

Journal of Nonlinear Science and Applications

Solving fuzzy fractional differential equations using fuzzy Sumudu transform

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Norazrizal Aswad Abdul Rahman, Muhammad Zaini Ahmad*

Institute of Engineering Mathematics, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia.

Abstract

In this paper, we apply fuzzy Sumudu transform (FST) for solving fuzzy fractional differential equations (FFDEs) involving Caputo fuzzy fractional derivative. It followed by suggesting a new result on the property of FST for Caputo fuzzy fractional derivative. We then construct a detailed procedure on finding the solutions of FFDEs and finally we demonstrate a numerical example.

Keywords: Caputo fuzzy fractional derivative, fuzzy Sumudu transform, fuzzy fractional differential equation.

MSC: 26A33, 44A05, 34A08, 34A07

1. Introduction

Fractional calculus is the generalization of ordinary calculus. This includes the functions' derivative of arbitrary order. The topic has been explored and studied by various researchers in many fields such as engineering, mathematics and so forth [29, 13, 31, 3, 19]. One of the major contributions in this field was the work studied by [33], which discussed the topic intensively. Later, it was studied by [27], where the authors proposed some applications. When dealing with fractional differential equations, the terms such as Riemann-Liouville, Grünwald-Letnikov and Caputo fractional derivative are considered by many authors [21, 18, 26]. Of the three definitions of derivative stated, Riemann-Liouville and Caputo fractional derivatives appeared to be more popular.

As times moving on, the fractional differential equations seems to have some drawbacks. One of them is the initial value assigned to the model. In general, the determination of initial values is very difficult. It always involves uncertainty quantities. This is true when dealing with real physical phenomena. To

^{*}Corresponding author

Email addresses: norazrizalaswad@gmail.com (Norazrizal Aswad Abdul Rahman), mzaini@unimap.edu.my (Muhammad Zaini Ahmad)

handle uncertainty quantities, many researchers proposed several new concepts. The one that stands out among the concepts is fuzzy set theory [43]. This theory is able to deal with differential equations possessing uncertainties at initial values. The first contribution on handling fractional differential equations with uncertainties was studied by [2]. This has influenced many researchers to further explore the subject [9, 8, 6, 5, 37, 25].

Integral transforms have long been used in solving ordinary differential equations, as well as fractional differential equations. The integral transforms were preceded by Fourier transform. Later, several new integral transforms have been proposed, namely, Laplace, Mellin, and Hankel transforms [35, 28, 38]. One of the recent integral transforms introduced in the literature is the Sumudu transform [39, 40]. The virtue of this transform is that it holds a scale preserving property which resulting in the original function to be similar with the transformed function. It can also be seen in the literature, there exist several discussions on solving few types of fractional differential equations, as we stated previously, using Sumudu transform [23, 14, 15]. Recently, fuzzy Laplace transform [7] has been used to solve FFDEs involving Riemann-Liouville fractional derivative [34]. However, this type of fractional derivative has a drawback. It requires a quantity of fractional H-derivative of an unknown solution at the fuzzy initial point, which is not practical in real life situation. In this paper, we propose a new solution of FFDEs involving Caputo fuzzy fractional derivative using FST. The FST is first proposed by [4] followed by [1].

The arrangement of this paper is as the following. In Section 2, we revise some fundamental theories on fuzzy numbers and fuzzy functions. Plus, some definitions and theorems on Caputo fuzzy fractional derivative will also be provided. It is followed by the definition of the FST in Section 3. In this section, we also propose a new property of FST for Caputo fuzzy fractional derivative. Next, in Section 4, we provide a procedure on solving FFDEs possessing Caputo fuzzy fractional derivative using the FST in detail. A numerical example is demonstrated in Section 5 and finally in Section 6, the conclusions is drawn.

2. Basic concepts and theories

Here, we revisit several definitions and theorems for a better understanding of this paper.

2.1. Fuzzy numbers and fuzzy functions

Throughout this paper, \mathbb{R} denotes the set of real numbers. Fuzzy number is defined as follows.

Definition 2.1. [42] A fuzzy number is a mapping $\tilde{u} : \mathbb{R} \to [0, 1]$ with the following criteria:

- 1. \tilde{u} is normal, i.e. there exists $x_0 \in \mathbb{R}$ such that $\tilde{u}(x_0) = 1$,
- 2. \widetilde{u} is convex, i.e. for all and $\lambda \in [0, 1], x, y \in \mathbb{R}$,

$$\widetilde{u}(\lambda x + (1 - \lambda)y) \ge \min{\{\widetilde{u}(x), \widetilde{u}(y)\}},$$

holds,

3. \tilde{u} is upper semi continuous, i.e. for any $x_0 \in \mathbb{R}$,

$$\widetilde{u}(x_0) \ge \lim_{x \to x_0^{\pm}} \widetilde{u}(x)$$

4. supp $\widetilde{u} = \{x \in \mathbb{R} | \widetilde{u}(x) > 0\}$ is the support of \widetilde{u} , and its closure cl(supp \widetilde{u}) is compact, .

Definition 2.2. [22] Let \tilde{u} be a fuzzy number defined in $\mathcal{F}(\mathbb{R})$. The α -level set of \tilde{u} , for any $\alpha \in [0, 1]$, denoted by \tilde{u}_{α} , is a crisp set that contains all elements in \mathbb{R} , such that the membership value of \tilde{u} is greater or equal to α , that is:

$$\widetilde{u}_{\alpha} = \{ x \in \mathbb{R} | \widetilde{u}(x) \ge \alpha \}.$$

Whenever we represent the fuzzy number with α -level set, we can see that it is closed and bounded. It is denoted by $[\underline{u}_{\alpha}, \overline{u}_{\alpha}]$, where they represent the lower and upper bound α -level set of the fuzzy number, respectively.

As the fuzzy number is resolved by the interval \tilde{u}_{α} , researchers [17, 30] defined another representation, parametrically, of fuzzy numbers as in the following definition.

