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ABSTRACT. In this paper, by using the generalized beta function, we extend the def-
inition of the fractional derivative operator of the Riemann-Liouville and discuses its
properties . Moreover, we establish the some relations to extended special functions of
two and three variables via generating functions.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

In recent years, fractional derivative operators and their extensions have received
considerable attention. There are many definitions of generalized fractional derivatives
involving extended beta and hypergeometric functions [2, 3, 7, 10]. In continuation,
Ozarslan and Ozergin [5] was introduced and studied the extended fractional derivative
operator.

Definition 1. The extended fractional derivative operator defined by:

2

L )
I“/ (Z—t) n-1 e (==t f(t)dt (Re(n)<0)

—Nn)Jo
DIP{f(2)} = (1.1)
dm m
AP )} (m— 1S Re(m) <m (me W)

Clearly, the special case of (1.1), when p = 0 reduce immediately to Riemann—Liouville
fractional derivative(see,[12, 13]).

In recent years number of researchers has been systematically study the extended
fractional derivative operators and discussed their applications in different fields (see,
(3,4, 5,7]). In view of the effectiveness of the above works, here by using the generalized
beta function due to Choi et al. [1], we extend the definition of the fractional derivative
operator of the Riemann-Liouville and discuses its various properties. Moreover, we
establish the some relations to extended special functions of two and three variables via
generating functions.

For our purpose we recall the some earlier works and definitions.
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Definition 2. The generalized beta function defined by [see Choi et al. [1]]:
1
Bygl(z,y) = / L1 — L i) (1.2)
0

(min{R(z), R(y)} > 0; min{Re(p), Re(q)} 2 0)
Definition 3. The generalized hypergeometric function defined as [see Choi et al. [1]]:

> By (b+mn,c—b) 2"
2Fipq (a, s ¢; 2) ::Z(a)" p%(b c—b) nl

n=0

(p=20,q20; |z| <1; Re(c) > Re(b) > 0)
(1.3)

2. Extension of Hypergeometric Functions and Integral Representations

By making use of (1.2), we consider another extensions of Appell’s and the Lauricella
functions of one, two and three variables.

Definition 4. The extension of the hypergeometric functions of two and three variables
are defined as:

> By ,(a+m+n,d—a) 2™ y"
R edigipa) = Y (o, A IERAZD TV )
m,n=0 ’ ’ ’

(Re(p) >0, Re(q) > 0; |z| < 1,]y| < 1)

- Bp,(b+m,d—b)Bp4(c+n,e—c) x™ y"
Fy(a,b,c;d,e;x,yip,q) = ) (@)myn —2 B d—b)chqe—c) o
m,n=0 ’ ’ ’ ’

(2.2)

(Re(p) > 0, Re(q) > 0; |z +[y| < 1)

o0
Bpgla+m—+n+r.e—a)(b)m(c)n(d), x™y™ 2"
Fj(abediesz,y,zpa)= 24 Bl
m,n,r=0 ’ cn.r.
(2.3)

(Re(p) >0, Re(q) > 0;]z| < 1,|yl < 1,]z| < 1)

Remark 1. For p = q above definitions are similar to Ozarslan and Ozergz’n [5] and for
p =0 = q similar to [12].

Theorem 1. The following integral holds true for (2.1):

1
Fi(a,b,c;d;x,y;p,q9) = B ] / 71— (1 —at) P (1 - yt)*ce(_%_f‘)dt
0

a,d—a
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Proof. To prove the above Theorem, we start by assuming that

1
3= / 19711 — )40l - )01 — yt) e E TR .
0
Using the binomial series expansion for (1 — 2t)~® and (1 — yt)~¢ and interchanging the
order of summation and integration, we get

by applying (1.2) and (2.1), we get the desired representation.

