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Abstract

In this paper, we presented some functional equations of the generalized Bateman’s
G—function Gj(x) and its relation with the hypergeometric series 3F». We deduced an
asymptotic expansion of the function Gj(x) and studied the completely monotonic prop-
erty of some functions involving it. Also, we presented some new bounds of the function
Gp(z). Our results generalize some recent results about the Bateman’s G—function G(x).

2010 Mathematics Subject Classification: 33B15, 26D15, 41A60, 65Q20.
Key Words: Psi function, Bateman’s G-function, functional equation, asymptotic formula,
Laplace transform, inequality, monotonicity.

1 Introduction.

The ordinary gamma function I'(z) is defined by [3]
[(x) = / t"le7tdt, x>0
0
and the Psi or digamma function ¢ (x) is given by

d
= —logI'(x).
¥(a) = +-log(a)
The gamma function and its logarithmic derivatives 1) () are of the most widely used special
functions encountered in advanced mathematics . For more details about the properties of these
functions and their bounds, please refer to the papers [2], [3], [8], [9], [12]-[14], [16]-[20], [25]-[29]
and plenty of references therein.
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The Bateman’s G—function is defied by [7]

G(w):z/J(I;l)—w(g), v £0,—1,-2, ... (1)

The function G(z) is very useful in estimating and summing certain numerical and algebraic
series. For more details about the properties, bounds and applications of the G(x), please refer
o [7], [12], [14], [15], [17], [21], [30] and the references therein.

The function G(z) satisfies the following relations [7]

222& @)

k=0

Gz +1)+ G(x)

20~
) n=246,. (4)

n—1 k
G(nr) =2n"" —1)F 1y ( —
k:O "
n—1
-1 k k
G(nz) =n (-G (:c + —) , n=1305,.. (5)
k=0 "
o0 e—:ct
G’(:v)—Q/O 1+€7tdt, x>0 (6)
G(z) =221 o (1,20 + 1; —1), (7)

where
o0

TFS(Oéb---aaTvﬁl?""Bs’x) B kZ:(] (Bl)k(ﬁs)k k!

is the generalized hypergeometric series [3] defined for r,s € N, oy, 8; € C, 5; # 0,—1,—-2, ...
and the Pochhammer or shifted symbol («),, is given by

r
(=1 and (@), = %, m > 1
Qiu and Vuorinen [30] presented the double inequality
4(3/2 — In4) L1
T<G(9§)—[B <2_:EQ’ x>05. (8)

Mahmoud and Agarwal [12] deduced the following asymptotic formula for Bateman’s G-function

92k _
G(z) ~2 '+ Z mx*%, T — 00 9)

<Gx)—ar'< 5.2 x> 0. (10)



Also, Mahmoud and Almuashi [14] proved the following double inequality of the Bateman’s
G—function

2m 2m— 1
9" — 1) By, —1Bn -
E Qaf?”< Glx)—z7' < E My meN (11)
n
n=1

with the best possible bounds, where B,,’s are the Bernoulli numbers [11]. Mortici [17] presented
the double inequality

0<Y(x+A) —lx) <PA)+v— A+ 171 r>10<A<1 (12)

where 7 is the Euler constant, which also improves the double inequality (8). Also, Alzer deduced
the inequality [2]

=T\ 7)) —w (N z) <Y+ N) — () <! =T\ ),

where x > 0,r=20,1,2,... ,0< A <1,

T.(Ax) = (1= X)

7=

r—1
1 1
— + . :
A+r+1 Z(;(x+z+1)(x+z+)\)

and

1 (.T + r)(:r+r)(1—)\) (.T L4 1)(m+r+1))\
log .
T+r4+ A (x+ 74 A)ztr+A

Mahmoud, Talat and Moustafa [15] presented the following family of approximations of the
function G(x)

wr(Ajx) =

1 2
M(p,x)=In |1+ + , r>0;1<pu<?2
(1,) ( x—i—u) z(x+1) a

(2+2)[(*—4)a+4] 4 :
($+1)[(62_4)$+621) for x > 2 and pu € (1, 62—_4) and is

asymptotically equivalent to G(x) as x — oo. Also, they presented the new double inequality

which is of an order of convergence of O <ln

In{1+ ! + 2 <G(r)<In|{1+ ! + 2
n r) <In
T+ 5 z(x +1) r+1 z(x+1)

where the constants 1 and ﬁ are the best possible.

In this paper, we presented some functional equations of the generalized Bateman’s G—function

Gh(m):dj(x;h) —w(g>, 0<h<2 z#—2m,—2m—hfor m=0,1,2,... (13)

and its relation with the hypergeometric function 3F». We deduced an asymptotic expansion of
the function G (z) and studied the completely monotonic property of the function G,(z) — = for
different values of the parameter s. Also, some bounds of the generalized Bateman’s G—function
are given.



2 Some relations of the function Gj,(z).
Lemma 2.1. The function Gj(x) satisfies the functional equation

Gz + 1)+ Gp(x) =2 (W(x + h) —Y(x)), x> 0. (14)
Proof. Using the integral representation [3]

oo €_t _ e—tz

we get

1 —e 2

o 1 _efht
Gn(x) = /‘ ) (15)
0

Also,

Ple+h) —lz) = /0“1‘6‘” "

:%mmwn+@@y
L]

In case of h =1 and using the functional equation ¢ (z + 1) = 1 + ¢(z), we get the relation
(3).