Definition 2.3. A fuzzy number \tilde{u} in parametric form is a pair $[\underline{u}_{\alpha}, \overline{u}_{\alpha}]$ of functions \underline{u}_{α} and \overline{u}_{α} , for any $\alpha \in [0, 1]$ which satisfy the following requirements:

- 1. \underline{u}_{α} is a bounded non-decreasing left continuous function in (0, 1],
- 2. \overline{u}_{α} is a bounded non-increasing left continuous function in (0, 1],
- 3. $\underline{u}_{\alpha} \leq \overline{u}_{\alpha}$.

Some researchers classified the fuzzy numbers into several types of fuzzy membership function. To the deepest of our study, triangular fuzzy membership function or also often referred to as triangular fuzzy number is the most widely used membership function.

Definition 2.4. [24] A triangular fuzzy number \tilde{u} can be defined by a triplet (a_1, a_2, a_3) , the membership function is defined as follows:

$$\widetilde{u}(x) = \begin{cases} 0, & \text{if } x < a_1, \\ \frac{x - a_1}{a_2 - a_1}, & \text{if } a_1 \le x < a_2, \\ \frac{a_3 - x}{a_3 - a_2}, & \text{if } a_2 \le x \le a_3, \\ 0, & \text{if } x > a_3, \end{cases}$$

The α -level of the fuzzy number \widetilde{u} is $\widetilde{u}_{\alpha} = [a_1 + (a_2 - a_3)\alpha, a_3 - (a_3 - a_2)\alpha]$, for any $\alpha \in [0, 1]$.

The definition of the operations on fuzzy numbers can be referred in the paper by [36].

Theorem 2.5. [41] Let $\tilde{f} : \mathbb{R} \to \mathcal{F}(\mathbb{R})$ and it is represented by $[\underline{f}_{\alpha}(x), \overline{f}_{\alpha}(x)]$. For any fixed $\alpha \in [0, 1]$, assume $\underline{f}_{\alpha}(x)$ and $\overline{f}_{\alpha}(x)$ are Riemann-integrable on [a, b] for every $b \geq a$, and assume there are two positive \underline{M}_{α} and \overline{M}_{α} such that $\int_{a}^{b} |\underline{f}_{\alpha}(x)| dx \leq \underline{M}_{\alpha}$ and $\int_{a}^{b} |\overline{f}_{\alpha}(x)| dx \leq \overline{M}_{\alpha}$ for every $b \geq a$. Then, $\tilde{f}(x)$ is improper fuzzy Riemann-integrable on $[a, \infty)$ and the improper fuzzy Riemann-integrable is a fuzzy number. Furthermore, we have

$$\int_{a}^{\infty} \widetilde{f}(x) dx = \left[\int_{a}^{\infty} \underline{f}_{\alpha}(x) dx, \int_{a}^{\infty} \overline{f}_{\alpha}(x) dx \right]$$

H-difference of fuzzy numbers is defined as follows.

Definition 2.6. If $\tilde{u}, \tilde{v} \in \mathcal{F}(\mathbb{R})$ and if there exists a fuzzy subset $\xi \in \mathcal{F}(\mathbb{R})$ such that $\xi + \tilde{u} = \tilde{v}$, then xi is unique. In this case, ξ is called the Hukuhara difference, or simply H-difference, of u and v and is denoted by $\tilde{v} - \tilde{u}$.

In the next definition, the strongly generalized differentiability concept is provided.

Definition 2.7. [11, 12] Let $\tilde{f}: (a,b) \to \mathcal{F}(\mathbb{R})$ and $x_0 \in (a,b)$. We say that \tilde{f} is strongly generalized differentiable at x_0 , if there exists an element $\tilde{f}'(x_0) \in \mathcal{F}(\mathbb{R})$, such that

1. for all h > 0 sufficiently small, there exist $\tilde{f}(x_0 + h) - {}^H \tilde{f}(x_0), \tilde{f}(x_0) - {}^H \tilde{f}(x_0 - h)$ and the limits (in the metric D)

$$\lim_{h \to 0} \frac{\tilde{f}(x_0 + h) - {}^H \tilde{f}(x_0)}{h} = \lim_{h \to 0} \frac{\tilde{f}(x_0) - {}^H \tilde{f}(x_0 - h)}{h} = \tilde{f}'(x_0)$$

or:

2. for all h > 0 sufficiently small, there exist $\tilde{f}(x_0) - {}^H \tilde{f}(x_0 + h), \tilde{f}(x_0 - h) - {}^H \tilde{f}(x_0)$ and the limits (in the metric D)

$$\lim_{h \to 0} \frac{\widetilde{f}(x_0) - {}^H \widetilde{f}(x_0 + h)}{-h} = \lim_{h \to 0} \frac{\widetilde{f}(x_0 - h) - {}^H \widetilde{f}(x_0)}{-h} = \widetilde{f}'(x_0).$$

In this paper, we denote the space of all continuous fuzzy functions on $[a, b] \subseteq \mathbb{R}$ and the space of all Lebesgue integrable fuzzy functions on the bounded interval [a, b] by $\mathbb{C}^{\mathcal{F}}[a, b]$ and $L^{\mathcal{F}}[a, b]$, respectively.

