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Abstract. Proving fixed point theorems in modular metric spaces are not possible for some non-
linear contraction mappings. For this we introduce the notion of non-Archimedean modular metric
space. This new space allow us prove some fixed point theorems for such mapping. As some pattern
we prove some fixed point results for such mappings in non-Archimedean modular metric spaces.
Moreover, we present an example to illustrate the usability of the obtained results.

1. Introduction and Preliminaries

Modular metric spaces are a natural generalization of classical modulars over linear spaces like
Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-Lozanovskii spaces and many
others. Modular metric spaces were introduced in [3, 4]. The introduction of this new concept
is justified by the physical interpretation of the modular. Roughly, whereas a metric on a set
represents nonnegative finite distances between any two points of the set, a modular on a set
attributes a nonnegative (possibly, infinite valued) ”field of (generalized) velocities”: to each ”time”
λ > 0 (the absolute value of) an average velocity ωλ(x, y) is associated in such a way that in order
to cover the ”distance” between points x, y ∈ X it takes time λ to move from x to y with velocity
ωλ(x, y). But in this paper, we look at these spaces as the nonlinear version of the classical modular
spaces introduced by Nakano [23] on vector spaces and modular function spaces introduced by
Musielak [22] and Orlicz [24].

In recent years, many researchers studied the behavior of the electrorheological fluids, sometimes
referred to as ”smart fluids” (for instance lithium polymetachrylate). An interesting model for
these fluids, is obtained by using Lebesgue and Sobolev spaces, Lp and W 1,p, in the case that p is a
function [6]. We remark that the usual approach in dealing with the Dirichlet energy problem [8,11]
is to convert the energy functional, naturally defined by a modular, to a convoluted and complicated
problem which involves the Luxemburg norm.

In many cases, particularly in applications to integral operators, approximation and fixed point
results, modular type conditions are much more natural as modular type assumptions can be more
easily verified than their metric or norm counterparts. Recently, there was a strong interest to study
the existence of fixed points in the setting of modular function spaces after the first paper [15] was
published in 1990. For more on metric fixed point theory, the reader may consult the book [13]
and for modular function spaces the book [19].

Proving fixed point theorems in modular metric spaces is not possible for some nonlinear con-
traction mappings. For this we introduce the notion of non-Archimedean modular metric space.
In the setting of this new space it is possible to give some fixed point theorems for such mappings.
Moreover, we present an example to illustrate the validity of the obtained results.

Let X be a nonempty set and ω : (0,+∞)×X ×X → [0,+∞] be a function, for semplicity, we
will write

ωλ(x, y) = ω(λ, x, y),

for all λ > 0 and x, y ∈ X.
1
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Definition 1.1. [3, 4] A function ω : (0,∞)×X ×X → [0,∞] is said to be modular metric on X
if it satisfies the following axioms:

(i) x = y if and only if ωλ(x, y) = 0, for all λ > 0;
(ii) ωλ(x, y) = ωλ(y, x), for all λ > 0, and x, y ∈ X;
(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y), for all λ, µ > 0 and x, y, z ∈ X.

If in the Definition 1.1, we use the condition

(i’) ωλ(x, x) = 0 for all λ > 0 and x ∈ X;

instead of (i), then ω is said to be a pseudomodular metric on X. A modular metric ω on X is
called regular if the following weaker version of (i) is satisfied

x = y if and only if ωλ(x, y) = 0 for some λ > 0.

Again, ω is called convex if for λ, µ > 0 and x, y, z ∈ X holds the inequality

ωλ+µ(x, y) ≤ λ

λ+ µ
ωλ(x, z) +

µ

λ+ µ
ωµ(z, y).

Remark 1.2. If ω is a pseudomodular metric on a set X, then the function λ→ ωλ(x, y) is nonin-
creasing on (0,+∞) for all x, y ∈ X. Indeed, if 0 < µ < λ, then

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Definition 1.3. If in the Definition 1.1, we replace (iii) by

(iv) ωmax{λ,µ}(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X;

then Xω is called non-Archimedean modular metric space. Since (iv) implies (iii), then each non-
Archimedean modular metric space is a modular metric space.

Definition 1.4 ( [3,4]). Let ω be a pseudomodular on X and x0 ∈ X fixed. Consider the two sets

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0)→ 0 as λ→ +∞}
and

X∗ω = X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) < +∞}.
Xω and X∗ω are called modular spaces (around x0).

It is clear that Xω ⊂ X∗ω but this inclusion may be proper in general. Let ω be a modular on
X, from [3, 4], we deduce that the modular space Xω can be equipped with a (nontrivial) metric,
induced by ω and defined by

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ} for all x, y ∈ Xω.

If ω is a convex modular on X, according to [3,4] the two modular spaces coincide, that is, X∗ω = Xω,
and this common set can be endowed with the metric d∗ω defined by

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1} for all x, y ∈ Xω.

These distances will be called Luxemburg distances.
Example 2.1 presented by Abdou and Khamsi [1] is an important motivation for developing the

theory of modular metric spaces. Other examples may be found in [3, 4].