Lemma 2.2. The function G(z) satisfies the functional equation

m—1
2
G n (:c+£), x>0; meN. (16)

Proof.

]

As a special case, when h = 1, we get the following new functional equation of the ordinary
function G(x) in terms of the generalized function Gj,(x).
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Corollary 2.3. The function G(x) satisfies the functional equation

iy 2r
:—ZGl(x—i-—), x>0; meN, (17)
m i m

The following result relates the function G, (x) and the hypergeometric function 3F5.

Lemma 2.4. The function Gy(z) satisfies

h h+2 _x+h+2
= (1,1 ;2 i1 . 1
Gh(l‘) $+h32(77 9 9 2 a)7 x>0 (8)
Proof. Using the integral representation [3]
1 . tzfl
W(z) = - + / i, R(z)>0
. 1t
we get
ti - tz+h : Las zt+h—2 >
n=0
and then .
> 0. 19
§$+2n :E+h—i—2n) v (19)
Using the relation
x(z+1),
r+n= ,
(@)n
we obtain
2% °° z+h z
Gh(‘r) = h x+h12)n (iJ)r;
l’(l’ - ) n=0 ( 2 )n (T)n
2h r x+h v+2 x+h+21 >0
wlx+h) 7 P\"2 2 0 2 2 )
Now using the two-term Thomae transformation formula [32], [23]
L0)r'eo — o)
F. ;0,m 1) = ——————= 3F (n — - ;60,151 =46 —a—
3 2(0475,0-, » 105 ) F(Q)F((S—O')g 2(77 a,m /6707 » 105 )7 +77 « B
with +h h+2 +2
x x T x
= — = =1 R — =
« 27 /8 2 Y o Y 77 2 Y 6 2
we have
h 2 h+2 h+2 h+2
3F2 17£7x+ 7x+ 7w+ ki 71 :£3F2 1717 i 727x+ ki al )
2" 2 2 2 2 2 2
which complete the proof. O
Remark 1. From the formulas (7) and (18) for h = 1, we can conclude that
3 2 1
3F2< 3/272,1:; ,1) :@THQFl(l,x;SC—i-l;—l), x> 0. (20)



3 An asymptotic expansion of the function Gj(z).

li is well known that the Psi function has the asymptotic expansion [6]

¢<Z>Nlnz_2%i

k zk
k=1

and its generalization is given by

Y4l w3 EVBO L

k L
k=1

where By (1) are the Bernoulli polynomials defied by the generating function [11]

and the Bernoulli constants By, = By(0). Using the operations of the asymptotic expansions [5];
[22], we obtain

vz 40 =0~ S T B0 - B
k zk

k=1

For more details about the general theory of the asymptotic expansion of the function f(z + t)
by the asymptotic expansion of the function f(z) using Appell polynomials, we refer to [4]. Now,
using the identity [11]

we get

- (DM IS ey k| L
Bz =) ~ Y (*) B,

k=1

Then we obtain the following result.

Lemma 3.1. The following asymptotic series holds:

= (—1)mttan h 1
~ =) - B —, . 21
0~ 0 (5) ]xn 2
or

T — 00. (22)

(] n+1 n—1
Gu(x) ~ Z [Z )2 B,h""

n=1 r=0

Remark 2. As a special case at h = 1, we obtain

2L (—1)nHign 1 1
N_+Z {r(i)—Br]E, T — 00
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and using the identities [1]

B, (%) = (2'"" - 1) B,, n=0,1,2,..

and
BZn-H :O, n = 1,2,...

then we get the asymptotic series (9).

In [12], Mahmoud and Agarwal studied the completely monotonic property of the function
G(z) — == for different values of the parameter s by the motivation of Mortici results [17] about
Psi function. In the following result, we will generalize this result to the function Gj(z).

Lemma 3.2. The functions

Xsi(x,h) = Gp(z) — 2 s<h; x>0, 0<h<2, (23)

and
Xor(,h) = Gp(z) — = s<0;2>0; 0<h<2 r=234,.. (24)
x’l"
are strictly completely monotonic.

Proof. Using the relation (15) and the known formula

(r—1la™™= /oo Ve gy, meN 5)

we get ’

(=)™ (@, h) = /Oo Pns(r, t)et;e—jtldt, n=0,1,2,3,.. (26)
where ’ .

