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Abstract

In this paper, we consider and study split feasibility and fixed point problems involved in Bregman quasi-
strictly pseudo-contractive mapping in Banach spaces. It is proven that the sequences generated by the
proposed iterative algorithm converge strongly to the common solution of split feasibility and fixed point
problems.
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1. Introduction

Throughout this paper, we assume that C and Q be nonempty closed convex sets in p-uniformly convex
and uniformly smooth real Banach spaces E1 and E2, respectively. Let A be a bounded linear operator from
E1 to E2 with its adjoint A∗. Let T be a nonlinear mapping from C to itself. We use Fix(T ) to denote the
set of all fixed points of the mapping T , that is, Fix(T ) = {x ∈ C : Tx = x}.

This paper is concerned on studying the following split feasibility and fixed point problems:

Find x∗ ∈ C ∩ Fix(T ) such that Ax∗ ∈ Q. (1.1)

Let Γ = {x∗ : x∗ ∈ C ∩ Fix(T ) such that Ax∗ ∈ Q} be the set of all solutions of (1.1). In the sequel, we
assume Γ 6= ∅. A special case of (1.1) is the following split feasibility problem (in short, SFP):

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.2)
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Let Γ0 = {x∗ : x∗ ∈ C such that Ax∗ ∈ Q} be the set of all solutions of (1.2). Then, we have that Γ0 is a
closed and convex subset of E1.

The theory of the SFP was first introduced and learned by Censor [7] in finite-dimensional space for
modeling inverse problems which arise from phase retrievals and in image reconstruction has been discussed
in the last two decades and much intensively in the last ten years. A large number of algorithms related to
the SFP have been studied; see, for example, [5, 8, 4] and the references therein. Recently, it has been found
that the SFP can be used in intensity modulated radiation therapy, please see [6, 8, 9] and the references
therein. The algorithm suggested by Censor in [7] involves the computation of the inverse A−1, so, it can
not be widely used. A seemingly more popular algorithm is the CQ algorithm [5]:

xn+1 = PC (I − γA∗(I − PQ)A)xn, n ≥ 0, (1.3)

where x0 ∈ H1 (a Hilbert space) and γ ∈ (0, 2
λ), with λ being the largest eigenvalue of the matrix A∗A.

Recently, the SFP was studied in a more general framework, for example, Banach spaces. More specifically,
Schöpfer et al. [13] proposed the following algorithm in p-uniformly convex and uniformly smooth real
Banach spaces:

xn+1 = ΠCJ
∗ (Jxn − γA∗J(I − PQ)Axn) , (1.4)

where ΠC denotes the Bregman projection and J the duality mapping, they established weak convergence of
algorithm (1.4) under some mild conditions. Obviously the above algorithm (1.4) convers the CQ algorithm
(1.3) as a special case.

It is worth pointing out that only weak convergence result is established in [13]. However, the strong
convergence is more acceptable than the weak convergence in some practical applications. Wang [16] con-
sidered the following iterative algorithm for multiple-sets split feasibility problem in p-uniformly convex and
uniformly smooth real Banach spaces:

yn = Tnxn,

Dn = {v ∈ E1 : ∆p(yn, v) ≤ ∆p(xn, v)},
En = {v ∈ E1 : 〈xn − v, Jpx− Jpxn〉 ≥ 0},
xn+1 = ΠDn

⋂
En
x.

(1.5)

Using the idea in the work of Nakajo [11], Wang proved the strong convergence of iterative algorithm (1.5).
Subsequently, Takahashi [14] proposed the following hybrid projection algorithm for the SFP in uniformly
convex and uniformly smooth real Banach spaces:

zn = xn − rJ−1
E1
A∗JE2 (Axn − PQAxn) ,

Cn = {v ∈ E1 : 〈zn − v, JE1 (xn − zn)〉 ≥ 0},
Qn = {v ∈ E1 : 〈xn − v, JE1 (x1 − xn)〉 ≥ 0},
xn+1 = PCn

⋂
Qn
x1.