O
Theorem 2. The following integral holds true for (2.2):
1
Fy(a,b,c;d, e;x,y; =
2(aa e 767%9,?,(1) B(b d—b)B( ,e—c)
b— 1 d b—1 1 —c—1
/ / t 1 L % )T () duds
—xt —ys
Proof. We start by expanding (1 — 2t — ys)~® we have
b=1(] — f)d-b-1ge-1 —c—1
/ / : U (it duds
1—wt—ys)
oo N
_p__4q_ _p_ t
/ / =11 — ¢)d-b-1 o % 13t)8c—1(1_8)e—c—1e( E-1%) Z(Q)N(x_'_]\[?S)dtdS
N=0
Using the summation formula
ac—i—yN e "y
Zf =22 S+
r=0 =0
we get
b=1(1 _ g)d-b-lge-1 —c—1
// : AT () gads
1 — ot —ys)?
/ / tb 1 d b—1 ( %)Sc_l(l_5)6_6_16(7%7135) (25)
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Here, involving series and the integrals are convergent, then by interchanging the order
of summation and integration we get

b— 1 d b—1 ¢~ 1 e—c—1
/ / ! (L= &) (5 21%) drds

1—:ct—ys)

o0 o0 . L e
=3 S (s 'l'/ pr=1(p — pyd-bo1o(-F 1) g

r=0 [=0
1 o » q
/ c+l— 1 )e c 16( 5 1*3)(18,
0

by applying (1.2) and (2.2), we get the desired representation.

Theorem 3. The following integral holds true for (2.3):
Fp(a,b,¢,d;¢;2,y, 2 p,q)

_ F(e) ! a—1l71 _ pye—a—1 —r —br1 _ —c(1 _ —d e(—%—%)
_F(a)F(e—a)/Ot (1= 65911 — 2t) (1 — yt) (1 — yt) at

Proof. The proof of Theorem 3 is as similar to proof of Theorem 1. Therefore, we omit
its detail here. O

3. Extended Riemann-Liouville Fractional Derivative Operator

Here, we introduce new extended Riemann-Liouville type fractional derivative opera-
tor as follows:

Definition 5. The extended Riemann-Liouville type fractional derivative operator de-
fined by

1 z —pz z
T )/ =t T pwydt (Re(n) < 0)
—1n)Jo
DI{f(2);p.q} =
dm m

dm{D" {f()pﬂ}} (m—1< Re(n) <m (me€N))
(3.1)

where Re(p) > 0,Re(q) > 0 and the path of integration is a line from 0 to z in the

complez t-plane.

Clearly for p = ¢, (3.1) reduces to (1.1) and for p = 0 = ¢, we obtain its classical form
(see, for details [2, 12, 13]).

Now, we establishing some theorems involving the extended fractional derivatives.

Theorem 4. The following representation for (3.1) holds true:

Bpq(A+1,

—) -
(=) 27" (Re(n) <0) (3.2)

D1z p,q] =




EXTENDED FRACTIONAL DERIVATIVE OPERATOR 5

Proof. Using (3.1) and (1.2), we get

DIipal = iy [ £ -0t ag
0
replacing ¢ = uz, we have
1
D2*p,q / (z —uz) "*16(_%_zziz)zdu
0
1
)\n/u)‘ 771( i) du.
0
(3.3)
By applying Definition (1.2) to yield (5.4) directly. O

Theorem 5. Let R(n) < 0 and suppose that a function f(z) is analytic at the origin
with its Maclaurin expansion given by f(z Z an 2" (|z| < p) for some p € RT. Then

we have

DU[f Z anD7[2":p, q (3.4)

Proof. We begin from Definition 5 to the function f(z) with its series expansion, we get

DY [f(e)ipd) = s [ Stz =yt
0 n=0

Since the power series converges uniformly on any closed disk centered at the origin with
its radius smaller than p, so does the series on the line segment from 0 to a fixed z for
|z| < p. This fact guarantees term-by-term integration as follows:

qjt)dt

o0 Z

1 zZ z
DI[f(2)ip,al =) an /t”(z T T
= | T(=n)
0
- Z CLn ap’ (35)
This completes the proof. O
Theorem 6. The following representation holds true:
(A
DAL = 2) "% p, g = FE 52"1 2 Frp (o, As s 2) (3.6)
n

(Re(n) > Re(A) > 0and | z|< 1)
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Proof. Direct calculations yield

1 z o
DA = 2) "% p, g = p(n_)\)/o L1 — )T ) (- ALy
Zn_>\—1 z o + n—i—1 (_E_ qz)
= —— ti 1—t*o¢ 1_7 : Z_tdt
T(n—A) / (1-1) ( Z) .
0
n—A—1_A !
= ZF()Z\)/U)\IG —uz) *(1 - u)nf)\fle(_%_ﬁ)du
/]’] J—
0

