
Multidimensional Backward Doubly Stochastic Differential

Equations with Integral Non-Lipschitz Coefficients

Pengju Duan∗

School of Mathematics and Statistics, Suzhou University, Anhui, 234000, China

Abstract: The paper is devoted to solving multidimensional backward doubly stochastic differ-

ential equations under integral non-Lipschitz conditions in general spaces. By stochastic analysis

and constructing approximation sequence, a new set of sufficient conditions for multidimensional

backward doubly stochastic differential equations is obtained. The results generalize the recent

results on this issue. Finally, an example is given to illustrate the advantage of the main results.

Keywords: Backward doubly stochastic differential equations; Existence and uniqueness; Integral

non-Lipschitz

2010 Mathematics Subject Classification. Primary 60H10, 60H30, 60H99.

1 Introduction

Motivated by the probabilistic interpretation of solutions to a class of quasilinear parabolic par-

tial differential equations(PDEs in short), Pardoux and Peng [1] introduced nonlinear backward

stochastic differential equations(BSDEs in short). In the past decades, the theory of BSDEs have

been extensively developed and gradually become an important tool in financial problems [2, 3],

stochastic control [4] and stochastic games [5] and so on. One highlight of the theory is relaxing

the conditions of existence and uniqueness of the solutions. Mao [6] has proved the existence

and uniqueness of the multidimensional BSDEs with non-Lipschitz coefficients. Lepeltier and San

Martin [7] have relaxed the generator with continuous conditions. S. Hamadène [9] investigated

the existence of the multidimensional BSDEs where the generator satisfies uniformly continuous

conditions. Recently, Fan et al. [7] discussed the existence and uniqueness of the multidimensional

BSDEs with Osgood hypothesis where the method is different from [6]. Hu and Tang [10] studied

the same problem with diagonally quadratic generators.

In 1994, Pardoux and Peng [11] studied the backward doubly stochastic differential equa-

tions(BDSDEs in short). They proved the existence and uniqueness under Lipschitz conditions,

and also, discussed the probabilistic representation of solution of quasilinear stochastic PDEs.

Furthermore, Shi et al. [12] obtained the existence of the BDSDEs with continuous coefficients.
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Lin [13, 14] made further efforts to establish the existence or uniqueness of solutions with non-

Lipschitz. Even recently, Wang et al. [15] obtained the result where the first generator satisfied

Osgood hypothesis, the second non-Lipschitz conditions. As a matter of fact, those results are ob-

tained which the generators are uniform on t. To the best of our knowledge, the multidimensional

BDSDEs with generators of integral non-Lipschitz assumptions in general spaces have rarely been

reported.

The structure of this paper is organized as follows. In section 2, we present some basic notions

and assumptions which will be needed in the sequel. Section 3 is devoted to investigating the

existence and uniqueness of solutions for multidimensional BDSDEs in general space. Finally, we

give an example to show the effectiveness of the main result.

2 Notations

Let T > 0 be a fixed terminal time. | · | denotes the Eulclidean norm of Rk, < x, y > denotes

the inner product of x, y ∈ Rk. For any z ∈ Rk×d, its norm is defined by ‖z‖ =
√

Trace(zz∗).

Let (Ω,F , P ) be a complete probability space, {Bt, }t∈[0,T ] and {Wt, }t∈[0,T ] are two mutually

independent standard Brownian motions with values respectively in Rl and Rd. N denotes the

totality of P−null sets of F . For each t ∈ [0, T ], we define

Ft = FW
0,t

∨
FB

t ,

where for any process ηt, Fη
0,t = σ{ηr − ηs, s ≤ r ≤ t} ∨ N , Fη

t = Fη
0,t. For a deterministic

integrable function a(t), we define A(t) =
∫ t

0
a2(s)ds.

Let us introduce some spaces for β > 0 which will be carried out in the following parts.

• L2(β, a, T,R) denotes the set of all FT− measurable Rk− valued random variable ξ such that

‖ξ‖2 = E(eβA(T )|ξ|2) < +∞.

• L2(β, a) denotes the collection of the Ft− adapted, Rk−valued continuous processes (Yt)t∈[0,T ]

such that

‖Yt‖2β = E
∫ T

0

eβA(t)|Yt|2dt < +∞.