Definition 1.5. Let Xω be a modular metric space, M a subset of Xω and (xn)n∈N be a sequence
in Xω. Then

(1) (xn)n∈N is called ω-convergent to x ∈ Xω if and only if ω1(xn, x)→ 0, as n→ +∞. x will
be called the ω-limit of (xn).

(2) (xn)n∈N is called ω-Cauchy if ω1(xm, xn)→ 0, as m,n→ +∞.
(3) M is called ω-closed if the ω-limit of a ω-convergent sequence of M always belong to M .
(4) M is called ω-complete if any ω-Cauchy sequence in M is ω-convergent to a point of M.
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(5) M is called ω-bounded if we have δω(M) = sup{ω1(x, y);x, y ∈M} < +∞.

Definition 1.6 ( [26]). Let T be a self-mapping on X and let α : X ×X → [0,+∞) be a function.
We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Definition 1.7 ( [20]). Let T be an α-admissible self-mapping on X. We say that T is a triangular
α-admissible mapping if, α(x, y) ≥ 1 and α(y, z) ≥ 1 implies that α(x, z) ≥ 1.

Lemma 1.8 ( [20]). Let T be a triangular α-admissible mapping. Assume that there exists x0 ∈ X
such that α(x0, Tx0) ≥ 1. Define sequence {xn} by xn = Tnx0. Then

α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.

By Ψ we will always denote the set of all functions ϕ : [0,+∞) → [0,+∞) (which are called
altering distance functions) such that the following conditions hold:

• ϕ is continuous and non-decreasing;
• ϕ(t) = 0 if and only if t = 0.

Motivated by the works of Kumam and Roldán [?] we introduce the following class of mappings
which is suitable for our results.

Let Θ denote the set of all functions θ : [0,∞)4 → [0,∞) satisfying:

(Θ1) θ is continuous and increasing in all its variables;
(Θ2) θ(t1, t2, t3, t4) = 0 iff, either t1 = 0 or t4 = 0.

2. Main Theorems

Now we are ready to prove our first theorem.

Theorem 2.1. Let Xω be a complete non-Archimedean modular metric space with ω regular and
let T : Xω → Xω be a ω−continuous mapping. Assume that there exist a function α : Xω ×Xω →
[0,+∞), two functions ψ,ϕ ∈ Ψ and a function θ ∈ Θ such that the following assertions hold:

(i) there exists x0 ∈ Xω such that α(x0, Tx0) ≥ 1,
(ii) T is a triangular α-admissible mapping,
(iii) for all x, y ∈ Xω with α(x, y) ≥ 1, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
(2.1)

where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

1

2
[ω1(x, Ty) + ω1(y, Tx)]

}
.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1 and let {xn} be a Picard sequence starting at x0,
that is, xn = Tnx0 = Txn−1 for all n ∈ N. Let there exists n0 such that ω1(xn0 , xn0+1) = 0, since
ω is regular, we get xn0 = xn0+1 = Txn0 . So xn0 is a fixed point of T . Hence we assume that
ω1(xn, xn+1) > 0, for all n ∈ N. Now, since T is a triangular α-admissible mapping, by Lemma 1.8,
we have

α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.

Then by (iii), we have

ψ(ω1(xn, xn+1)) = ψ(ω1(Txn−1, Txn))
≤ ψ(M(xn−1, xn))− ϕ(M(xn−1, xn))
+θ
(
ω1(xn−1, Txn−1), ω1(xn, Txn), ω1(xn−1, Txn), ω1(xn, Txn−1)

)
,

(2.2)
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where

M(xn−1, xn) = max

{
ω1(xn−1, xn), ω1(xn−1, Txn−1), ω1(xn, Txn), ω1(xn−1,Txn)+ω1(xn,Txn−1)

2

}
= max

{
ω1(xn−1, xn), ω1(xn−1, xn), ω1(xn, xn+1),

ω1(xn−1,xn+1)+ω1(xn,xn)
2

}
= max

{
ω1(xn−1, xn), ω1(xn, xn+1),

ωmax{1,1}(xn−1,xn+1)

2

}
≤ max

{
ω1(xn−1, xn), ω1(xn, xn+1),

ω1(xn−1,xn)+ω1(xn,xn+1)
2

}
= max

{
ω1(xn−1, xn), ω1(xn, xn+1)

}
(2.3)

and
θ
(
ω1(xn−1, Txn−1), ω1(xn, Txn), ω1(xn−1, Txn), ω1(xn, Txn−1)

)
= θ
(
ω1(xn−1, xn), ω1(xn, xn+1), ω1(xn−1, xn+1), ω1(xn, xn)

)
= θ
(
ω1(xn−1, xn), ω1(xn, xn+1), ω1(xn−1, xn+1), 0

)
= 0.

(2.4)

By (2.2)-(2.4) and the properties of ψ and ϕ, we obtain,

ψ(ω1(xn, xn+1)) ≤ ψ
(

max
{
ω1(xn−1, xn), ω1(xn, xn+1)

})
− ϕ

(
M(xn−1, xn)

)
< ψ

(
max

{
ω1(xn−1, xn), ω1(xn, xn+1)

})
.