Definition 2.8. [34] Let $\tilde{f} \in \mathbb{C}^{\mathcal{F}}[a, b] \cap L^{\mathcal{F}}[a, b]$ be a fuzzy function. The fuzzy Riemann-Liouville integral of the fuzzy function \tilde{f} is defined as follows

$$\left(I^{\beta}\widetilde{f}\right)(x) = \frac{1}{\Gamma(\beta)} \int_{0}^{x} \frac{\widetilde{f}(t)}{(x-t)^{1-\beta}} dt, \quad x, \beta \in \mathbb{R}_{+}$$

Theorem 2.9. [10] Let $\tilde{f} \in \mathbb{C}^{\mathcal{F}}[a,b] \cap L^{\mathcal{F}}[a,b]$ be a fuzzy function. The fuzzy Riemann-Liouville integral of the fuzzy function \tilde{f} is as as follows:

$$\left[\left(I^{\beta}\widetilde{f}\right)(x)\right]_{\alpha} = \left[I^{\beta}\underline{f}_{\alpha}(x), I^{\beta}\overline{f}_{\alpha}(x)\right], \quad 0 \le \alpha \le 1,$$

where

$$\begin{pmatrix} I^{\beta}\underline{f}_{\alpha} \end{pmatrix}(x) = \frac{1}{\Gamma(\beta)} \int_{0}^{x} \frac{\underline{f}_{\alpha}(t)}{(x-t)^{1-\beta}} dt, \quad x, \beta \in \mathbb{R}_{+},$$
$$\begin{pmatrix} I^{\beta}\overline{f}_{\alpha} \end{pmatrix}(x) = \frac{1}{\Gamma(\beta)} \int_{0}^{x} \frac{\overline{f}_{\alpha}(t)}{(x-t)^{1-\beta}} dt, \quad x, \beta \in \mathbb{R}_{+}.$$

2.2. Caputo Fuzzy Fractional Derivative

In this subsection, we provide some definitions and theorems on Caputo fuzzy fractional derivative. [32] extended the Caputo fractional derivative of crisp case into fuzzy setting. Here, we provide some of the concept proposed.

Lemma 2.10. [32] Let f(x) be a crisp continuous function and $(\lceil \beta \rceil)$ -times differentiable in the independent variable x over the interval of differentiation (integration) [0, x]. Then the relation

$${}^{C}D^{\beta}f(x) = {}^{RL}D^{\beta}\left(f(x) - \sum_{k=0}^{\lceil \beta \rceil} \frac{x^{k}}{k!} f_{0}^{(k)}\right), \quad \beta \in (n-1, n], \ n \in \mathbb{N},$$

is hold,

where $f_0^{(k)} = \frac{d^k f(x)}{dx^k} \Big|_{x=0}$ and $^C D^\beta$ denotes Caputo derivative operator. While $\lceil \beta \rceil$ and $\lfloor \beta \rfloor$ are the value β rounded up and down to the closest integer number, respectively. $^{RL}D^\beta$ is the common Riemann-Liouville fractional derivative operator which is defined as follows

$${}^{RL}D^{\beta}f(x) = \frac{1}{\Gamma(\lceil\beta\rceil - \beta)} \frac{d^{\lceil\beta\rceil}}{dx^{\lceil\beta\rceil}} \int_0^x \frac{f(t)}{(x-t)^{1-\lceil\beta\rceil + \beta}} dt$$

Definition 2.11. [32] Let $\tilde{f}(x) \in \mathbb{C}^{\mathcal{F}}[0,b] \cap L^{\mathcal{F}}[0,b]$, $\tilde{G}(x) = \frac{1}{\Gamma(\lceil\beta\rceil-\beta)} \int_{0}^{x} \frac{\tilde{f}(t) - \sum_{k=0}^{\lceil\beta\rceil} \frac{t^{k}}{k!} \tilde{f}_{0}^{(k)}}{(x-t)^{1-\lceil\beta\rceil+\beta}} dt$, and $\tilde{H}(x_{0}) = \lim_{h \to 0^{+}} \frac{\tilde{G}(x_{0}) \oplus \tilde{G}(x_{0})}{h} = \lim_{h \to 0^{+}} \frac{\tilde{G}(x_{0}) \oplus \tilde{G}(x_{0}-h)}{h} and \tilde{L}(x_{0}) = \lim_{h \to 0^{+}} \frac{\tilde{G}(x_{0}) \oplus \tilde{G}(x_{0}+h)}{-h} = \lim_{h \to 0^{+}} \frac{\tilde{G}(x_{0}-h) \oplus \tilde{G}(x_{0})}{-h}.$ $\tilde{f}(x)$ is Caputo fuzzy fractional differentiable function of order $0 < \beta \leq 1$, if there exists an element ${}^{C}D^{\beta}\tilde{f}(x_{0}) \in \mathbb{C}^{\mathcal{F}}$ such that for all $0 \leq \alpha \leq 1$ and for h > 0 sufficiently near zero, either:

1.
$${}^{C}D^{\beta}\widetilde{f}(x_{0}) = \lim_{h \to 0^{+}} \frac{\widetilde{G}(x_{0}+h) \oplus \widetilde{G}(x_{0})}{h} = \lim_{h \to 0^{+}} \frac{\widetilde{G}(x_{0}) \oplus \widetilde{G}(x_{0}-h)}{h}$$
, or
2. ${}^{C}D^{\beta}\widetilde{f}(x_{0}) = \lim_{h \to 0^{+}} \frac{\widetilde{G}(x_{0}) \oplus \widetilde{G}(x_{0}+h)}{-h} = \lim_{h \to 0^{+}} \frac{\widetilde{G}(x_{0}-h) \oplus \widetilde{G}(x_{0})}{-h}$, for $0 < \beta \le 1$.

If the fuzzy function $\tilde{f}(x)$ is differentiable as in Definition 2.11 (1), it is called Caputo fuzzy differentiable in the first form. If $\tilde{f}(x)$ is differentiable as in Definition 2.11 (2), it is called Caputo fuzzy differentiable in the second form.