• L2,a(β, a) denotes the set of the Ft− adapted, Rk−valued continuous processes (Yt)t∈[0,T ]

such that

‖Yt‖2β,a = E
∫ T

0

eβA(t)a2(t)|Yt|2dt < +∞.

• S2(β, a) denotes the space of the Ft− adapted, Rk−valued continuous processes (Yt)t∈[0,T ]

such that

‖Yt‖2S2 = E( sup
t∈[0,T ]

eβA(t)|Yt|2) < +∞.

• M2(β, a) denotes the space of the Ft− adapted, Rk×d−valued processes (Zt)t∈[0,T ] such that

‖Zt‖2M2 = E
∫ T

0

eβA(t)‖Zt‖2dt < +∞.
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• M2,a : = L2,a(β, a)×M2(β, a) denotes the Banach space with the norm

‖Y, Z‖2β = ‖Y ‖2β,a + ‖Z‖2M2 .

• M2,c : = (S2(β, a)
⋂

L2,a(β, a))×M2(β, a) denotes the Banach space with the norm

‖Y, Z‖2β,c = ‖Y ‖2S2 + ‖Y ‖2β,a + ‖Z‖2M2 .

In this paper, we consider the backward doubly stochastic differential equations

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds +
∫ T

t

g(s, Ys, Zs)dBs −
∫ T

t

ZsdWs, t ∈ [0, T ], (2.1)

where the integral with respect to Bt is the classical backward Itô integral and the integral

with respect to Wt is standard forward Itô integral. The equations are often abbreviated by

BDSDEs(ξ, f, g).

With the above preparations, we introduce the definition of solution of (2.1).

Definition 1 A pair of process (Yt, Zt)t∈[0,T ] ∈M2,c is a solution to (2.1), if it satisfies (2.1).

In order to get the solution of (2.1), we propose the following assumptions:

(H1) The terminal value ξ ∈ L2(β, a, T,R);

(H2) (i) The coefficients f : Ω× [0, T ]× Rk × Rk×d → Rk, g : Ω× [0, T ]× Rk × Rk×d → Rk×l,

are progressively measurable for any (y, z) ∈ Rk × Rk×d such that f(·,0,0)
a(·) , g(·, 0, 0) ∈ L2(β, a).

(ii) There exist some integrable functions p(t), q(t), u(t) : [0, T ] → R+ such that for any

t ∈ [0, T ], y1, y2 ∈ Rk, z1, z2 ∈ Rk×d,

|f(t, y1, z1)− f(t, y2, z2)| ≤ p(t)ρ(|y1 − y2|) + q(t)‖z1 − z2‖,

|g(t, y1, z1)− g(t, y2, z2)|2 ≤ p(t)|y1 − y2|ρ(|y1 − y2|) + u(t)‖z1 − z2‖2,

where ρ(x) is a concave and nondecreasing function with ρ(0) = 0 and
∫
0+

du
ρ(u) = +∞.

(iii) There exists a constant 0 < α < 1 such that u(t) ≤ α, for all t ≥ 0.

Remark 1 For the above given spaces, if a(t) = C, C is a nonnegative constant, we can easily

find that the spaces degenerate into the classical spaces.

Before giving our main results, we introduce some technical tools. The first Lemma appears in

[17].

Lemma 1 If ρ(u) is a concave and nondecreasing function with ρ(0) = 0 and
∫
0+

du
ρ(u) = +∞,

there exists a concave nondecreasing function φ(u) with φ(0) = 0 and
∫
0+

du
φ(u) = +∞, moreover,

a
√

uρ(
√

u) ≤ φ(u) ≤ 2a
√

uρ(
√

u), where a > 0 is a constant.

Lemma 2 Assume that the generator f satisfies (H2). Let f (i) denote the ith component of the

generator f , we define a series of functions fn = (f (1)
n , f

(2)
n , · · · , f

(k)
n ) with f

(i)
n as follows

f (i)
n (t, y, z) = inf

u∈Rk
{f (i)(t, u, z) + (n + A)p(t)|y − u|}.

Then, it satisfies
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(i) For any (y, z) ∈ Rk × Rk×d, |fn(t, y, z)− f(t, y, z)| ≤ kp(t)ρ( 2A
n ).