(1.6)

Basing mainly on the hybrid method, he proved the strong convergence of iterative algorithm (1.6).
On the other hand, in 1967, Bregman [3] used the so-called Bregman distance function to design and

analyze feasibility and optimization algorithms. After that, many authors found that the so-called Bregman
distance function could be applied in different ways in order to construct iterative algorithms for solving not
only feasibility and optimization problems, but also variational inequality problems, equilibria problems,
fixed points problems and so on (see, e.g, [2, 10, 12, 18, 19, 20] and the references therein). The fixed point
theory with respect to Bregman distance has been studied in the last decade and a lot of good results were
published intensively in the last five years. Many authors concentrated their energies on constructing the
fixed point of Bregman nonlinear operators by utilizing the Bregman distance and the Bregman projection,
see [15, 17] and the references therein. In 2015, Wang [17] studied a new hybrid Bregman projection iterative
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algorithm for Bregman quasi-strictly pseudo-contractive mapping and proved strong convergence result in
reflexive Banach spaces. In particularly, he proposed the following iterative method:

x0 ∈ C chosen arbitrarily,

C1 = C,

x1 = PC1x0,

Cn+1 = {v ∈ Cn : Df (xn, Txn) ≤ 1
1−κ 〈∇f(xn)−∇f(Txn), xn − v〉},

xn+1 = PCn+1x0,

(1.7)

where κ ∈ [0, 1). Then the sequence {xn} converges strongly to p = PFix(T )x0, PFix(T ) is the Bregman
projection of E onto Fix(T ).

In this paper, motivated and inspired by the above research work going on in this field, we propose a new
hybrid projection method for solving split feasibility and fixed point problems (1.1) involved in Bregman
quasi-strictly pseudo-contractive mapping in p-uniformly convex and uniformly smooth real Banach spaces.
Our modification is mainly based on the schemes (1.5), (1.6) and (1.7). Furthermore, we will prove the
strong convergence theorem for the proposed algorithm.

2. Preliminaries

Let 1 < q ≤ 2 ≤ p with 1/p+ 1/q = 1. Let E be a real Banach space.
The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ S(E), ‖x− y‖ ≥ ε

}
,

for any x, y on the unit sphere S(E) = {x ∈ E : ‖x‖ = 1}. E is called uniformly convex if δE(ε) > 0 for any
ε ∈ (0, 2]; p-uniformly convex if there exists cp > 0 such that δE(ε) ≥ cpεp for any ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) = sup

{
1

2
(‖x+ y‖ − ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ = t

}
.

E is called uniformly smooth if limt→0 ρE(t)/t = 0. By setting 1 < q ≤ 2 ≤ p, a Banach space E is called
q-uniformly smooth if there exists Cq > 0 such that ρE(t) ≤ Cqt

q for all t > 0. We assume that E is
p-uniformly convex and uniformly smooth, which implies that its dual space, E∗, is q-uniformly smooth and
uniformly convex. In this situation, it is known that the duality mapping JpE is one-to-one, single-valued

and satisfies JpE =
(
JqE∗

)−1
, where JqE∗ is the duality mapping of E∗.

The q-uniformly smooth spaces have the following conclusion.

Lemma 2.1. [16] If E is a q-uniformly smooth space, then there is a constant Cq > 0 such that

‖x− y‖q ≤ ‖x‖q − q〈y, JqE(x)〉+ Cq‖y‖q,

for all x, y ∈ E, where Cq > 0 is the q-uniformly smoothness constant of E and JqE is the duality mapping
from E into 2E

∗
defined by

JqE(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1}, ∀x, y ∈ E.

Given a Gâteaux differentiable convex function f : E → R, the Bregman distance with respect to f is
defined by

∆f (x, y) = f(y)− f(x)− 〈f ′(x), y − x〉, ∀x, y ∈ E.
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It is note worthy that the duality mapping Jp is the derivative of the function fp = 1
p‖x‖

p. Then the Bregman
distance with respect to fp is given by

∆p(x, y) =
1

q
‖x‖p − 〈JpEx, y〉+

1

p
‖y‖p

=
1

p
(‖y‖p − ‖x‖p) + 〈JpEx, x− y〉

=
1

q
(‖x‖p − ‖y‖p)− 〈JpEx− J

p
Ey, x〉.