Using (1.3) and after little simplification, we have the (3.6). This completes the proof. [

Theorem 7. The following representation for holds true:

Di‘_"[z)‘_l(l —az) %1 - bz)_ﬁ;p7 q] = ?Eniz” ) (N, o, B5m;az,bz;p, q) (3.7)

(Re(n) > Re(A) > 0, Re(a) > 0, Re(B) > 0;] az |< land | bz |< 1)

More generally, we have

r
Dy " (1—az) " (1=b2) P(1—e2) ip,q) = nggzn_lFE’)(%a,ﬂmn; az,bz, ¢z p, q)
(3.8)
(Re(n) > R(A) > 0, Re(a) > 0,Re(B) > 0,Re(y) >0,]az|<1,|bz|<1land |cz|<1)
Proof. To prove (3.7), using the following power series expansion for (1 — az)™® and
(1—bz)"8
ShS (az)’ (b2)*
(1 —az) (1 =02 = S0 3 (o) S
1=0 k=0
then applying Theorem 4, we obtain
DI AL~ az) (1= b2) Fip,q]
=3 @) W O prareeioy, g (3.9
1=0 k=0 ' '
o b)f By g(A+1+k,n— A
:Z Z(a)l(ﬁ)k( ) ( ) pq( + 0+ y 11— ) l+k:+17 1 (310)
R Tm- N
=0 k=0
Now, applying (2.1), we get
DAL~ az) (1= b2) Fip,q]
(A
= an;zn_lFl()\aaaﬁ;n; az,bz;p, Q) (311)

Similarly, as in the proof of (3.7), taking the binomial theorem for (1 —az)~%, (1 —bz)~?
and (1 — ¢z)77, then applying Theorem 4 and (2.3) into account, one can easily prove
(3.8). Therefore, we omit the details of its proof. This completes the proof. O
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Theorem 8. The following representation holds true:

1

_ _ _ x _
D? K |:Z/\ 1(1_2) an,q <Oé7/87"}/, 1_2> 7p7Q:| == 277 1F2(a,6,)\;’}/,7];1',2;p,q)

B(B,y = B)T(n—A)
(3.12)
(Re(p) > Re(X\) > 0, Re(a) > 0, Re() > 0, Re(ry) > 0; | & |[<land |z|+]|z|<1)

Proof. Applying (2.2) on the LHS of (3.12), we get

_ _ _ X
D;\ n |:Z>\ 1(1 _Z) an,q (057/8;7; 1_2) 7p7Q:|

A= |, _ ) o (@)nBpg(B+n,7—B) z \"{.
=D [ e {Z s s () }’p’q]

n=0

o0

WDA "[ZA IZ Bpq(B+mn,v - ﬁ) {(12)_0‘_"};19,61]-

Using power series expansion for (1 — z)~*™ " applying Theorem 4 and (2.2), we get

_ _ _ T
D;‘ n |:Z/\ 1(1 _Z) an,q (a’ﬂ’%l—z> 7p7Q:|

— D\ |, _ ) o () Bypg(B+ 1,7 = B) z \"1.
= [ =ar {Z sih s () }’p’q]

n=0

1 o0

WDA "[ZA 12 Bpq(B+mn,v — B) {(1—Z)a”};p,q]-

This completes the proof. O

4. Mellin Transform Representations

The double Mellin transforms [8, p. 293, Eq. (7.1.6)] of a suitable classes of integrable
function f(z,y) with index r and s is defined by

M{f(x,y):x—r y—s}:= /000 /OOO oLyt f(z,y) dz dy, (4.1)

provided that the improper integral in (4.1) exists.