(ii) For any (yi, zi) ∈ Rk × Rk×d, i = 1, 2, we have

|fn(t, y1, z1)− fn(t, y2, z2)| ≤ k(n + A)[p(t)|y1 − y2|+ q(t)||z1 − z2||],
|fn(t, y1, z1)− fn(t, y2, z2)| ≤ kp(t)ρ(|y1 − y2|) + kq(t)||z1 − z2||.

(iii) fn(t,0,0)
a(t) ∈ L2,a(β, a).

Proof: The proof is similar to the process step 1 of Theorem 1 in [9], we omit it.

3 Existence and uniqueness

In this section, we begin with establishing a priori estimate on the solutions of (2.1). Because

ρ(x) is a concave, there exists a nonnegative constant A such that ρ(x) ≤ A(x + 1). Furthermore,

we let a2(t) = p(t) + q2(t) in following parts.

Proposition 1 Assume that (H1) and (H2) hold, (Yt, Zt) be a solution of (2.1), then for enough

large β, there exists a constant dβ,T which depends on β and T such that

E
[

sup
t≤s≤T

eβA(s)|Ys|2
]

+ E
∫ T

t

eβA(s)a2(s)|Ys|2ds + E
∫ T

t

eβA(s)||Zs||2ds

≤ dβ,T

{
EeβA(T )|ξ|2 + E

∫ T

t

eβA(s) |f(s, 0, 0)|2
a2(s)

ds + E
∫ T

t

eβA(s)|g(s, 0, 0)|2ds + E
∫ T

t

eβA(s)a2(s)φ(|Ys|2)ds

}
.

Proof: Applying Itô formula to eβA(t)|Yt|2 yields that, for any t ∈ [0, T ]

eβA(t)|Yt|2 + β

∫ T

t

eβA(s)a2(s)|Ys|2ds +
∫ T

t

eβA(s)||Zs||2ds

= eβA(T )|ξ|2 + 2
∫ T

t

eβA(s)Ysf(s, Ys, Zs)ds + 2
∫ T

t

eβA(s)Ysg(s, Ys, Zs)dBs

+
∫ T

t

eβA(s)|g(s, Ys, Zs)|2ds− 2
∫ T

t

eβA(s)YsZsdWs. (3.1)

Following the assumptions (H1) and (H2), elementary inequality, we have

2Ytf(t, Yt, Zt) = 2Yt[f(t, Yt, Zt)− f(t, Yt, 0) + f(t, Yt, 0)− f(t, 0, 0) + f(t, 0, 0)]

≤ 2|Yt||f(t, Yt, Zt)− f(t, Yt, 0)|+ 2|Yt||f(t, Yt, 0)− f(t, 0, 0)|+ 2|Yt||f(t, 0, 0)|
≤ (

2
1− α

+
β

8
)a2(t)|Yt|2 +

1− α

2
||Zt||2 + a2(t)φ(|Yt|2) +

8
βa2(t)

|f(t, 0, 0)|2, (3.2)

|g(t, Yt, Zt)|2 = |g(t, Yt, Zt)− g(t, 0, 0) + g(t, 0, 0)|2

≤ α(1 +
1
γ

)||Zt||2 + (1 +
1
γ

)a2(t)φ(|Yt|2) + (1 + γ)|g(t, 0, 0)|2, (3.3)

where γ is a nonnegative constant.
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Take expectation on both sides of (3.1), by (3.2) and (3.3), we have

EeβA(t)|Yt|2 + βE
∫ T

t

eβA(s)a2(s)|Ys|2ds + E
∫ T

t

eβA(s)‖Zs‖2ds

≤ EeβA(T )|ξ|2 + (
2

1− α
+

β

8
)E

∫ T

t

eβA(s)a2(s)|Ys|2ds + [
1− α

2
+ α(1 +

1
γ

)]E
∫ T

t

eβA(s)‖Zs‖2ds

+
8
β
E

∫ T

t

eβA(s) |f(s, 0, 0)|2
a2(s)

ds + (1 + γ)E
∫ T

t

eβA(s)|g(s, 0, 0)|2ds

+(2 +
1
γ

)E
∫ T

t

eβA(s)a2(s)φ(|Ys|2)ds.

Let γ = 4α
1−α , we deduce

EeβA(t)|Yt|2 + (
7β

8
− 2

1− α
)E

∫ T

t

eβA(s)a2(s)|Ys|2ds +
1− α

4
E

∫ T

t

eβA(s)||Zs||2ds

≤ EeβA(T )|ξ|2 + (1 + γ)E
∫ T

t

eβA(s)|g(s, 0, 0)|2ds +
8
β
E

∫ T

t

eβA(s) |f(s, 0, 0)|2
a2(s)

ds

+(2 +
1
γ

)E
∫ T

t

eβA(s)a2(s)φ(|Ys|2)ds.