From the definition of ∆p(·, ·), we get

∆p(x, y) = ∆p(x, z) + ∆p(z, y) +
〈
z − y, JpEx− J

p
Ez
〉
, (2.1)

and
∆p(x, y) + ∆p(y, x) =

〈
x− y, JpEx− J

p
Ey
〉
, (2.2)

for any x, y, z ∈ E. All in all, the Bregman distance is not a metric because of the lack of symmetry. For
the p-uniformly convex space, the metric and Bregman distance has the following relation

τ‖x− y‖p ≤ ∆p(x, y) ≤
〈
x− y, JpEx− J

p
Ey
〉
, (2.3)

where τ > 0. Obviously, if {xn} and {yn} are both bounded sequences of a p-uniformly convex and uniformly
smooth space E, then xn − yn → 0 as n→∞ implies that ∆p(xn, yn)→ 0 as n→∞.

Projections are an important tool for our work in this paper. We can define metric projection PC as
follows

PCx = argminy∈C‖x− y‖, x ∈ E,

metric projection PC can be characterized by the following variational inequality〈
JpE(x− PCx), z − PCx

〉
≤ 0, z ∈ C. (2.4)

Likewise, one can define the Bregman projection

ΠCx = argminy∈C∆p(x, y), x ∈ E,

is the unique minimizer of the Bregman distance, The Bregman projection can also be characterized by the
following variational inequality 〈

JpEx− J
p
EΠCx, z −ΠCx

〉
≤ 0, z ∈ C, (2.5)

from which one has
∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), z ∈ C. (2.6)

The metric projection and the Bregman projection with respect to f2 are coincident in a Hilbert space, but
in a more general framework, they are totally different. What is important is that the metric projection can
not share property (2.6) as the Bregman projection in Banach spaces.

Following [1], we study the function Vp : E∗ × E → [0,∞) associated with fp, which is defined by

Vp(x, x) =
1

q
‖x‖q − 〈x, x〉+

1

p
‖x‖p, x ∈ E, x ∈ E∗.

Then Vp is nonnegative and

Vp(x, x) = ∆p(J
q
E∗x, x), x ∈ E, x ∈ E∗.
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Moreover, by the subdifferential inequality, we have

Vp(x, x) +
〈
y, JqE∗x− x

〉
≤ Vp(x+ y, x), x ∈ E, x, y ∈ E∗.

In addition, Vp is convex in the first variable. Thus, for all z ∈ E,

∆p

(
JqE∗

(
N∑
i=1

tiJ
p
E(xi)

)
, z

)
≤

N∑
i=1

ti∆p(xi, z), (2.7)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1. For more details about Vp, please see [1].
Very recently, Ugwunnadi et al. [15] introduced the concept of Bregman quasi-strictly pseudo-contractive

mapping and proved the strong convergence by using hybrid Bregman projection iterative algorithm for a
Bregman quasi-strictly pseudo-contractive mapping.

Definition 2.2. A mapping T : C → C is said to be Bregman quasi-strictly pseudo-contractive mapping if
there exists a constant κ ∈ [0, 1) and Fix(T ) 6= ∅ such that

∆p(Tx, x
∗) ≤ ∆p(x, x

∗) + κ∆p(Tx, x), ∀x ∈ C, x∗ ∈ Fix(T ).

Definition 2.3. A mapping T : C → C is said to be Bregman quasi-nonexpansive mapping if Fix(T ) 6= ∅
such that

∆p(Tx, x
∗) ≤ ∆p(x, x

∗), ∀x ∈ C, x∗ ∈ Fix(T ).

Definition 2.4. A mapping T : C → C is said to be closed if for any sequence {xn} ⊂ C with xn → x ∈ C
and Txn → y ∈ C as n→∞, then Tx = y.