(2.5)

If there exists n0 such that

max
{
ω1(xn0−1, xn0), ω1(xn0 , xn0+1)

}
= ω1(xn0 , xn0+1),

then by (2.5), we get

ψ(ω1(xn0 , xn0+1)) ≤ ψ(ω1(xn0 , xn0+1))− ϕ(M(xn0−1, xn0))

< ψ(ω1(xn0 , xn0+1)),

which is a contradiction. Hence

max
{
ω1(xn−1, xn), ω1(xn, xn+1)

}
= ω1(xn−1, xn)

for all n ∈ N. Therefore,

ψ(ω1(xn, xn+1)) ≤ ψ(ω1(xn, xn−1))− ϕ(ω1(xn−1, xn)) < ψ(ω1(xn, xn−1)). (2.6)

Since ψ is a non-decreasing mapping, then {ω1(xn, xn+1)} is a non-increasing sequence of positive
numbers. Thus, there exists r1 ≥ 0 such that

lim
n→∞

ω1(xn, xn+1) = r1.

Letting n→∞ in (2.6), we have,

ψ(r1) ≤ ψ(r1)− ϕ(r1) ≤ ψ(r1).

Therefore, ϕ(r1) = 0, and hence r1 = 0, i.e.,

lim
n→∞

ω1(xn, xn+1) = 0. (2.7)

Now, we show that {xn} is a ω−Cauchy sequence in Xω. Assume to the contrary that {xn} is
not a ω−Cauchy sequence, that is, limm,n→∞ ω1(xm, xn) > 0. Then there exists ε > 0 and two
subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni > mi > i and ω1(xmi , xni) ≥ ε and (2.8)

ω1(xmi , xni−1) < ε. (2.9)
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By using (2.8), (2.9) and the triangular inequality (iv), we have

ε ≤ ω1(xmi , xni) = ωmax{1,1}(xmi , xni)

≤ ω1(xmi , xni−1) + ω1(xni−1, xni)

≤ ε+ ω1(xni−1, xni)

Now, using (2.7) and taking the limit as i→ +∞, we get

lim
i→+∞

ω1(xmi , xni) = ε. (2.10)

Again, by using (iv), deduce

ε ≤ ω1(xmi , xni)

= ωmax{1,1}(xmi , xni)

≤ ω1(xmi , xni−1) + ω1(xni−1, xni)

= ωmax{1,1}(xmi , xni−1) + ω1(xni−1, xni)

≤ ω1(xmi , xmi−1) + ω1(xmi−1, xni−1) + ω1(xni−1, xni)

and

ω1(xmi−1, xni−1) ≤ ω1(xmi−1, xni) + ω1(xmi , xni) + ω1(xmi , xni−1).

Taking limit in the above inequalities, we get

lim
i→+∞

ω1(xmi−1, xni−1) = ε. (2.11)

Again, using the triangular inequality (iv), we have

ε ≤ ω1(xmi , xni) ≤ ω1(xmi , xmi−1) + ω1(xmi−1, xni)

≤ ω1(xmi , xmi−1) + ω1(xmi−1, xni−1) + ω1(xni−1, xni) (2.12)

and

ε ≤ ω1(xmi , xni) ≤ ω1(xmi , xni−1) + ω1(xni−1, xni). (2.13)

Using (2.7) and (2.11) and taking the limit as i→ +∞ in (2.12), we get

lim
i→+∞

ω1(xmi−1, xni) = ε. (2.14)

Similar, we deduce

lim
i→+∞

ω1(xmi , xni−1) = ε. (2.15)

Since, α(xmi−1, xni−1) ≥ 1, then from (iii) we have,

ψ(ω1(xmi , xni)) = ψ(ω1(Txmi−1, Txni−1))
≤ ψ(M(xmi−1, xni−1))− ϕ(M(xmi−1, xni−1))

+θ
(
ω1(xmi−1, Txmi−1), ω1(xni−1, Txni−1), ω1(xmi−1, Txni−1), ω1(xni−1, Txmi−1)

)
,

(2.16)

where

M(xmi−1, xni−1) = max

{
ω1(xmi−1, xni−1), ω1(xmi−1, Txmi−1), ω1(xni−1, Txni−1),

ω1(xmi−1,Txni−1)+ω1(Txmi−1,xni−1)

2

}
= max

{
ω1(xmi−1, xni−1), ω1(xmi−1, xmi), ω1(xni−1, xni),

ω1(xmi−1,xni )+ω1(xmi ,xni−1)

2

}
,

(2.17)
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and

θ
(
ω1(xmi−1, Txmi−1), ω1(xni−1, Txni−1), ω1(xmi−1, Txni−1), ω1(xni−1, Txmi−1)

)
= θ
(
ω1(xmi−1, xmi), ω1(xni−1, xni), ω1(xmi−1, xni), ω1(xni−1, xmi)

)
.