Let β enough large, there exists a nonnegative constant Cβ,T such that

EeβA(t)|Yt|2 + E
∫ T

t

eβA(s)a2(s)|Ys|2ds + E
∫ T

t

eβA(s)||Zs||2ds ≤ Cβ,TXt. (3.4)

where Xt = EeβA(T )|ξ|2+E ∫ T

t
eβA(s) |f(s,0,0)|2

a2(s) ds+E
∫ T

t
eβA(s)|g(s, 0, 0)|2ds+E

∫ T

t
eβA(s)a2(s)φ(|Ys|2)ds.

By the Burkholder-Davis-Gundy inequality, we have

2E

[
sup

r∈[t,T ]

|
∫ T

r

eβA(s)Ysg(s, Ys, Zs)dBs|
]
≤ 12E

[
sup

r∈[t,T ]

[e
βA(r)

2 Yr](
∫ T

t

eβA(s)|g(s, Ys, Zs|2ds)1/2

]

≤ 1
4
E

[
sup

r∈[t,T ]

[eβA(r)|Yr|2]
]

+ 144E
∫ T

t

eβA(s)|g(s, Ys, Zs|2ds. (3.5)

2E

[
sup

r∈[t,T ]

|
∫ T

s

eβA(s)YsZs)dWs|
]
≤ 1

4
E

[
sup

r∈[t,T ]

[eβA(r)|Yr|2]
]

+ 144E
∫ T

r

eβA(s)||Zs||2ds. (3.6)

From (3.1), (3.5) and (3.6), it follows that

E

[
sup

r∈[t,T ]

eβA(r)|Yr|2
]

+ βE
∫ T

t

eβA(s)a2(s)|Ys|2ds + E
∫ T

t

eβA(s)||Zs||2ds

≤ EeβA(T )|ξ|2 + 2E
∫ T

t

eβA(s)Ysf(s, Ys, Zs)ds +
∫ T

t

eβA(s)|g(s, Ys, Zs)|2ds

+2E

[
| sup
r∈[t,T ]

∫ T

r

eβA(s)Ysg(s, Ys, Zs)dBs|
]

+ 2E sup
r∈[t,T ]

|
∫ T

r

eβA(s)YsZsdWs|

≤ EeβA(T )|ξ|2 +
1
2
E

[
sup

r∈[t,T ]

eβA(r)|Yr|2
]

+ [144 +
1− α

2
+ 145α(1 +

1
γ

)]E
∫ T

t

eβA(s)||Zs||2ds

+
8
β
E

∫ T

t

eβA(s) |f(s, 0, 0)|2
a2(s)

ds + (
2

1− α
+

β

8
)E

∫ T

t

eβA(s)a2(s)|Ys|2ds

+145(1 + γ)E
∫ T

t

eβA(s)|g(s, 0, 0)|2ds + (146 +
145
γ

)E
∫ T

t

eβA(s)a2(s)φ(|Ys|2)ds. (3.7)

From (3.4) and (3.7), we can derive the result.
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Theorem 1 Assume (H1) and (H2) hold. Then, there exists a unique solution (Yt, Zt) ∈ M2,c

satisfying (2.1).

Proof: Uniqueness. Let (Y i
t , Zi

t) ∈M2,c(i = 1, 2) be solutions of (2.1), we have

Y 1
t − Y 2

t =
∫ T

t

[f(s, Y 1
s , Z1

s )− f(s, Y 2
s , Z2

s )]ds +
∫ T

t

[g(s, Y 1
s , Z1

s )− g(s, Y 2
s , Z2

s )]dBs −
∫ T

t

(Z1
s − Z2

s )dWs.(3.8)

Applying Itô formula to eβA(t)|Y 1
t − Y 2

t |2,

eβA(t)|Y 1
t − Y 2

t |2 + β

∫ T

t

eβA(s)a2(s)|Y 1
s − Y 2

s |2ds +
∫ T

t

eβA(s)‖Z1
s − Z2

s‖2ds

= 2
∫ T

t

eβA(s)(Y 1
s − Y 2

s )(f(s, Y 1
s , Z1

s )− f(s, Y 2
s , Z2

s ))ds +
∫ T

t

eβA(s)|(g(s, Y 1
s , Z1

s )− g(s, Y 2
s , Z2

s )|2ds.