We shall adopt the notation: xn → x means that {xn} converges to x strongly. Now, we give some
examples of a Bregman quasi-strictly pseudo-contractive mapping.

Example 2.5. [17] Let E be a smooth space, and define f(x) = ‖x‖2 for all x ∈ E. Let x0 6= 0 be any
element of E, T : E → E be defined as follows:

T (x) =

{
(1/2 + 1/2n+1)x0, x = (1/2 + 1/2n)x0,

−x, x 6= (1/2 + 1/2n)x0

for all n ≥ 1. Then T is a Bregman quasi-strictly pseudo-contractive mapping.

Example 2.6. [15] Let E = R and define T, f : [−1, 0]→ R by f(x) = x and T (x) = 2x for all x ∈ [−1, 0].
Then T is a Bregman quasi-strictly pseudo-contractive mapping.

3. Main results

In this section, we will introduce the following algorithm and prove strong convergence theorem for
finding the common solution of split feasibility and fixed point problems.

Theorem 3.1. Let C and Q be nonempty closed convex sets in p-uniformly convex and uniformly smooth
real Banach spaces E1 and E2, respectively. Let A: E1 → E2 be a bounded linear operator with its adjoint
A∗: E∗2 → E∗1 . Let T be a closed Bregman quasi-strictly pseudo-contractive mapping from C to itself. Let
the sequence {xn} be iteratively generated by x1 = x0 ∈ C, D1 = C1 = C,

x1 ∈ C,
yn = ΠCJ

q
E∗

1

(
JpE1

xn − λnA∗JpE2
(Axn − PQAxn)

)
,

zn = JqE∗
1

(
αnJ

p
E1
yn + (1− αn)JpE1

Txn

)
,

Dn+1 = {w ∈ Dn : ∆p(yn, w) ≤ ∆p(xn, w)} ,
Cn+1 =

{
w ∈ Cn : ∆p(zn, xn) ≤ κ

1−κ

〈
w − xn, JpE1

Txn − JpE1
xn

〉
+
〈
w − xn, JpE1

zn − JpE1
xn

〉}
,

xn+1 = ΠDn+1
⋂
Cn+1

x0, n ≥ 1,

(3.1)
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where κ ∈ [0, 1). Assume that {αn} ⊂ [c, d] ⊂ (0, 1) and {λn} ⊂ [a, b] ⊂
(

0,
(

q
Cq‖A‖q

) 1
q−1

)
. Then the

sequence {xn} defined by (3.1) converges strongly to ΠΓx0.

Proof. Taking x∗ ∈ Γ, x′ ∈ C, by the definition of T , we have

∆p(Tx
′, x∗) ≤ ∆p(x

′, x∗) + κ∆p(Tx
′, x′).

From (2.1), we get

∆p(Tx
′, x∗) = ∆p(Tx

′, x′) + ∆p(x
′, x∗) +

〈
x′ − x∗, JpE1

Tx′ − JpE1
x′
〉
,

which implies that

∆p(Tx
′, x′) ≤ 1

1− κ

〈
x∗ − x′, JpE1

Tx′ − JpE1
x′
〉
. (3.2)

Let {xn} be a sequence in Fix(T ) such that xn → z as n→∞. From (3.2), we obtain

∆p(Tz, z) ≤
1

1− κ

〈
xn − z, JpE1

Tz − JpE1
z
〉
,

setting n→∞ in the above inequality, we have ∆p(Tz, z) ≤ 0, it follows from (2.3) that Tz = z. Therefore,
Fix(T ) is closed.