(2.18)

Taking the limit as i→ +∞ in (2.17) and (2.18) and using (2.7), (2.11), (2.14) and (2.15), we get

lim
i→+∞

M(xmi−1, xni−1) = ε, (2.19)

and

lim
i→+∞

θ
(
ω1(xmi−1, Txmi−1), ω1(xni−1, Txni−1), ω1(xmi−1, Txni−1), ω1(xni−1, Txmi−1)

)
= lim

i→+∞
θ
(
ω1(xmi−1, xmi), ω1(xni−1, xni), ω1(xmi−1, xni), ω1(xni−1, xmi)

)
= 0.

(2.20)

Now, taking the limit as i→ +∞ in (2.16) and using (2.19) and (2.20) we have

ψ(ε) ≤ ψ(ε)− ϕ(ε)

which is a contradiction. So {xn} is a ω−Cauchy sequence in Xω.
Now, sinceXω is a ω−complete modular metric space, there exists x∗ ∈ X such that, ω1(xn, x

∗)→
0 as n → +∞. Thus ω1(Txn, Tx

∗) → 0 as n → +∞, since T is an ω−continuous mapping. Then
by the triangular inequality (iv), we obtain

ω1(x
∗, Tx∗) ≤ ω1(x

∗, Txn) + ω1(Txn, Tx
∗) = ω1(x

∗, xn+1) + ω1(Txn, Tx
∗).

Letting n → +∞ in the above inequality, we get ω1(x
∗, Tx∗) = 0. Since ω is regular, we deduce

Tx∗ = x∗. �

For self-mappings that are not ω−continuous we have the following result.

Theorem 2.2. Let Xω be a complete non-Archimedean modular metric space with ω regular and
let T : Xω → Xω be a self-mapping. Assume that there exist a function α : Xω ×Xω → [0,+∞),
two functions ψ,ϕ ∈ Ψ and a function θ ∈ Θ such that the following assertions hold:

(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(ii) T is triangular α-admissible mapping;

(iii) for all x, y ∈ X with α(x, y) ≥ 1, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))−ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
, (2.21)

where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
,

(iv) if {xn} be a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N∪{0} and xn → x as n→ +∞,
then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1 and let {xn} be a Picard sequence starting at
x0. Following the proof of the Theorem 2.1, we obtain that {xn} is a ω−Cauchy sequence such
that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}. Since X is ω−complete, then there is x∗ ∈ X such that
the sequence {xn} ω-converges to x∗. Using the assumption (iv), we have α(xn, x

∗) ≥ 1 for all
n ∈ N ∪ {0}. By (iii), we have

ψ(ω1(xn+1, Tx
∗)) = ψ(ω1(Txn, Tx

∗))
≤ ψ(M(xn, x

∗))− ϕ(M(xn, x
∗))

+θ
(
ω1(xn, Txn), ω1(x

∗, Tx∗), ω1(xn, Tx
∗), ω1(x

∗, Txn)
) (2.22)
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where

M(xn, x
∗) = max

{
ω1(xn, x

∗), ω1(xn, Txn), ω1(x
∗, Tx∗), ω1(xn,Tx∗)+ω1(Txn,x∗)

2

}
= max

{
ω1(xn, x

∗), ω1(xn, xn+1), ω1(x
∗, Tx∗), ω1(xn,Tx∗)+ω1(xn+1,x∗)

2

} (2.23)

and

θ
(
ω1(xn, Txn), ω1(x

∗, Tx∗), ω1(xn, Tx
∗), ω1(x

∗, Txn)
)

= θ
(
ω1(xn, xn+1), ω1(x

∗, Tx∗), ω1(xn, Tx
∗), ω1(x

∗, xn+1)
)
.

(2.24)

Letting n→ +∞ in (2.23) and (2.24), considering that lim supω1(xn, Tx
∗) ≤ ω1(x

∗, Tx∗), we get

M(xn, x
∗)→ ω1(x

∗, Tx∗) as n→ +∞, (2.25)

and

θ
(
ω1(xn, Txn), ω1(x

∗, Tx∗), d(xn, Tx
∗), ω1(x

∗, Txn)
)
→ 0 as n→ +∞.

Now, taking the sup limit as i→ +∞ in (2.22), we get

ψ(ω1(x
∗, Tx∗)) ≤ ψ(lim sup

n→+∞
ω1(xn+1, Tx

∗)) ≤ ψ(ω1(x
∗, Tx∗))− ϕ(ω1(x

∗, Tx∗)).

Hence, ϕ(ω1(x
∗, Tx∗)) = 0 and this implies x∗ = Tx∗. �

Example 2.3. Let Xω = R be endowed with the non-Archimedean modular metric

ωλ(x, y) =


1
λ(|x|+ |y|), if x 6= y

0 if x = y

for all x, y ∈ Xω and λ > 0. Define T : Xω → Xω and α : Xω ×Xω → [0,+∞) by

Tx =



2x10, if x ∈ (−∞, 0)

1
8x

2, if x ∈ [0, 1)

1
8x, if x ∈ [1, 2)

1
4 if x ∈ [2,+∞)

, α(x, y) =

 2, if x, y ∈ [0,+∞)

0, otherwise

Also, define, ψ,ϕ : [0,+∞) → [0,+∞) and θ : [0,+∞)4 → [0,+∞) by ψ(t) = t, ϕ(t) = 3
4 t and