+2
∫ T

t

eβA(s)(Y 1
s − Y 2

s )(g(s, Y 1
s , Z1

s )− g(s, Y 2
s , Z2

s ))dBs − 2
∫ T

t

eβA(s)(Y 1
s − Y 2

s )(Z1
s − Z2

s )dWs.(3.9)

Taking expectation on both sides of (3.9), from (H1), (H2) and elementary inequality 2ab ≤
θa2 + 1

θ b2, θ > 0, we have

EeβA(t)|Y 1
t − Y 2

t |2 + βE
∫ T

t

eβA(s)a2(s)|Y 1
s − Y 2

s |2ds + E
∫ T

t

eβA(s)‖Z1
s − Z2

s‖2ds

= 2E
∫ T

t

eβA(s)(Y 1
s − Y 2

s )(f(s, Y 1
s , Z1

s )− f(s, Y 2
s , Z2

s ))ds + E
∫ T

t

eβA(s)|(g(s, Y 1
s , Z1

s )− g(s, Y 2
s , Z2

s )|2ds

≤ 3E
∫ T

t

eβA(s)a2(s)φ(|Y 1
s − Y 2

s |2)ds +
β

4
E

∫ T

t

eβA(s)a2(s)|Y 1
s − Y 2

s |2ds

+(
4
β

+ α)E
∫ T

t

eβA(s)‖Z1
s − Z2

s‖2ds.

By Lemma 1, taking β enough large, there exists a nonnegative constant C1 such that

E
∫ T

t

eβA(s)a2(s)|Y 1
s − Y 2

s |2ds + E
∫ T

t

eβA(s)‖Z1
s − Z2

s‖2ds ≤ C1E
∫ T

t

eβA(s)a2(s)φ(|Y 1
s − Y 2

s |2)ds.

(3.10)

From (3.9), (3.10) and Burkholder-Davis-Gundy inequality, there exists a a nonnegative constant

C2 such that

E
[

sup
t≤r≤T

eβA(r)|Y 1
r − Y 2

r |2
]

+ E
∫ T

t

eβA(s)a2(s)|Y 1
s − Y 2

s |2ds + E
∫ T

t

eβA(s)‖Z1
s − Z2

s‖2ds

≤ C2E
∫ T

t

eβA(s)a2(s)φ(|Y 1
s − Y 2

s |2)ds ≤ C2

∫ T

t

a2(s)φ(E sup
s≤r≤T

eβA(r)|Y 1
r − Y 2

r |2)ds.

By Bihari inequality, we can obtain Y 1
s = Y 2

s , Z1
s = Z2

s ,dP − a.s.

Existence. By the definition of fn, Lemma 1 and Lemma 2, we can easily deduce BDSDEs(ξ, fn, g)

is a special case in [16]. Therefore, BDSDEs(ξ, fn, g) have a unique solution denoted by (Y n
t , Zn

t ).

Applying Itô formula to eβA(t)|Y n
t − Y m

t |2,

eβA(t)|Y n
t − Y m

t |2 + β

∫ T

t

eβA(s)a2(s)|Y n
s − Y m

s |2ds +
∫ T

t

eβA(s)‖Zn
s − Zm

s ‖2ds

= 2
∫ T

t

eβA(s)(Y n
s − Y m

s )(fn(s, Y n
s , Zn

s )− fm(s, Y m
s , Zm

s ))ds

+2
∫ T

t

eβA(s)(Y n
s − Y m

s )(g(s, Y n
s , Zn

s )− g(s, Y m
s , Zm

s ))dBs − 2
∫ T

t

eβA(s)(Y n
s − Y m

s )(Zn
s − Zm

s )dWs

+
∫ T

t

eβA(s)|(g(s, Y n
s , Zn

s )− g(s, Y m
s , Zm

s )|2ds. (3.11)
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Taking suitable β, by Lemma 2 and Burkholder-Davis-Gundy inequality, there exist a nonneg-

ative constant C3 such that

E
[

sup
t≤r≤T

eβA(r)|Y n
r − Y m

r |2
]

+ E
∫ T

t

eβA(s)a2(s)|Y n
s − Y m

s |2ds + E
∫ T

t

eβA(s)||Zn
s − Zm

s ||2ds

≤ C3E
∫ T

t

eβA(s)a2(s)ψ(|Y n
s − Y m

s |2)ds

≤ C3

∫ T

t

a2(s)ψ(E sup
s≤r≤T

eβA(r)|Y n
r − Y m

r |2)ds, (3.12)

where ψ(u) is a concave and nondecreasing function with ψ(0) = 0 and
∫
0+

du
ψ(u) = +∞, kuρ(u) ≤

ψ(u) ≤ 2kuρ(u), k > 0.