Theorem 2.12. [32] Let $\widetilde{f}(x) \in \mathbb{C}^{\mathcal{F}}[0,b] \cap L^{\mathcal{F}}[0,b]$ be a fuzzy function and $[\widetilde{f}(x)]_{\alpha} = [\underline{f}_{\alpha}(x), \overline{f}_{\alpha}(x)]$, for $\alpha \in [0,1]$ and $x_0 \in (0,b)$. Then

1. If $\tilde{f}(x)$ is Caputo fuzzy fractional differentiable in the first form, then for every $0 < \beta \leq 1$,

$$[{}^{C}D^{\beta}\widetilde{f}(x_{0})]_{\alpha} = [{}^{C}D^{\beta}\underline{f}_{\alpha}(x_{0}), {}^{C}D^{\beta}\overline{f}_{\alpha}(x_{0})]_{\alpha}$$

2. If $\tilde{f}(x)$ is Caputo fuzzy fractional differentiable in the second form, then for every $0 < \beta \leq 1$,

$$[{}^{C}D^{\beta}\widetilde{f}(x_{0})]_{\alpha} = [{}^{C}D^{\beta}\overline{f}_{\alpha}(x_{0}), {}^{C}D^{\beta}\underline{f}_{\alpha}(x_{0})],$$

where

$${}^{C}D^{\beta}\underline{f}_{\alpha}(x_{0}) = \left[\frac{1}{\Gamma(\lceil\beta\rceil - \beta)} \int_{0}^{x} \frac{D^{\lceil\beta\rceil}\underline{f}_{\alpha}(t)}{(x-t)^{1-\lceil\beta\rceil + \beta}}\right]_{x=x_{0}}.$$

$${}^{C}D^{\beta}\overline{f}_{\alpha}(x_{0}) = \left[\frac{1}{\Gamma(\lceil\beta\rceil - \beta)} \int_{0}^{x} \frac{D^{\lceil\beta\rceil}\overline{f}_{\alpha}(t)}{(x-t)^{1-\lceil\beta\rceil + \beta}}\right]_{x=x_{0}},$$

$$D^{k}f(t) = \frac{d^{k}f(t)}{dt^{k}}.$$

Next, we give the definition for the classical Sumudu transform when dealing with Caputo's fractional derivative of crisp type.

Definition 2.13. [16, 20] The classical Sumudu transform of the Caputo's fractional derivative of the function f is given by

$$s[{}^{C}D^{\beta}f(x)](u) = u^{-\beta}G(u) - \sum_{k=0}^{n-1} \frac{f^{k}(0)}{u^{\beta-k}}, \quad \beta \in (n-1,n].$$

Since in this paper, we only consider $0 < \beta < 1$, Definition 2.13 can be simplified as follows.

$$s[{}^{C}D^{\beta}f(x)](u) = \frac{G(u) - f^{0}(0)}{u^{\beta}}, \quad \beta \in (0, 1].$$

Note that when $\beta = 1$, the definition is similar to the definition of Sumudu transform for first order derivative.

3. Fuzzy Sumudu transform for Caputo fuzzy fractional derivative

In this part, we recall the definition of FST and later we propose a new result on the property of FST for Caputo fuzzy fractional derivative.

Definition 3.1. [4, 1] Let $\tilde{f} : \mathbb{R} \to \mathcal{F}(\mathbb{R})$ be a continuous fuzzy function. Suppose $\tilde{f}(ux) \odot e^{-x}$ is improper fuzzy Riemann-integrable on $[0, \infty)$, then $\int_0^\infty \tilde{f}(ux) \odot e^{-x} dx$ is called fuzzy Sumudu transform and is denoted by

$$G(u) = \mathcal{S}[\widetilde{f}(x)](u) = \int_0^\infty \widetilde{f}(ux) \odot e^{-x} dx, \quad u \in [-\tau_1, \tau_2],$$

where the variable u is used to factor the variable x in the argument of the fuzzy function and $\tau_1, \tau_2 > 0$.

The FST can also be written into the following parametric form.

$$\mathcal{S}[f(x)](u) = [s[\underline{f}_{\alpha}(x)](u), s[\overline{f}_{\alpha}(x)](u)].$$

In the following theorem, we introduce a new property of FST for Caputo fuzzy fractional derivative. This is done by directly extending the definition for classical Sumudu transform of Caputo fractional derivative into fuzzy setting.

Theorem 3.2. Let $\tilde{f}(x) \in \mathbb{C}^{\mathcal{F}}[0,b] \cap L^{\mathcal{F}}[0,b]$ be a continuous fuzzy function, and $^{C}D^{\beta}\tilde{f}$ is the Caputo fuzzy functional derivative of \tilde{f} on $[0,\infty)$. Then, for $0 < \beta \leq 1$, we have

$$\mathcal{S}[{}^{C}D^{\beta}\widetilde{f}(x)](u) = \frac{G(u) - {}^{H}\widetilde{f}(x_{0})}{u^{\beta}},$$

where \tilde{f} is Caputo fuzzy fractional differentiable in the first form, or

$$\mathcal{S}[{}^{C}D^{\beta}\widetilde{f}(x)](u) = \frac{-\widetilde{f}(x_{0}) - {}^{H}\left(-G(u)\right)}{u^{\beta}}$$

where \tilde{f} is Caputo fuzzy fractional differentiable in the second form.

Proof. First, we assume \tilde{f} is Caputo fuzzy fractional differentiable in the first form (Theorem 2.12 (1)). Therefore:

$$\frac{G(u) - \overset{H}{\widetilde{f}(0)}}{u^{\beta}} = \left[\frac{s[\underline{f}(x)](u) - \underline{f}(0)}{u^{\beta}}, \frac{s[\overline{f}(x)](u) - \overline{f}(0)}{u^{\beta}}\right].$$

From the classical Sumudu transform for Caputo fractional derivative, we know that

$$s[{}^{C}D^{\beta}\underline{f}(x)](u) = \frac{s[\underline{f}(x)](u) - \underline{f}(0)}{u^{\beta}},$$

and

$$s[{}^{C}D^{\beta}\overline{f}(x)](u) = \frac{s[\overline{f}(x)](u) - \overline{f}(0)}{u^{\beta}}$$

Then,

$$\frac{G(u) - {}^H \widetilde{f}(0)}{u^{\beta}} = \left[s[{}^C D^{\beta} \underline{f}(x)](u), s[{}^C D^{\beta} \overline{f}(x)](u) \right]$$