Next, let z1, z2 ∈ Fix(T ), for given t ∈ (0, 1), putting z = tz1 + (1 − t)z2. From (3.2), we obtain,
respectively,

∆p(Tz, z) ≤
1

1− κ

〈
z1 − z, JpE1

Tz − JpE1
z
〉
, (3.3)

and

∆p(Tz, z) ≤
1

1− κ

〈
z2 − z, JpE1

Tz − JpE1
z
〉
. (3.4)

Multiplying (3.3) by t and (3.4) by 1− t, we have

∆p(Tz, z) ≤
1

1− κ

〈
z − z, JpE1

Tz − JpE1
z
〉
,

setting n→∞ in the above inequality, we have ∆p(Tz, z) ≤ 0, it follows from (2.3) that Tz = z. Therefore,
Fix(T ) is convex. Since Γ0 is a closed convex subset of E1, we obtain that Γ is closed convex.

Now, from (3.1), we know Dn is closed for each n ≥ 1. Note that ∆p(yn, w) ≤ ∆p(xn, w) is equivalent to〈
JpE1

xn − JpE1
yn, w

〉
≤ 1

q
(‖xn‖p − ‖yn‖p) ,

so that Dn is a halfspace, therefore, we get Dn is convex immediately.
For n = 1, C1 = C is closed convex essentially. Assume that Cn is closed convex for n > 1. For w ∈ Cn+1,

we obtain

∆p(zn, xn) ≤ κ

1− κ

〈
w − xn, JpE1

Txn − JpE1
xn

〉
+
〈
w − xn, JpE1

zn − JpE1
xn

〉
,

since
〈
·, JpE1

Txn − JpE1
xn

〉
and

〈
·, JpE1

zn − JpE1
xn

〉
are continuous and linear in E1, we get Cn is closed

convex.
Let x∗ ∈ Γ and let vn = Axn − PQAxn. It follows from (2.4) that〈

JpE2
vn, Axn −Ax∗

〉
= ‖Axn − PQAxn‖p +

〈
JpE2

vn, PQAxn −Ax∗
〉

≥ ‖Axn − PQAxn‖p,
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applying Lemma 2.1, we have

∆p(yn, x
∗) ≤ ∆p

(
JqE∗

1

(
JpE1

xn − λnA∗JpE2
vn

)
, x∗
)

=
1

q

∥∥∥JpE1
xn − λnA∗JpE2

vn

∥∥∥q − 〈JpE1
xn, x

∗
〉

+ λn

〈
JpE2

vn, Ax
∗
〉

+
1

p
‖x∗‖p

≤ 1

q

∥∥∥JpE1
xn

∥∥∥q − λn 〈Axn, JpE2
vn

〉
+
Cq (λn‖A‖)q

q

∥∥∥JpE2
vn

∥∥∥q
−
〈
JpE1

xn, x
∗
〉

+ λn

〈
JpE2

vn, Ax
∗
〉

+
1

p
‖x∗‖p

=
1

q
‖xn‖p −

〈
JpE1

xn, x
∗
〉

+
1

p
‖x∗‖p + λn

〈
JpE2

vn, Ax
∗ −Axn

〉
+
Cq (λn‖A‖)q

q

∥∥∥JpE2
vn

∥∥∥q
= ∆p(xn, x

∗) + λn

〈
JpE2

vn, Ax
∗ −Axn

〉
+
Cq (λn‖A‖)q

q

∥∥∥JpE2
vn

∥∥∥q
≤ ∆p(xn, x

∗)−
(
λn −

Cq (λn‖A‖)q

q

)
‖vn‖p.

(3.5)

By the assumption of {λn}, we have
∆p(yn, x

∗) ≤ ∆p(xn, x
∗), (3.6)

so that Γ ⊂ Dn+1 for all n ≥ 1. Next, we show Γ ⊂ Cn+1. Note that Γ ⊂ C1 = C. Suppose Γ ⊂ Cn for
n ≥ 1, then for all x∗ ∈ Γ ⊂ Cn, from (2.7), (3.1), (3.2) and (3.6), we obtain

∆p(zn, x
∗) = ∆p

(
JqE∗

1

(
αnJ

p
E1
yn + (1− αn)JpE1

Txn

)
, x∗
)

≤ αn∆p(yn, x
∗) + (1− αn)∆p(Txn, x

∗)

≤ αn∆p(yn, x
∗) + (1− αn) (∆p(xn, x

∗) + κ∆p(Txn, xn))

≤ ∆p(xn, x
∗) + κ∆p(Txn, xn)

≤ ∆p(xn, x
∗) +

κ

1− κ

〈
x∗ − xn, JpE1

Txn − JpE1
xn

〉
.