θ(t1, t2, t3, t4) = min{t1, t2, t3, t4}. Clearly, Xω is a ω−complete modular metric space, ψ,ϕ ∈ Ψ
and θ ∈ Θ. Let, α(x, y) ≥ 1, then x, y ∈ [0,+∞). On the other hand, Tw ∈ [0,+∞) for all
w ∈ [0,+∞). Then α(Tx, Ty) ≥ 1. That is, T is an α-admissible mapping. Let α(x, y) ≥ 1
and α(y, z) ≥ 1. So, x, y, z ∈ [0,+∞), i.e., α(x, z) ≥ 1. Hence, T is a triangular α-admissible
mapping. Let {xn} be a sequence in Xω such that α(xn, xn+1) ≥ 1 with xn → x as n→ +∞. Then
xn ∈ [0,+∞) for all n ∈ N. Also, [0,+∞) is a closed set. Then x ∈ [0,+∞), that is, α(xn, x) ≥ 1
for all n ∈ N ∪ {0}. Clearly, α(0, T0) ≥ 1.

Let, α(x, y) ≥ 1. So x, y ∈ [0,+∞).
Now we consider the following cases:

• Let x, y ∈ [0, 1), then,
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ψ(ω1(Tx, Ty)) = ω1(Tx, Ty) = 1
8x

2 + 1
8y

2

= 1
8(x2 + y2)

≤ 1
4(x+ y)

= 1
4ω1(x, y)

≤ 1
4M(x, y)

= ψ(M(x, y))− ϕ(M(x, y))

≤ ψ(M(x, y))− ϕ(M(x, y))
]

+ θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

• Let x, y ∈ [1, 2), then,

ψ(ω1(Tx, Ty)) = ω1(Tx, Ty) = 1
8x+ 1

8y
= 1

8(x+ y)
≤ 1

4(x+ y)
= 1

4ω1(x, y)
≤ 1

4M(x, y)
= ψ(M(x, y))− ϕ(M(x, y))
ψ(M(x, y))− ϕ(M(x, y))
+θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

• Let x, y ∈ [2,∞), then,

ψ(ω1(Tx, Ty)) = ω1(Tx, Ty) = 1
4 + 1

4
= 1

2
= 1

4(1 + 1)
≤ 1

4(x+ y)
= 1

4ω1(x, y)
≤ 1

4M(x, y)
= ψ(M(x, y))− ϕ(M(x, y))
≤ ψ(M(x, y))− ϕ(M(x, y))
+θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

• Let x ∈ [0, 1) and y ∈ [1, 2), then,

ψ(ω1(Tx, Ty)) = ω1(Tx, Ty) = 1
8x

2 + 1
8y

≤ 1
8x+ 1

8y
≤ 1

4(x+ y)
= 1

4ω1(x, y) ≤ 1
4M(x, y)

= ψ(M(x, y))− ϕ(M(x, y))
= ψ(M(x, y))− ϕ(M(x, y))
+θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

• Let x ∈ [0, 1) and y ∈ [2,∞), then,
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ψ(ω1(Tx, Ty)) = ω1(Tx, Ty) = 1
8x

2 + 1
4

≤ 1
8x+ 1

8y
= 1

8(x+ y)
≤ 1

4(x+ y)
= 1

4ω1(x, y)
≤ 1

4M(x, y)
= ψ(M(x, y))− ϕ(M(x, y))
= ψ(M(x, y))− ϕ(M(x, y))
+θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

• Let x ∈ [1, 2) and y ∈ [2,∞), then,

ψ(ω1(Tx, Ty)) = ω1(Tx, Ty) = (18x+ 1
4)

≤ 1
8x+ 1

8y
= 1

8(x+ y)
≤ 1

4(x+ y)
= 1

4ω1(x, y)
≤ 1

4M(x, y)
= ψ(M(x, y))− ϕ(M(x, y))

≤ ψ(M(x, y))− ϕ(M(x, y))
]

+θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

Therefore, α(x, y) ≥ 1 implies

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ(ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)).

Hence, all conditions of Theorem 2.2 hold and T has a fixed point. Here, x = 0 is the fixed point
of T .

Theorem 2.4. Let Xω be a complete non-Archimedean modular metric space with ω regular and
let T : Xω → Xω be a self-mapping. Assume that there exist a function α : Xω ×Xω → [0,+∞),
two functions ψ,ϕ ∈ Ψ and a function θ ∈ Θ such that the following assertions hold:

(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(ii) T is triangular α-admissible mapping;
(iii) for all x, y ∈ X, we have

ψ(α(x, y)ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
,

where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
,

(iv) if {xn} be a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N∪{0} and xn → x as n→ +∞,
then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.

Then T has a fixed point.

Proof. Let α(x, y) ≥ 1. Since ψ is increasing, by(iii) we have

ψ(ω1(Tx, Ty)) ≤ ψ(α(x, y)ω1(Tx, Ty))
≤ ψ(M(x, y))− ϕ(M(x, y))

+θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
.