Since \widetilde{f} is Caputo fuzzy fractional differentiable in the first form

$$\frac{G(u) - {}^H \widetilde{f}(x_0)}{u^\beta} = \mathcal{S}[{}^C D^\beta \widetilde{f}(x)](u).$$

Now, we assume that \tilde{f} is Caputo fuzzy fractional differentiable in the second form (Theorem 2.12 (2)). Therefore,

$$\frac{-\widetilde{f}(x_0) - {}^H\left(-G(u)\right)}{u^\beta} = \left[\frac{-\overline{f}(x_0) - \left(-s[\overline{f}(x)](u)\right)}{u^\beta}, \frac{-\underline{f}(x_0) - \left(-s[\underline{f}(x)](u)\right)}{u^\beta}\right].$$

This is analogous to

$$\frac{-\widetilde{f}(x_0) - {}^H\left(-G(u)\right)}{u^\beta} = \left[\frac{s[\overline{f}(x)](u) - \overline{f}(0)}{u^\beta}, \frac{s[\underline{f}(x)](u) - \underline{f}(0)}{u^\beta}\right].$$

From the classical Sumudu transform for Caputo fractional derivative, finally we have

$$\frac{-\overline{f}(x_0) - H(-G(u))}{u^{\beta}} = \left[s[^C D^{\beta}\overline{f}(x)](u), s[^C D^{\beta}\underline{f}(x)](u)\right]$$

Since \widetilde{f} is Caputo fuzzy fractional differentiable in the second form, then we finally have

$$\frac{-\widetilde{f}(x_0) - H(-G(u))}{u^{\beta}} = \mathcal{S}[{}^C D^{\beta} \widetilde{f}(x)](u).$$

The proof is complete.

4. Procedures for Solving FFDEs using FST

Consider the following FFDE

$$\begin{cases} {}^{C}D^{\beta}\widetilde{y}(x) = f[x,\widetilde{y}(x)],\\ \widetilde{y}_{\alpha}(x_{0}) = [\underline{y}_{\alpha}(0), \overline{y}_{\alpha}(0)]. \end{cases}$$

$$\tag{4.1}$$

where $f \in \mathbb{C}^{\mathcal{F}}(a, b) \cap L^{\mathcal{F}}(a, b)$ and $x_0 \in (a, b)$.

By using FST on both side of Eq. (4.1), we have

$$\mathcal{S}\left[{}^{C}D^{\beta}\widetilde{y}(x)\right](u) = \mathcal{S}\left[f(x,\widetilde{y}(x))\right](u).$$

Case 1: If we consider f to be Caputo fuzzy fractional differentiable in the first form, then from Theorem 2.12 (1), we get $[{}^{C}D^{\beta}\widetilde{y}(x_{0})]_{\alpha} = [{}^{C}D^{\beta}\underline{y}_{\alpha}(x_{0}), {}^{C}D^{\beta}\overline{y}_{\alpha}(x_{0})]$. Now, we obtain the following system

$$\begin{cases} {}^{C}D^{\beta}\underline{y}_{\alpha}(x) = \underline{f[x,\widetilde{y}(x)]} = \underline{f}_{\alpha}[x,\widetilde{y}(x)], & \underline{y}_{\alpha}(x_{0}) = \underline{y}_{\alpha}(0), \\ {}^{C}D^{\beta}\overline{y}_{\alpha}(x) = \overline{f[x,\widetilde{y}(x)]} = \overline{f}_{\alpha}[x,\widetilde{y}(x)], & \overline{y}_{\alpha}(x_{0}) = \overline{y}_{\alpha}(0), \end{cases}$$

where $\beta \in (0, 1]$.

From Theorem 3.2, we have

$$\mathcal{S}[{}^{C}D^{\beta}\widetilde{y}(x)](u) = \frac{G(u) - {}^{H}\widetilde{y}(t_{0})}{u^{\beta}}$$

Therefore,

$$\begin{cases} s[\underline{f}_{\alpha}(x,\widetilde{y}(x))](u) = \frac{s[\underline{y}_{\alpha}(x)](u) - \underline{y}_{\alpha}(0)}{u^{\beta}}, \\ s[\overline{f}_{\alpha}(x,\widetilde{y}(x))](u) = \frac{s[\overline{y}_{\alpha}(x)](u) - \overline{y}_{\alpha}(0)}{u^{\beta}}, \end{cases}$$
(4.2)

where,

$$\underline{f}_{\alpha}(x,\widetilde{y}(x)) = \min\{\widetilde{f}(x,u) | u \in [\underline{y}_{\alpha}(x), \overline{y}_{\alpha}(x)] \}.$$

and,

$$\overline{f}_{\alpha}(x,\widetilde{y}(x)) = \max\{\widetilde{f}(x,u) | u \in [\underline{y}_{\alpha}(x), \overline{y}_{\alpha}(x)] \}.$$

To solve Eq. (4.2), first we assume that

$$\begin{split} s[\underline{y}_{\alpha}(x)](u) &= L^{1}_{\alpha}(u), \\ s[\overline{y}_{\alpha}(x)](u) &= U^{1}_{\alpha}(u). \end{split}$$

 $L^1_{\alpha}(u)$ and $U^1_{\alpha}(u)$ are the solutions of Eq. (4.2) under this case. We obtain $\underline{y}_{\alpha}(x)$ and $\overline{y}_{\alpha}(x)$ using the inverse FST as the following.