Theorem 9. The following Mellin transform formula holds true:

S)ﬁ{D;"p’q(z)‘) p—=T, g — s} = MB()\ Fr41,s—p) (4.2)

(R(A) > -1, R(p) <0, R(s) >0R(r) >0)
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Proof. Applying definition (4.1) on to (3.1), we get

m {Dé"p’q(zA) p—=T,q— s} = / / pr_lqs_lDé"p’q(z)‘)dpdq
o Jo
1 /OO/OO r—1_s—1 /Z,\ —u—1 < bz qz)
= p g’ t"(z—t)F exp | —— — dt| dpdq
L(=p) Jo Jo ( ) tz—t
Z_M_l 00 o) 1 e 2 N t —p—1 pz qz
= gt th(1— - —— — —— | dt| dpd
F(—M)/o /0 P / ( z) eXp( t z—t) peq
—pu—1 1
_Z / / rlgst [/ w21 —u) " Lexp <_p _ 4 > dt} dpdgq
u 1—-u
)\ o 1
// rlgsl [/ u)‘(l —u)*Lexp <_p — q) dt} dpdqg
u 1—u
)\ o oo _ o) —
= 1—u) H! </ p"Lexp (p) dp> </ ¢ Lexp (q) dq) du
I'(—p) /0 K 2 0 u 0 L—u

where we have changed the order of integration by absolutely convergent under the stated
conditions. Using the definition of gamma function, we have

1
LA
M{DEPA) p v, g s} o= / WML = u) ()1 = w) T (s)du
0
AR (1) (s) /1 A
= —— M1 —w) T
=R S
ATHD(r)T(s)
= ————BA+r+1,5—
I'(=p) ( #)
Which completes the proof. O

Theorem 10. The following formula for (4.3) holds true:

L(r)T(s)z™*

M{DLPI(1—2)"):p—r, q—s):= T(—p)B(r+1,s — p)

Fla,r+1;r+s—p+1;2)
(4.3)

(R(p) < 0,R(s) > 0,R(r) > 0,R(a) > 0and | z |< 1)
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Proof. Applying Theorem 9 with A = n, we can write that

W{Df’p’q((l —2) N :ip—or, qg— 5} = Z (a)ni)ﬁ{Df’p’q((l —2) Y ip—or qg— 5}

n!
n=0
_T(T(s) o~ (@n n—
T T(—p) nz_:O o Bt ls =)t
_ D(r)T(s)z7# > N . (a)pz"
=TT nZOB( +r+ 15 —p)

B L(r)T(s)z™*
- T(~w)B(r+1,5 —p)
Which completes the proof. O

Flayr+1;r+s—p+1;2)

5. Generating Relations and Further Results
Here, we obtain some generating relations of linear and bilinear type for the extended

hypergeometric functions.

Theorem 11. The following generating relation hold true:

> (M n _ x
Z (n)' 2Fup g\ 1,05 8;0)t" = (1= 1) Fipg <)‘7 a; B; 1—t>
n=0 ’

(| z |< min(1,| 1 — ¢ |)andR(X) > 0,R(B) > R(a) > 0)

Proof. Let us consider the elementary identity

(1-2) - =(1-07 [1— - ]A,

1—t
Using power series expension, we have

i%)!”(l — ) <1fx>n — (- [1 _ 12}4

n=0

Now, multiplying both sides of the above equality by 2®~! and applying the operator

DE7PP4 o5n hoth sides, we can get

n=0

Interchanging the order, which is valid under the stated conditions, we get

i %Dg—ﬁ’p’q [xa—l(l _ x)_)‘_"} t" = (1 —t)" 2D Ppa [xa—l (1 _ >—/\]

|
=0 n:

Using Theorem 5, we get the desired result. O
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Theorem 12. The following generating relation holds true:

—xt

— ()
Z n|n 2F1;p,q(P - n,a7ﬁ,x)tn = (1 - t)i/\Fl (aapa )‘7571.7 m7p7 Q>
n=0 ’

(R(B) > R(a) > 0,R(p) > 0,R(\) >0;| t|< Tz

Proof. To prove above theorem we use the elementary identity

xt ]_A

I-(1-a)t]*=1-0t)" [1+1_t

Expanding the left hand side, we have

> O = i 72

| _
= n! 1—1¢

Now, multiplying both sides of the above equality by 2* (1 — 2)~” and applying the

operator D;“ﬁ’p’q on both sides, we get
(N ot \
7&7 i n -1 _ —p+ — _ - 7ﬁ7 ) -1 —_ - — —
Dg—Ppa nE_O p (1 —ax)" P ”t”] = (1—t) " Dg~7P1 [:1:“ (1—2)" <(1 1—t> ]