Therefore, all conditions of Theorem 2.2 holds and T has a fixed point. �
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If in Theorem 2.4 we take α(x, y) = 1 for all x, y ∈ X, then we have the following Corollary.

Corollary 2.5. Let Xω be a complete non-Archimedean modular metric space with ω regular and
let T : Xω → Xω be a self-mapping. Assume that there exist two functions ψ,ϕ ∈ Ψ and a function
θ ∈ Θ such that for all x, y ∈ X, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
.

Then T has a fixed point.

3. Some results in b−metric spaces endowed with a graph

As in [?], let (Xω, ω) be a modular metric space and ∆ denotes the diagonal of the Cartesian
product of X × X. Consider a directed graph G such that the set V (G) of its vertices coincides
with X, and the set E(G) of its edges contains all loops, that is, E(G) ⊇ ∆. We assume that G
has no parallel edges, so we can identify G with the pair (V (G), E(G)). Moreover, we may treat G
as a weighted graph (see [7], p. 309) by assigning to each edge the distance between its vertices. If
x and y are vertices in a graph G, then a path in G from x to y of length N (N ∈ N) is a sequence
{xi}Ni=0 of N + 1 vertices such that x0 = x, xN = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , N.

Definition 3.1. [?] Let (X, d) be a metric space endowed with a graph G. We say that a self-
mapping T : X → X is a Banach G-contraction or simply a G-contraction if T preserves the edges
of G, that is,

for all x, y ∈ X, (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G)

and T decreases the weights of the edges of G in the following way:

∃α ∈ (0, 1) such that for all x, y ∈ X, (x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ αd(x, y).

Definition 3.2. [?] A mapping T : X → X is called G-continuous, if given x ∈ X and sequence
{xn}

xn → x asn→∞ and (xn, xn+1) ∈ E(G) for alln ∈ N imply Txn → Tx.

In this section, we will show that many fixed point results in non-Archimedean modular metric
spaces endowed with a graph G can be deduced easily from our presented theorems.

Theorem 3.3. Let Xω be a complete modular metric space endowed with a graph G satisfies the
∆2−condition. Let, T : Xω → Xω be a self-mapping satisfying the following assertions:

(i) there exists x0 ∈ Xω such that, (x0, Tx0) ∈ E(G),
(ii) T is ω-continuous,
(iii) ∀x, y ∈ Xω[(x, y) ∈ E(G)⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ Xω[(x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ Xω with (x, y) ∈ E(G) we have,

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y))
]

+ θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
where, ψ,ϕ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2s

}
.

Then T has a fixed point.

Proof. Define α : Xω × Xω → [0,+∞) by α(x, y) =

{
2, if (x, y) ∈ E(G)
1
2 , otherwise

. At first we show

that T is a triangular α-admissible mapping. Let, α(x, y) ≥ 1, then (x, y) ∈ E(G). From (iii),
we have, (Tx, Ty) ∈ E(G). That is, α(Tx, Ty) ≥ 1. Also, let, α(x, y) ≥1 and α(y, z) ≥ 1. So,
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(x, y) ∈ E(G) and (y, z) ∈ E(G). From (iv) we get, (x, z) ∈ E(G). i.e., α(x, z) ≥ 1. Thus T is a
triangular α-admissible mapping. From (i) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G). That
is, α(x0, Tx0) ≥ 1. Let α(x, y) ≥ 1, then (x, y) ∈ E(G). Now, from (v) we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y))
]

+ θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
Hence, all conditions of Theorem 2.1 are satisfied and T has a fixed point. �

If in Theorem 3.3 we take θ(t1, t2, t3, t4) = min{t1, t2, t3, t4}, then we have the following Corollary.

Corollary 3.4. Let Xω be a complete modular metric space endowed with a graph G satisfies the
∆2−condition. Let, T : Xω → Xω be a self-mapping satisfying the following assertions:

(i) there exists x0 ∈ X such that, (x0, Tx0) ∈ E(G),
(ii) T is ω-continuous,
(iii) ∀x, y ∈ Xω[(x, y) ∈ E(G)⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ Xω[(x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ Xω with (x, y) ∈ E(G) we have,

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + Lmin{ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)}
where, ψ,ϕ ∈ Ψ, L ≥ 0 and

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
.

Then T has a fixed point.

Theorem 3.5. Let Xω be a complete modular metric space endowed with a graph G satisfies the
∆2−condition. Let, T : Xω → Xω be a self-mapping satisfying the following assertions:

(i) there exists x0 ∈ Xω such that, (x0, Tx0) ∈ E(G),
(ii) ∀x, y ∈ Xω[(x, y) ∈ E(G)⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ Xω[(x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ Xω with (x, y) ∈ E(G) we have,

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
(3.1)

where, (ψ,ϕ ∈ Ψ), θ ∈ Θ and

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
.

(vi) if {xn} be a sequence in Xω such that, (xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0} and xn → x
as n→∞, then we have, (xn, x) ∈ E(G) for all n ∈ N ∪ {0}.

Then T has a fixed point.