(3.7)

From (2.1), we get

∆p(zn, x
∗) = ∆p(zn, xn) + ∆p(xn, x

∗) +
〈
xn − x∗, JpE1

zn − JpE1
xn

〉
. (3.8)

By (3.7) and (3.8), we obtain

∆p(zn, xn) ≤ κ

1− κ

〈
x∗ − xn, JpE1

Txn − JpE1
xn

〉
+
〈
x∗ − xn, JpE1

zn − JpE1
xn

〉
.

This shows that x∗ ∈ Cn+1, which implies Γ ⊂ Cn+1 for all n ≥ 1. Thus, Dn+1
⋂
Cn+1 is nonempty. So,

{xn} is well defined.
From (3.1) and (2.5), we have〈

JpE1
x0 − JpE1

xn, z − xn
〉
≤ 0, z ∈ Cn.

Since Γ ⊂ Cn, we have 〈
JpE1

x0 − JpE1
xn, x

∗ − xn
〉
≤ 0, x∗ ∈ Γ. (3.9)

By (2.6) and for all x∗ ∈ Γ, we have

∆p(xn, x0) ≤ ∆p(x
∗, x0)−∆p(x

∗, xn)

≤ ∆p(x
∗, x0),
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this shows that {∆p(xn, x0)} is bounded. Hence, {xn} is bounded. By the construction of Cn, we get
xm ∈ Cm ⊂ Cn and xn = ΠCnx0 for any m ≥ n. From (2.6), we obtain

∆p(xm, xn) = ∆p(xm,ΠCnx0) ≤ ∆p(xm, x0)−∆p(ΠCnx0, x0)

= ∆p(xm, x0)−∆p(xn, x0).
(3.10)

Since xn = ΠCnx0 and xm = ΠCmx0 ∈ Cm ⊂ Cn, we have ∆p(xn, x0) ≤ ∆p(xm, x0) for all m ≥ n. This
implies that {∆p(xn, x0)} is nondecreasing and hence the limit limn→∞∆p(xn, x0) exists. From (3.10), we
obtain ∆p(xn, xm)→ 0 as m,n→∞. From (2.3), we have ‖xn − xm‖ → 0 as m,n→∞. Hence, {xn} is a
Cauchy sequence in C ⊂ E1, so there exists x ∈ E1 such that xn → x as n→∞.

By using (2.1) and (2.5), we have

∆p(x0,ΠΓx0) ≥ ∆p(x0, xn+1)

= ∆p(x0, xn) + ∆p(xn, xn+1) +
〈
xn − xn+1, J

p
E1
x0 − JpE1

xn

〉
≥ ∆p(x0, xn) + ∆p(xn, xn+1)

≥ ∆p(x0, xn−1) + ∆p(xn−1, xn) + ∆p(xn, xn+1)

...

≥
n∑
i=0

∆p(xi, xi+1).

Consequently,
∑∞

i=0 ∆p(xi, xi+1) <∞, which from (2.3) yields
∑∞

i=0 ‖xn − xn+1‖p <∞. This implies that

lim
n→∞

‖xn − xn+1‖ = 0. (3.11)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have,

∆p(zn, xn) ≤ κ

1− κ

〈
xn+1 − xn, JpE1

Txn − JpE1
xn

〉
+
〈
xn+1 − xn, JpE1

zn − JpE1
xn

〉
,

from (3.11) and (2.3), we obtain
lim
n→∞

‖xn − zn‖ = 0. (3.12)

Since xn+1 = ΠDn+1x0 ∈ Dn+1, we get,

∆p(yn, xn+1) ≤ ∆p(xn, xn+1),

from (3.11), we have

lim
n→∞

‖yn − xn+1‖ = 0,

so,
lim
n→∞

‖xn − yn‖ = 0. (3.13)