() =2 (¢ = B = e (1),
Then s
On.s(r,t) = ; Tph,s(r7 ),

where a

Proslrt)=1— (1" s e
Rie k> ) = 2) T 2r—11"

Firstly, if » = 1, we obtain
h\* h\*
Poor(l)=1—(1-2) ~ 250 iff Z<1-(1-2 k=123, ...
o 2 2 2
But

k
ggl—(1—g) O<h<2 k=1,23,..

and thus, ¢, 4(1,t) > 0 for all ¢ > 0 iff s < h. Secondly, when r = 2,3,4, ..., then P} 4 x(r, 1)

is increasing as a function of ¢t if s < 0 with P, sx(r,0) = 1 — (1 — g)k > (0 for 0 < h < 2 and
k=1,2,3,.... Thus ¢p(r,t) >0forall t >0,r=2,3,...iff s <0. m
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As a result of the strictly completely monotonicity of the function y,1(x, k) and the relation
(22), we obtain
Xsa(x,h) > lim (xs1(z,h)) =0, s<h.
T—r 00

Hence, we have the following result:

Corollary 3.3. The following inequality holds

h
Gp(z) > e 0; 0<h<2. (27)

4 Some Bounds of the function G (x).

Lemma 4.1. 2> h2-h)
Gh<$)<z+2—x2, ZL‘>0;0<h<2. (28)

Proof. By using the formulas (15) and (25), we get for = > 0 that

Gh(x) — g _ M _ /OOO <2 (€2t _ e(th)t) _9 (e2t . 1) _ h(2 - h) (th B 1) t) et "

x 212 2

> _ h(2 — h) et
_ _ @2=h)ty _ 2t
= /0 <2 (1— e —5 (e’ —1) t> Ll

< 0 for0O< h<2.

Theorem 1. b h2—h)
Gh($) < E + 7,

Proof. Using the two formulas (15) and (25), we have

Gy~ 1 M2 h) / T

x>0 1<h<2. (29)

x 212 e2t —1
where o
pu(t) =2 (e — oty (e 1) - PEER gy s
Then
pr(t) = 2(h — 2)e® QL)
with

Qn(t) =2 —h+e"(h—2+ht).

The function @Qp(t) is convex function with minimum value at ¢, = 3, which is non positive for
1 <h<2and Q,(0) =0. Hence Qp(t) > 0 for 1 < h < 2. Hence p,(t) is concave for 1 < h < 2
and its has maximum value at ¢t = 0. Then

1-h

pr(t) <0, 1<h<2;t>0.
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Then the function G (z) — % — % is strictly increasing function for 1 < h < 2 and = > 0 and

using the asymptotic expansion (22), we get

lim (Gh(:v) — g - M) =0,

r—00 21’2

which complete the proof. O]

Remark 3. In case of h = 1, the inequality (29) will prove the right-hand side of the inequality
(10).

To obtain our next result, we will apply the following monotone form of L'Hopital’s rule [10]
(see also [24] and [31] ).

Theorem 2. Let —o0 < a < < o0 and L,U : [a,p] — R be continuous on [a, ] and
differentiable on (o, B). Let U'(x) # 0 on (o, B). If L'(x)/U’'(x) is increasing (decreasing) on
(av, B), then so are

L(z) = L() L(z) — L(B)
— and ——F—S———. 30
T -0@ " Tw-0p) o
If L'(x)/U'(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
Theorem 3. h o
Gh(x)>—+g x>0 0<h<2. (31)

r  2(x%+3h%)

Proof. Using the two formulas (15) and (25) and the Laplace transformation of the sine function,

we get
G - — En(t dt
(@) Tz 2 x2 + 3h2 / " ezt ) ’

where
En(t) = 6 (—2e* — e (—2 4 h) + heM) + VBe (=1 + €*) (=2 + h) sin (\/ght> :

Now consider the function

2¢/3e Mt (—262t — @2 1 h) + heht)
(—1+e€2t) (2 —h)

(t) = t>0; 0<h<2.

The function

2\/5%( (2+h)t(_2+h) +h€ht))

(=2
& (( 14 e*)(2 =)

= 2V3e M (—1+ M)

is increasing function for ¢ > 0. Using the monotone form of L’Hopital’s rule, we get that the
function 73(t) is increasing. Similarly, the function

t
Hh(t):\T/hgh)t’ t>0,0<h<2.



is increasing function and

t—o0
Then
2v/3eM (—2e* — e (=2 + h) + he™) > ht (=1 + €*) (2 — h), t>0; 0<h<2
and using Jordan’s inequality
2z )
— <sinz < z, z € [0,7/2]
T
we have
2v/3e7M (<262 = eE(=2 4 B) + heM) >t (< 1+ ¢¥) (2—h)sin (V3ht) £>0;0<h<2.
Hence
&n(t) >0, t>0;0<h<2.

Then the function Gy (z) — & — % is strictly decreasing function for 0 < h < 2 and = > 0.

Also, using the asymptotic expansion (22), we get
h h(2 —h)
li G —— | =0
v ( @) =273 (22 + 3h2)> ’
which complete the proof. O

Remark 4. In case of h = 1, the inequality (31) will prove the left-hand side of the inequality
(10).

Remark 5. Using the inequalities (28), (29) and (31) with the relation (19), we get the following
estimations

L, _2-h <OO L <L 2=h >0, 1<h<?
R _— R J— I‘ .
20 4(a?+3h%) = (z+2n)(z+h+2n) 2z da? T
and
1 2—h > 1 1 2—h
— < < — + — >0 0< h<2.
2£L‘+4($2+3h2)  (z +2n)(z + h + 2n) e A TOUUS
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