ξ20 = −
c
3
2

(
(3b+ 2c)

√
3b2 + 16bc+ 16c2 + ib (6c+ 5b)

)
4
√
f (b+ 2c)2

√
3b2 + 16bc+ 16c2

,

ξ02 =
−c

3
2

√
f (b+ 2c)3

(
(b+ c)2 + i

(
b
(
b2 − 2c2

)
2
√

3b2 + 16bc+ 16c2

))
,

ξ21 =
bc

8f (b+ 2c)4

(
−b
(
8bc+ 3b2 + 4c2

)
+ i

(
(b+2c)(80bc2+38b2c+3b3+48c3)√

3b2+16bc+16c2

))
,

(1− 2µ (F0))µ (F0)
2

1− µ (F0)
=
−(3b+4c)(10bc+b2+12c2)+i(10bc+5b2+4c2)

√
3b2+16bc+16c2

2(b+2c)2(3b+4c)
,

ξ11ξ20 =
−
(
6bc+ 3b2 + 4c2

)
2f (b+ 2c)4

(
c2(20bc2+12b2c+b3+8c3)

2(3b+4c)(b+4c) + i
bc2 (b+ c)√

16bc+ 3b2 + 16c2

)
,

Re

(
(1− 2µ (F0))µ (F0)

2

1− µ (F0)
ξ11ξ20

)
=
c2
(
6bc+ 3b2 + 4c2

) (
26bc+ 11b2 + 12c2

)
8f (b+ 2c)3 (b+ 4c) (3b+ 4c)

,

1

2
|ξ11|2 =

c
(
3b2 + 6bc+ 4c2

)2
8f (b+ 2c)2 (3b+ 4c) (b+ 4c)

,

ξ02 =
−c

3
2

√
f (b+ 2c)3

(
(b+ c)2 + i

(
b
(
b2 − 2c2

)
2
√

3b2 + 16bc+ 16c2

))
,
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|ξ02|2 =
c3
(
28bc2 + 34b2c+ 13b3 + 8c3

)
4f (b+ 2c)3 (3b+ 4c) (b+ 4c)

,

Re
(
µ (F0)ξ21

)
= bc

8f(b+2c)4

(
b2(8bc+3b2+4c2)

2(b+2c) +
(80bc2+38b2c+3b3+48c3)

2

)
=

bc(14bc+3b2+12c2)
8f(b+2c)3

,

ξ21 = bc
8f(b+2c)4

(
−b
(
8bc+ 3b2 + 4c2

)
+ i

(
(b+2c)(80bc2+38b2c+3b3+48c3)√

3b2+16bc+16c2

))
,

a (F0) =
c2
(
−3b3 + 6b2c+ 32bc2 + 24c3

)
8f (b+ 2c)3 (3b+ 4c)

.

So,
a (F0) = 0⇔ −3b3 + 6b2c+ 32bc2 + 24c3 = 0.

By substituting b = kc we obtain

−3 (kc)3 + 6 (kc)2 c+ 32 (kc) c2 + 24c3 = 0

i.e.

k3 − 2k2 − 32

3
k − 8 = 0.

By using Cardano’s substitution k = y + 2
3 , we obtain

y3 − 12y − 424

27
= 0,

with the corresponding positive solution

y =
1

3

3

√
212 + 4i

√
107 +

1

3

3

√
212− 4i

√
107.

The corresponding angle and modulus are

tanα =

√
107

53
,

α = arctan
1

53

√
107,

r =

√
(212)2 + (16) (107) = 216,

for which we obtain

y =
1

3

(
6
(

cos
α

3
+ i sin

α

3

))
+

1

3

(
6
(

cos
α

3
− i sin

α

3

))
= 4 cos

1

3
α

and

k = y +
2

3
=

2

3
+ 4 cos

1

3
α.

Hence,

a(F0) = 0 for b =

(
2

3
+ 4 cos

1

3
arctan

√
107

53

)
c.
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Now

µ (F ) =
−bx3 ± i

√
x3
(
4F (b+ 2c)− b2x3

)
2F

,

and so

µ (F )µ (F ) =
(b+ 2c)x3

F
.

Thus

|µ (F )| =
√

(b+ 2c)x3

F
.

Differentiating the equilibrium equation

(b+ c)x3 + fx− F = 0,

with respect to F and solving for x′(F ) we obtain

x′ (F ) =
1

3 (b+ c) (x (F ))2 + f
, x (F0) =

√
f

c
,

x′ (F0) =
1

3 (b+ c) fc + f
=

c

f (3b+ 4c)
.

By substituting x′(F ) in the expression

d |µ (F )|
dF

=
1

2

√
(b+2c)x3

F

(
3 (b+ 2c)x2x′

F

)
, x = x (F )

we obtain that

d |µ (F )|
dF

(F0) =
1

2
√

(b+2c)
F0
· F0
(b+2c)


3 (b+ 2c)

(√
f
c

)2
c

f(3b+4c)

F0


and

d |µ (F )|
dF

(F0) =
3 (b+ 2c)

2F0 (3b+ 4c)
=

3c
√
c

2f
√
f (3b+ 4c)

> 0,

which completes the proof of theorem. 2

The visual illustration of Theorem 4 is given in Figures 1-3. Figure 1 shows the bifurcation
diagram for a parameter range where the Naimark-Sacker bifurcation takes the place. Figures 2
and 3 show the transition from the global asymptotic stability of the equilibrium to the existence
of a periodic solution.
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