Since JpE1
is norm-to-norm uniformly continuous, from (3.1), we get

‖JpE1
zn − JpE1

xn‖ = ‖αn(JpE1
yn − JpE1

xn) + (1− αn)(JpE1
Txn − JpE1

xn)‖
≥ (1− αn)‖JpE1

Txn − JpE1
xn‖ − αn‖JpE1

yn − JpE1
xn‖,

this implies that

(1− αn)‖JpE1
Txn − JpE1

xn‖ ≤ αn‖JpE1
yn − JpE1

xn‖+ ‖JpE1
zn − JpE1

xn‖, (3.14)
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since JqE∗
1

is norm-to-norm uniformly continuous, setting n → ∞ in (3.14), from (3.12), (3.13) and {αn} ⊂
[c, d] ⊂ (0, 1), we have

lim
n→∞

‖Txn − xn‖ = 0,

by the closedness of T , from xn → x, we obtain

Tx = x. (3.15)

From (2.3) and (2.5), we have

∆p(x,ΠCx) ≤
〈
x−ΠC , J

p
E1
x− JpE1

ΠCx
〉

=
〈
x− xn, JpE1

x− JpE1
ΠCx

〉
+
〈
xn − yn, JpE1

x− JpE1
ΠCx

〉
+
〈
yn −ΠCx, J

p
E1
x− JpE1

ΠCx
〉

≤
〈
x− xn, JpE1

x− JpE1
ΠCx

〉
+
〈
xn − yn, JpE1

x− JpE1
ΠCx

〉
.

Setting n→∞ yields ∆p(x,ΠCx) = 0, we get x ∈ C.
From (3.5), we have (

λn −
Cq (λn‖A‖)q

q

)
‖vn‖p ≤ ∆p(xn, x

∗)−∆p(yn, x
∗),

this together with vn = Axn − PQAxn and (3.13) implies that

lim
n→∞

‖Axn − PQAxn‖ = 0. (3.16)

By (2.4), we have

‖Ax− PQAx‖p =
〈
JpE2

(Ax− PQAx) , Ax− PQAx
〉

=
〈
JpE2

(Ax− PQAx) , Ax−Axn
〉

+
〈
JpE2

(Ax− PQAx) , Axn − PQAxn
〉

+
〈
JpE2

(Ax− PQAx) , PQAxn − PQAx
〉

≤
〈
JpE2

(Ax− PQAx) , Ax−Axn
〉

+
〈
JpE2

(Ax− PQAx) , Axn − PQAxn
〉
.

From (3.16) and Axn → Ax as n→∞, setting n→∞ yields ‖Ax− PQAx‖p = 0, we have Ax ∈ Q. Thus,
we conclude that xn → x ∈ Γ.

Setting n→∞ in (3.9), we obtain〈
JpE1

x0 − JpE1
x, x∗ − x

〉
≤ 0, x∗ ∈ Γ.

By (2.5), we have x = ΠΓx0.

Remark 3.2. Compared with the known results in the literature, our result is very different from those in
the following aspects.

• The corresponding iterative algorithms in [14, Theorem 3.2], [16, Theorem 3.1], [17, Theorem 3.1] are
extended for developing our algorithm which couples modified CQ method with Nakajo’s iteration
involved in Bregman quasi-strictly pseudo-contractive mapping in Theorem 3.1. Our iterative scheme
in Theorem 3.1 can be viewed as a merger between corresponding iterative algorithms in [14, Theorem
3.2], [16, Theorem 3.1], [17, Theorem 3.1].
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• The construction of sets (such as Cn+1 =
{
w ∈ Cn : ∆p(zn, xn) ≤ κ

1−κ

〈
w − xn, JpE1

Txn − JpE1
xn

〉
+〈

w − xn, JpE1
zn − JpE1

xn

〉}
) in our iterative scheme is very different from the iterative algorithm in

[14, Theorem 3.2] because our construction is mainly based on the definition of Bregman quasi-strictly
pseudo-contractive mapping. Moreover, we attain strong convergence result in a broader framework,
the p-uniformly convex and uniformly smooth Banach spaces.