Proof. Define the mapping α : Xω ×Xω → [0,+∞) as in the proof of Theorem 3.3. Similar to the
proof of Theorem 3.3 we can prove that the conditions (i)-(iii) of Theorem 2.2 are satisfied. Let
{xn} be a sequence in X such that, α(xn, xn+1) ≥ 1 for all n ∈ N∪{0} and xn → x as n→∞. Then,
(xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0}. From (vi) we get, (xn, x) ∈ E(G). That is, α(xn, x) ≥ 1 for
all n ∈ N ∪ {0}. Therefore, all conditions of Theorem 2.2 holds and T has a fixed point. �

Corollary 3.6. Let Xω be a complete modular metric space endowed with a graph G satisfies the
∆2−condition. Let, T : Xω → Xω be a self-mapping satisfying the following assertions:

(i) there exists x0 ∈ X such that, (x0, Tx0) ∈ E(G),
(ii) T is ω-continuous,
(iii) ∀x, y ∈ Xω[(x, y) ∈ E(G)⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ Xω[(x, y) ∈ E(G) and (y, z) ∈ E(G)⇒ (x, z) ∈ E(G)]
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(v) for all x, y ∈ Xω with (x, y) ∈ E(G) we have,

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + Lmin{ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)}

where, ψ,ϕ ∈ Ψ, L ≥ 0 and

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
.

(vi) if {xn} be a sequence in Xω such that, (xn, xn+1) ∈ E(G) for all n ∈ N ∪ {0} and xn → x
as n→∞, then we have, (xn, x) ∈ E(G) for all n ∈ N ∪ {0}.

Then T has a fixed point.

4. Some results in modular metric spaces endowed with a partial ordered

The existence of fixed points in partially ordered sets has been considered in [21]. Let Xω be a
modular metric space and let � be a partially ordered on Xω. Then (Xω,�) is called a partially
ordered modular metric space. Two elements x, y ∈ Xω are called comparable if x � y or y � x
holds. A mapping T : Xω → Xω is said to be non-decreasing if x � y implies Tx � Ty for all
x, y ∈ Xω.

In this section, we will show that many fixed point results in partially ordered modular metric
spaces can be deduced easily from our obtained results.

Theorem 4.1. Let (Xω,�) be a complete partially ordered modular metric space with ω regular
and let T : Xω → Xω be a self-mapping. Assume that there exist two functions ψ,ϕ ∈ Ψ and a
function θ ∈ Θ such that the following assertions hold:

(i) there exists x0 ∈ Xω such that x0 � Tx0;
(ii) T is an ω−continuous mapping;
(iii) T is an increasing mapping;
(iv) for all x, y ∈ X with x � y, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
,

where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
.

Then T has a fixed point.

Proof. Define α : Xω ×Xω → [0,+∞) by

α(x, y) =

{
2, if x � y
1
2 , otherwise.

First, we prove that T is a triangular α-admissible mapping. Let α(x, y) ≥ 1, then x � y. Since T
is increasing, then we have Tx � Ty. That is, α(Tx, Ty) ≥ 1. Also, we suppose that α(x, y) ≥ 1
and α(y, z) ≥ 1. Then, x � y and y � z. Hence, x � z, that is, α(x, z) ≥ 1. Therefore, T is
a triangular α-admissible mapping. From (i) there exists x0 ∈ Xω such that x0 � Tx0, that is,
α(x0, Tx0) ≥ 1. Let α(x, y) ≥ 1, then x � y. Now, from (iv) we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
.

Hence, all conditions of Theorem 2.1 are satisfied and T has a fixed point. �

If in Theorem 4.1, we take θ(t1, t2, t3, t4) = Lψ(min{t1, t4}) where L ≥ 0, then we have the
following Corollary.
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Corollary 4.2. Let (Xω,�) be a complete partially ordered modular metric space with ω regular
and let T : Xω → Xω be a self-mapping. Assume that there exist two functions ψ,ϕ ∈ Ψ and a non
negative real number L such that the following assertions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;
(ii) T is an ω−continuous mapping;
(iii) T is an increasing mapping;
(v) for all x, y ∈ X with x � y, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + Lψ(min{ω1(x, Tx), ω1(y, Tx)}),
where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2s

}
.

Then T has a fixed point.

Theorem 4.3. Let (Xω,�) be a complete partially ordered modular metric space with ω regular
and let T : Xω → Xω be a self-mapping. Assume that there exist two functions ψ,ϕ ∈ Ψ and a
function θ ∈ Θ such that the following assertions hold:

(i) there exists x0 ∈ Xω such that x0 � Tx0;
(ii) T is an increasing mapping;
(iii) for all x, y ∈ X with x � y, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + θ
(
ω1(x, Tx), ω1(y, Ty), ω1(x, Ty), ω1(y, Tx)

)
,

where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2

}
.

(iv) if {xn} be a sequence in Xω such that xn � xn+1 for all n ∈ N ∪ {0} and xn → x as
n→ +∞, then we have xn � x for all n ∈ N ∪ {0}.

Then T has a fixed point.