Interchanging the order, which is valid for Re(a) > 0 and | zt |<| 1 —¢ | , we get

n! 1—¢

n=0

io: ()\)n Dg—ﬁqu [$a—1(1 — x)_P+”] t"h = (1—t)_AD§}_B’p’q [xa_l(l o x)_p <(1 B _:Li) _)\]

Using Theorem 5, we get the desired result. O

Theorem 13. The following bilinear generating relation holds true:

- A n n — T —yt
> (n), 2 Fip g (v, =13 83 9)2 Fiip (A + m, 05 B50)t" = (1= 8) B (Aja,’y;ﬁﬁ; T 71 gt;zx q)
n=0 '
1—
(R(0) > R(y) > 0,R(cr) > 0, R(A) > 0,R(B) > 0;] t |< I || "; ;and |z |< 1)

Proof. Replacing t — (1 — %)t in Theorem 11, multiplying the resulting equality by 37!

D4

and then applying the operator D;ﬂs , we get

N N\ o
Dy e [E ST P+ a3 ) (1 - )"

n=0

= DY | (1 — (1 —y)t) M) Fy. BT
D] [(1 (1=9)t) "ys  Fupg <)\,a,,3, 1-(1 —y)tﬂ
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Interchanging the order, which is valid under stated conditions, we can write that

o )\ " B B . .
Z( ) D; o [97 1(1_9) ]2F1;p,q()\+n,a;5;m)t

n!
- T
_ _ yt
=(1—1) AD;’ 4:p,q [y <1_1—t> 7pq<)\oz6,__yt>]
T—t

n=0
Using Theorems 5 and 6, we get the result. O

Remark 2. For p =0 = q, the results presented here would reduce to the corresponding
well-known results (see, for details, [2, 10, 12, 13]).

Theorem 14. Let R(p) > 0,R(q) > 0,R(n) > R(A) > 0; 7,0 € C and the extended

Riemann-Liouville fractional derivative (3.1). Then there holds the formula:
ZH—1
L(p—A

where Es’a(z) is a well known generalized Mittag-Leffler function due to Prabhakar [9]
defined as:

TL
n!’

D)—Hpa {z’\*l Eﬁ;jé(z)] = Pa i i (4)n By (A +n,p— )\) (5.1)

yn+9)

By =Y r(fy(i)ia)j: (7,0, 1 € C;R(Y) > 0). (5.2)
n=0

Proof. Applying (5.2) to (5.1) and using Theorem 8 and 4, we get

D)\—,u,p,q A—1 E,u — D)x—u,p,q A—1 (:u)'fl ﬁ

=3 st (2 ) o

. (1)n Bp,q()‘ +n, pu— A)z +n—1
_T;]F(’ynJré)n!{ T(p—N) ' }

O

Remark 3. If we set p = q in (5.1), we get the interesting known result given by Ozarslan
and Yilmaz [6, Theorem 9].

Theorem 15. Let R(p) > 0,R(q) > 0,R(p) > R(A\) > 0; 7,0 € C and the extended
Riemann-Liouville fractional derivative (3.1). Then there holds the formula:

(@i, @), T (a; + aik) b
(ijﬁj)m” L —A) ZH T (b; + B;k) By g(A+k, p— )\)k"

(5.4)

D)—Hpa [Z/\—l U, [z




2. BALEANU"23, P. AGARWAL%, R. K. PARMARY?’, M. AL. QURASHI® AND S. SALAHSHOURY”

where pV, (2) is the Foz-Wright function defined by (see [2, pp. 56-58])
(aza az :| al + alk) F

: 5.9
(05, 81 ZHJ1 T (b; + B;k) k! (55)

Proof. Applying the result in Theorem 4 to the (5.5) and using same process as similar
to Theorem 14, we get desired result.

m¥Un (2) = MYy, [z

0

Remark 4. If we set p = q in (5.4), we get the interesting known result given by Shrma
and Devi [11, p. 49, Theorem 8§].

6. CONCLUSION

The fractional derivative operator D59 {f (z)} in (3.1) is defined for {R(p), R(q)} >
0. The extended fractional derivatives for the some elementary functions are given by
Theorem 4-8. The Mellin transform of the (3.1) and generating relations of linear and
bilinear type for the extended hypergeometric functions are given by Theorem 11 to 13,
respectively. All of this show that this paper has the distinctive advantage in the field
of applied mathematics.
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