• The technique of proving strong convergence in Theorem 3.1 is different from those in [14, Theorem
3.2], [17, Theorem 3.1] because our technique depends on Lemma 2.1 in Banach spaces.

• The problem of finding a common element of the set of solutions of split feasibility problem and the
set of fixed points of a Bregman quasi-strictly pseudo-contractive mapping in our Theorem 3.1 is more
general than the problem of finding a solution of split feasibility problem in [14, Theorem 3.2] and the
problem of finding an element of the set of fixed points of a Bregman quasi-strictly pseudo-contractive
mapping in [17, Theorem 3.1].

Since the class of Bregman quasi-nonexpansive mappings is Bregman quasi-strict pseudo-contractive,
the following corollary is obtained by using Theorem 3.1.

Corollary 3.3. Let C and Q be nonempty closed convex sets in p-uniformly convex and uniformly smooth
real Banach spaces E1 and E2, respectively. Let A: E1 → E2 be a bounded linear operator with its adjoint
A∗: E∗2 → E∗1 . Let T be a closed Bregman quasi-nonexpansive mapping from C to itself. Let sequence {xn}
be iteratively generated by x1 = x0 ∈ C, D1 = C1 = C,

x1 ∈ C,
yn = ΠCJ

q
E∗

1

(
JpE1

xn − λnA∗JpE2
(Axn − PQAxn)

)
,

zn = JqE∗
1

(
αnJ

p
E1
yn + (1− αn)JpE1

Txn

)
,

Dn+1 = {w ∈ Dn : ∆p(yn, w) ≤ ∆p(xn, w)} ,
Cn+1 =

{
w ∈ Cn : ∆p(zn, xn) ≤

〈
w − xn, JpE1

zn − JpE1
xn

〉}
,

xn+1 = ΠDn+1
⋂
Cn+1

x0, n ≥ 1,

(3.17)

Assume that {αn} ⊂ [c, d] ⊂ (0, 1) and {λn} ⊂ [a, b] ⊂
(

0,
(

q
Cq‖A‖q

) 1
q−1

)
. Then the sequence {xn} defined

by (3.17) converges strongly to ΠΓx0.

Typical examples of both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1.
Then we have the following corollary.

Corollary 3.4. Let E1 and E2 be two Lp spaces with 2 ≤ p < ∞, C ⊂ E1 and Q ⊂ E2 be two nonempty
closed convex sets. Let A: E1 → E2 be a bounded linear operator with its adjoint A∗: E∗2 → E∗1 . Let T be a
closed Bregman quasi-strictly pseudo-contractive mapping from C to itself. Let sequence {xn} be iteratively
generated by x1 = x0 ∈ C, D1 = C1 = C,

x1 ∈ C,
yn = ΠCJ

q
E∗

1

(
JpE1

xn − λnA∗JpE2
(Axn − PQAxn)

)
,

zn = JqE∗
1

(
αnJ

p
E1
yn + (1− αn)JpE1

Txn

)
,

Dn+1 = {w ∈ Dn : ∆p(yn, w) ≤ ∆p(xn, w)} ,
Cn+1 =

{
w ∈ Cn : ∆p(zn, xn) ≤ κ

1−κ

〈
w − xn, JpE1

Txn − JpE1
xn

〉
+
〈
w − xn, JpE1

zn − JpE1
xn

〉}
,

xn+1 = ΠDn+1
⋂
Cn+1

x0, n ≥ 1,

(3.18)
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where κ ∈ [0, 1). Assume that {αn} ⊂ [c, d] ⊂ (0, 1) and {λn} ⊂ [a, b] ⊂
(

0,
(

q
Cq‖A‖q

) 1
q−1

)
. Then the

sequence {xn} defined by (3.18) converges strongly to ΠΓx0.
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