$$\underline{y}_{\alpha}(x) = s^{-1}[L^{1}_{\alpha}(u)],$$

$$\overline{y}_{\alpha}(x) = s^{-1}[U^{1}_{\alpha}(u)].$$

Case 2: If we consider f to be Caputo fuzzy fractional differentiable in the second form, then from Theorem 2.12 (2), we get $[{}^{C}D^{\beta}\tilde{f}(x_{0})]_{\alpha} = [{}^{C}D^{\beta}\bar{y}_{\alpha}(x_{0}), {}^{C}D^{\beta}\underline{y}_{\alpha}(x_{0})]$. Now, we obtain the following system

$$\begin{cases} {}^{C}D^{\beta}\underline{y}_{\alpha}(x) = \overline{f[x,\widetilde{y}(x)]} = \overline{f}_{\alpha}[x,\widetilde{y}(x)], & \underline{y}_{\alpha}(x_{0}) = \underline{y}_{\alpha}(0), \\ {}^{C}D^{\beta}\overline{y}_{\alpha}(x) = \underline{f[x,\widetilde{y}(x)]} = \underline{f}_{\alpha}[x,\widetilde{y}(x)], & \overline{y}_{\alpha}(x_{0}) = \overline{y}_{\alpha}(0), \end{cases}$$

where $\beta \in (0, 1]$. From Theorem 3.2,

$$\mathcal{S}[{}^{C}D^{\beta}\widetilde{y}(x)](u) = \frac{-\widetilde{y}(t_{0}) - {}^{H}\left(-G(u)\right)}{u^{\beta}}$$

Therefore,

$$\begin{cases} s[\underline{f}_{\alpha}(x,\widetilde{y}(x))](u) = \frac{s[\underline{y}_{\alpha}(x)](u) - \underline{y}_{\alpha}(0)}{u^{\beta}}, \\ s[\overline{f}_{\alpha}(x,\widetilde{y}(x))](u) = \frac{s[\overline{y}_{\alpha}(x)](u) - \overline{y}_{\alpha}(0)}{u^{\beta}}, \end{cases}$$
(4.3)

where,

$$\underline{f}_{\alpha}(x,\widetilde{y}(x)) = \min\{\widetilde{f}(x,u) | u \in [\underline{y}_{\alpha}(x), \overline{y}_{\alpha}(x)]\},\$$

and,

$$\overline{f}_{\alpha}(x,\widetilde{y}(x)) = \max\{\overline{f}(x,u) | u \in [\underline{y}_{\alpha}(x), \overline{y}_{\alpha}(x)] \}.$$

To solve Eq. (4.3), first we assume that

$$\begin{split} s[\underline{y}_{\alpha}(x)](u) &= L^2_{\alpha}(u), \\ s[\overline{y}_{\alpha}(x)](u) &= U^2_{\alpha}(u). \end{split}$$

 $L^2_{\alpha}(u)$ and $U^2_{\alpha}(u)$ are the solutions of Eq. (4.3) or this case. We have $\underline{y}_{\alpha}(x)$ and $\overline{y}_{\alpha}(x)$ by the inverse of FST as the following.

$$\underline{\underline{y}}_{\alpha}(x) = s^{-1}[L_{\alpha}^2(u)],$$

$$\underline{\overline{y}}_{\alpha}(x) = s^{-1}[U_{\alpha}^2(u)].$$

5. A numerical example

In this part, the method proposed will be demonstrated on a FFDE. This is to show that the method is practicable.

Example 5.1. The following FFDE is considered.

$$\begin{cases} {}^{C}D^{\beta}\widetilde{y}(x) = \widetilde{y}(x),\\ \widetilde{y}(x_{0}) = [\underline{y}_{\alpha}(0), \overline{y}_{\alpha}(0)]. \end{cases}$$
(5.1)

Case 1: By taking fuzzy Sumudu transform on both side of (5.1), we have

$$\mathcal{S}\left[{}^{C}D^{\beta}\widetilde{y}(x)\right](u) = \mathcal{S}[\widetilde{y}(x)](u).$$

From Theorem 2.12 (1) for Caputo fuzzy fractional differentiability in the first form, we have

$$[{}^{C}D^{\beta}\widetilde{y}(x_{0})]_{\alpha} = [{}^{C}D^{\beta}\underline{y}_{\alpha}(x_{0}), {}^{C}D^{\beta}\overline{y}_{\alpha}(x_{0})],$$

and from Theorem 3.2,

$$\mathcal{S}[{}^{C}D^{\beta}\widetilde{y}(x)](u) = \frac{G(u) - {}^{H}\widetilde{y}(x_{0})}{u^{\beta}},$$

we have

$$\begin{cases} s[\underline{y}_{\alpha}(x)](u) = \frac{s[\underline{y}_{\alpha}(x)](u) - \underline{y}_{\alpha}(0)}{u^{\beta}}, \\\\ s[\overline{y}_{\alpha}(x)](u) = \frac{s[\overline{y}_{\alpha}(x)](u) - \overline{y}_{\alpha}(0)}{u^{\beta}}. \end{cases}$$

Then, we obtain

$$\begin{cases} (1-u^{\beta})s[\underline{y}_{\alpha}(x)](u) = \underline{y}_{\alpha}(0), \\ (1-u^{\beta})s[\overline{y}_{\alpha}(x)](u) = \overline{y}_{\alpha}(0). \end{cases}$$

By applying inverse Sumudu transform, we obtain

$$\begin{cases} \underline{y}_{\alpha}(x) = \underline{y}_{\alpha}(0)s^{-1} \begin{bmatrix} \frac{1}{1-u^{\beta}} \\ \\ \overline{y}_{\alpha}(x) = \overline{y}_{\alpha}(0)s^{-1} \begin{bmatrix} \frac{1}{1-u^{\beta}} \\ \\ \\ \frac{1}{1-u^{\beta}} \end{bmatrix}, \end{cases}$$

By relation,

$$s[x^{\gamma-1}E_{\beta,\gamma}(\mp x^{\beta})](u) = \frac{u^{\gamma-1}}{1 \pm u^{\beta}}$$

finally, we have:

$$\begin{cases} \underline{y}_{\alpha}(x) = \underline{y}_{\alpha}(0)E_{\beta,1}[x^{\beta}], \\ \overline{y}_{\alpha}(x) = \overline{y}_{\alpha}(0)E_{\beta,1}[x^{\beta}]. \end{cases}$$