Proof. Define the mapping α : Xω ×Xω → [0,+∞) as in the proof of Theorem 4.1. Analogous to
the proof of Theorem 4.1 we can prove that the conditions (i)-(iii) of Theorem 2.2 are satisfied. Let
{xn} be a sequence in X such that, α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x as n → +∞.
Then xn � xn+1 for all n ∈ N ∪ {0}. From (iv), we get xn � x. That is, α(xn, x) ≥ 1 for all
n ∈ N ∪ {0}. Therefore, all conditions of Theorem 2.2 holds and T has a fixed point. �

If in Theorem 4.3, we take θ(t1, t2, t3, t4) = Lψ(min{t1, t4}) where L ≥ 0, then we have the
following Corollary.

Corollary 4.4. Let (Xω,�) be a complete partially ordered modular metric space with ω regular
and let T : Xω → Xω be a self-mapping. Assume that there exist two functions ψ,ϕ ∈ Ψ and a non
negative real number L such that the following assertions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;
(ii) T is an increasing mapping;
(iii) for all x, y ∈ X with x � y, we have

ψ(ω1(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)) + Lψ(min{ω1(x, Tx), ω1(y, Tx)}),
where

M(x, y) = max

{
ω1(x, y), ω1(x, Tx), ω1(y, Ty),

ω1(x, Ty) + ω1(y, Tx)

2s

}
.
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(iv) if {xn} be an increasing sequence in Xω such xn → x as n → +∞, then we have xn � x
for all n ∈ N ∪ {0}.

Then T has a fixed point.

5. Some Integral type contractions

Let Φ denotes the set of all functions φ : [0,+∞)→ [0,+∞) satisfying the following properties:

• every φ ∈ Φ is a Lebesgue integrable function on each compact subset of [0,+∞);
• for any φ ∈ Φ and any ε > 0,

∫ ε
0 φ(τ)dτ > 0.

Note that if we take ψ(t) =
∫ t
0 φ(τ)dτ where φ ∈ Φ, then ψ ∈ Ψ. Also, note that, if ψ ∈ Ψ and

θ ∈ Θ, then ψθ ∈ Θ.

Now, if in the Theorem 2.1 and Theorem 2.2, we take ψ(t) =
∫ t
0 φ(τ)dτ , ϕ(t) = (1− r)

∫ t
0 φ(τ)dτ

for all t ∈ [0,+∞), where 0 ≤ r < 1 and replace θ by ψθ, then we have the following theorems.

Theorem 5.1. Let Xω be a complete non-Archimedean modular metric space with ω regular and
let T : Xω → Xω be a ω−continuous mapping. Assume that there exist a function α : Xω ×Xω →
[0,+∞), two functions φ ∈ Φ and θ ∈ Θ and a real number r ∈ [0, 1) such that the following
assertions hold:

(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(ii) T is a triangular α-admissible mapping;
(iii) for all x, y ∈ X with α(x, y) ≥ 1, we have∫ ω1(Tx,Ty)

0
φ(τ)dτ ≤ r

∫ M(x,y)

0
φ(τ)dτ +

∫ θ
(
ω1(x,Tx),ω1(y,Ty),ω1(x,Ty),ω1(y,Tx)

)
0

φ(τ)dτ.

Then T has a fixed point.

Theorem 5.2. Let Xω be a complete non-Archimedean modular metric space with ω regular and
let T : Xω → Xω be a ω−continuous mapping. Assume that there exist a function α : Xω ×Xω →
[0,+∞), two functions φ ∈ Φ and θ ∈ Θ and a real number r ∈ [0, 1) such that the following
assertions hold:

(i) there exists x0 ∈ X such that, α(x0, Tx0) ≥ 1;
(ii) T is a triangular α-admissible mapping;
(iii) for all x, y ∈ X with α(x, y) ≥ 1, we have∫ ω1(Tx,Ty)

0
φ(τ)dτ ≤ r

∫ M(x,y)

0
φ(τ)dτ +

∫ θ
(
ω1(x,Tx),ω1(y,Ty),ω1(x,Ty),ω1(y,Tx)

)
0

φ(τ)dτ ;

(iv) if {xn} be a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N∪{0} and xn → x as n→ +∞,
then α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.

Then T has a fixed point.

In the setting of partially ordered modular metric space, for example from Theorem 4.3, we
deduce the following result.

Theorem 5.3. Let (Xω,�) be a complete partially ordered modular metric space with ω regular
and let T : Xω → Xω be a self-mapping. Assume that there exist two functions φ ∈ Φ and θ ∈ Θ
and a real number r ∈ [0, 1) such that the following assertions hold:

(i) there exists x0 ∈ Xω such that x0 � Tx0;
(ii) T is an increasing mapping;
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(iii) for all x, y ∈ X with x � y, we have∫ ω1(Tx,Ty)

0
φ(τ)dτ ≤ r

∫ M(x,y)

0
φ(τ)dτ +

∫ θ
(
ω1(x,Tx),ω1(y,Ty),ω1(x,Ty),ω1(y,Tx)

)
0

φ(τ)dτ

(iv) if {xn} be an increasing sequence in Xω such that xn → x as n→ +∞, then we have xn � x
for all n ∈ N ∪ {0}.

Then T has a fixed point.
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