From Bihari inequality, (3.12), we have (Y n
t , Zn

t ) is a Cauchy sequence in M2,c.

On the other hand,
∫ T

t

eβA(s)|fn(s, Y n
s , Zn

s )− f(s, Ys, Zs)|ds

≤ E
∫ T

t

eβA(s)

[
kp(s)ρ(

2A

n
) + p(s)ρ(|Y n

s − Ys|) + q(s)‖Zn
s − Zs‖

]
ds

≤ E
∫ T

t

eβA(s)kp(s)
[
ρ(

2A

n
) + ρ(

2A

m + A
)
]

ds + (m + A)E
∫ T

t

eβA(s)p(s)|Y n
s − Ys|ds

+E
∫ T

t

eβA(s)q(s)‖Zn
s − Zs‖ds

≤ E
∫ T

t

eβA(s)kp(s)
[
ρ(

2A

n
) + ρ(

2A

m + A
)
]

ds + E





[∫ T

t

eβA(s)a2(s)ds

] 1
2

[∫ T

t

eβA(s)‖Zn
s − Zs‖2ds

] 1
2





+(m + A)E





[∫ T

t

eβA(s)a2(s)ds

] 1
2

[∫ T

t

eβA(s)a2(s)|Y n
s − Ys|2ds

] 1
2



 . (3.13)

E
∫ T

t

eβA(s)|gn(s, Y n
s , Zn

s )− g(s, Ys, Zs)|2ds

≤ E
∫ T

t

eβA(s)
[|Y n

s − Ys|p(s)ρ(|Y n
s − Ys|) + α‖Zn

s − Zs‖2
]
ds

≤
∫ T

t

p(s)ρ(E sup
s≤r≤T

eβA(r)|Y n
r − Yr|2)ds + αE

∫ T

t

eβA(s)‖Zn
s − Zs‖2ds. (3.14)

From (3.13), (3.14), we have

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds +
∫ T

t

g(s, Ys, Zs)dBs −
∫ T

t

ZsdWs, t ∈ [0, T ],

Then, (Yt, Zt)t∈[0,T ] is a solution of (2.1).

Example: For convenience, let k = 1, and f(t, y, z) = 1√
t
h(|y|) + 1

6√t
|z| + |Bt|, g(t, y, z) =

1
4√t

sin |y|+ 1
2
√

2+t2
|z|+ |Bt|, and δ is a enough small nonnegative constant,

h(x) =





−x lnx, x ≤ δ,

h′(δ−)(x− δ) + h(δ), x > δ,

0, othercases.

We choose p(t) = 1√
t
, q(t) = 1

6√t
, u(t) = 1

2+t2 , then |f(t, y1, z1) − f(t, y2, z2)| ≤ p(t)h(|y1 − y2|) +

q(t)‖z1 − z2‖, |g(t, y1, z1) − g(t, y2, z2)|2 ≤ [ 1
4√t
|y1 − y2| + 1

2
√

2+t2
‖z1 − z2‖]2 ≤ 3p(t)|y1 − y2|2 +

7



1
2+t2 ‖z1−z2‖2. Let ρ(x) = h(x)+3x, we can deduce ρ(x) is a concave function,

∫
0+

1
ρ(x)dx = +∞.

According to above analysis, the functions f(t, y, z), g(t, y, z) satisfied (H1) and (H2), the equation

(2.1) has a unique solution. Obviously, f(t, y, z), g(t, y, z) do not satisfy the assumptions in [11-15].

Let p(t), q(t) = C, u(t) = α(0 < α < 1), C is a nonnegative constant, then, the results generalize

the results in [11, 15]. Moreover, if g(t, y, z) = 0, [1, 6, 9] are special cases of our main results.
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