 $E_{\beta,1}[x^\beta]$ is the Mittag-Leffler function defined by

$$E_{\beta,1}[x^{\beta}] = \sum_{k=0}^{\infty} \frac{(x^{\beta})^k}{\Gamma(\beta k+1)}.$$

Case 2: Using fuzzy Sumudu transform on Eq. (5.1), we have

$$\mathcal{S}\left[{}^{C}D^{\beta}\widetilde{y}(x)\right](u) = \mathcal{S}[\widetilde{y}(x)](u).$$

From Theorem 2.12 (2) for Caputo fuzzy fractional differentiability in the second form:

$$[{}^{C}D^{\beta}\widetilde{y}(x_{0})]_{\alpha} = [{}^{C}D^{\beta}\overline{y}_{\alpha}(x_{0}), {}^{C}D^{\beta}\underline{y}_{\alpha}(x_{0})],$$

and from Theorem 3.2

$$\mathcal{S}[{}^{C}D^{\beta}\widetilde{f}(x)](u) = \frac{-\widetilde{f}(x_{0}) - {}^{H}\left(-G(u)\right)}{u^{\beta}},$$

we have

$$\begin{cases} s[\underline{y}_{\alpha}(x)](u) = \frac{-\overline{y}_{\alpha}(0) - [-s[\overline{y}_{\alpha}(x)](u)]}{u^{\beta}}.\\\\ s[\overline{y}_{\alpha}(x)](u) = \frac{-\underline{y}_{\alpha}(0) - [-s[\underline{y}_{\alpha}(x)](u)]}{u^{\beta}}, \end{cases}$$

equivalent to

$$\begin{cases} s[\underline{y}_{\alpha}(x)](u) = \frac{s[\overline{y}_{\alpha}(x)](u) - \overline{y}_{\alpha}(0)}{u^{\beta}},\\\\ s[\overline{y}_{\alpha}(x)](u) = \frac{s[\underline{y}_{\alpha}(x)](u) - \underline{y}_{\alpha}(0)}{u^{\beta}}, \end{cases}$$

Then, we obtain

$$\begin{cases} (1+u^{2\beta})s[\underline{y}_{\alpha}(x)](u) = \underline{y}_{\alpha}(0) - u^{\beta}\overline{y}_{\alpha}(0), \\ (1+u^{2\beta})s[\overline{y}_{\alpha}(x)](u) = \overline{y}_{\alpha}(0) - u^{\beta}y_{\alpha}(0). \end{cases}$$

By applying inverse Sumudu transform, we have

$$\begin{cases} \underline{y}_{\alpha}(x) = \underline{y}_{\alpha}(0)s^{-1} \begin{bmatrix} \frac{1}{1+u^{2\beta}} \end{bmatrix} - \overline{y}_{\alpha}(0)s^{-1} \begin{bmatrix} \frac{u^{\beta}}{1+u^{2\beta}} \end{bmatrix}, \\ \overline{y}_{\alpha}(x) = \overline{y}_{\alpha}(0)s^{-1} \begin{bmatrix} \frac{1}{1+u^{2\beta}} \end{bmatrix} - \underline{y}_{\alpha}(0)s^{-1} \begin{bmatrix} \frac{u^{\beta}}{1+u^{2\beta}} \end{bmatrix}. \end{cases}$$

By relation,

$$s[x^{\gamma-1}E_{\beta,\gamma}(\mp x^{\beta})](u) = \frac{u^{\gamma-1}}{1-\pm u^{\beta}},$$

finally, we have

$$\begin{cases} \underline{y}_{\alpha}(x) = \underline{y}_{\alpha}(0)E_{2\beta,1}[-x^{2\beta}] - \overline{y}_{\alpha}(0)x^{\beta}E_{2\beta,\beta+1}[-x^{2\beta}], \\ \overline{y}_{\alpha}(x) = \overline{y}_{\alpha}(0)E_{2\beta,1}[-x^{2\beta}] - \underline{y}_{\alpha}(0)x^{\beta}E_{2\beta,\beta+1}[-x^{2\beta}], \end{cases}$$

where,

$$E_{2\beta,1}[-x^{2\beta}] = \sum_{k=0}^{\infty} \frac{(-x^{2\beta})^k}{\Gamma(2\beta k+1)},$$

and

$$E_{2\beta,\beta+1}[-x^{2\beta}] = \sum_{k=0}^{\infty} \frac{(-x^{2\beta})^k}{\Gamma(2\beta k + \beta + 1)}.$$

are the Mittag-Leffler functions.

Assume that $\tilde{y}(x_0) = [1 + \alpha, 3 - \alpha]$. The numerical solutions of (5.1) for Cases 1 and 2 at x = 2 are listed in Tables 1 and 2, respectively. For graphical results, please see in Figs. 1 and 2. Numerical solutions for both cases are obtained by expending the Mittag-Leffler functions up to 11 terms. It can be concluded that the solutions of Eq. (5.1) is in agreement with the solutions of fuzzy differential equation as β approaches to 1.

6. Conclusions

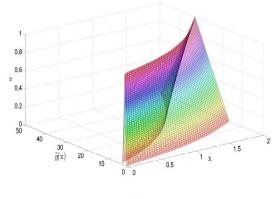
In this paper, we have proposed a new analytical method for dealing with fuzzy fractional differential equations involving Caputo fuzzy fractional derivatives. A new property of fuzzy Sumudu transform for Caputo fuzzy fractional derivative has been introduced. The new property has been used to construct a procedure for solving FFDEs. A numerical example has been solved to show that FST is functional.

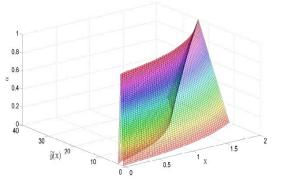
Acknowledgement

This research received funding by Ministry of Science, Technology and Innovation, Malaysia under the Fundamental Research Grant Scheme, project code 9003-00417.

	$\beta = 0.4$		eta=0.6		$\beta = 0.8$		$\beta = 1.0$	
lpha	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$
0	16.5737	49.7212	12.0222	36.0667	9.1583	27.4749	7.3890	22.1670
0.1	18.2311	48.0638	13.2244	34.8644	10.0741	26.5590	8.1279	21.4281
0.2	19.8885	46.4064	14.4267	33.6622	10.9899	25.6432	8.8668	20.6892
0.3	21.5459	44.7491	15.6289	32.4600	11.9058	24.7274	9.6057	19.9503
0.4	23.2032	43.0917	16.8311	31.2578	12.8216	23.8116	10.3446	19.2114
0.5	24.8606	41.4343	18.0333	30.0556	13.7374	22.8957	11.0835	18.4725
0.6	26.5180	39.7770	19.2356	28.8533	14.6533	21.9799	11.8224	17.7336
0.7	28.1753	38.1196	20.4378	27.6511	15.5691	21.0641	12.5613	16.9947
0.8	29.8327	36.4622	21.6400	26.4489	16.4849	20.1482	13.3002	16.2558
0.9	31.4901	34.8048	22.8422	25.2467	17.4008	19.2324	14.0391	15.5169
1.0	33.1475	33.1475	24.0444	24.0444	18.3166	18.3166	14.7780	14.7780

Table 1: Numerical solutions of Eq. (5.1) for Case 1 using different values of β .





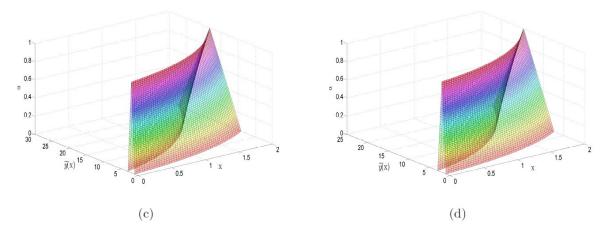


Figure 1: Numerical solutions of (5.1) for (a) $\beta = 0.4$ (b) $\beta = 0.6$, (c) $\beta = 0.8$ and (d) $\beta = 1$ (Case 1).

References

 N A Abdul Rahman and M Z Ahmad, Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations, Entropy 17 (2015), no. 7, 4582–4601. 1, 3.1

	$\beta = 0.4$		$\beta = 0.6$		$\beta = 0.8$		$\beta = 1.0$	
lpha	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$	$\underline{y}^{\beta}(x)$	$\overline{y}^{eta}(x)$
0	-1.2888	0.1705	-1.5531	-0.4324	-2.1398	-1.2789	-3.1440	-2.1577
0.1	-1.2158	0.0976	-1.4971	-0.4884	-2.0967	-1.3219	-3.0947	-2.2071
0.2	-1.1428	0.0246	-1.4410	-0.5444	-2.0537	-1.3650	-3.0454	-2.2564
0.3	-1.0699	-0.0484	-1.3850	-0.6005	-2.0106	-1.4080	-2.9961	-2.3057
0.4	-0.9969	-0.1213	-1.3289	-0.6565	-1.9676	-1.4511	-2.9468	-2.3550
0.5	-0.9239	-0.1943	-1.2729	-0.7125	-1.9245	-1.4941	-2.8975	-2.4043
0.6	-0.8510	-0.2673	-1.2169	-0.7686	-1.8815	-1.5372	-2.8481	-2.4536
0.7	-0.7780	-0.3402	-1.1608	-0.8246	-1.8385	-1.5802	-2.7988	-2.5029
0.8	-0.7051	-0.4132	-1.1048	-0.8807	-1.7954	-1.6232	-2.7495	-2.5523
0.9	-0.6321	-0.4862	-1.0488	-1.9367	-1.7524	-1.6663	-2.7002	-2.6016
1.0	-0.5591	-0.5591	-0.9927	-0.9927	-1.7093	-1.7093	-2.6509	-2.6509

1

0.8

0.6

0.4

0.2

03

2

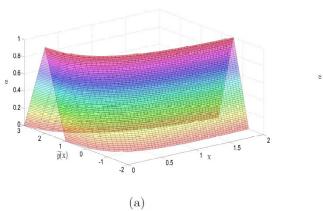
 $\widetilde{y}(\mathbf{x}) = \mathbf{0}$

-1

-2 0

(b)

Table 2: Numerical solutions of Eq. (5.1) for Case 2 using different values of β .



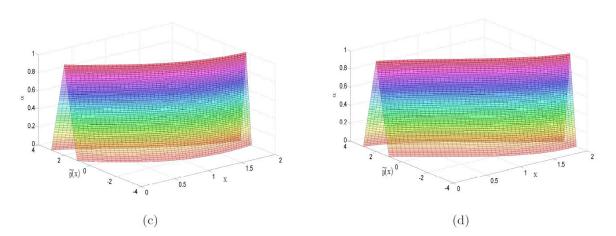


Figure 2: Numerical solutions of (5.1) for (a) $\beta = 0.4$ (b) $\beta = 0.6$, (c) $\beta = 0.8$ and (d) $\beta = 1$ (Case 2).

[2] R P Agarwal, V Lakshmikantham, and J J Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods & Applications 72 (2010), no. 6, 2859–2862.

1.5

1 x

0.5

- [3] O P Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynamics 29 (2002), no. 1-4, 145–155.
- [4] M Z Ahmad and N A Abdul Rahman, Explicit solution of fuzzy differential equations by mean of fuzzy Sumudu transform, International Journal of Applied Physics and Mathematics 5 (2015), no. 2, 86–93. 1, 3.1
- [5] M Z Ahmad, M K Hasan, and S Abbasbandy, Solving fuzzy fractional differential equations using Zadeh's extension principle, The Scientific World Journal 2013 (2013), 11 pages. 1
- [6] A Ahmadian, M Suleiman, S Salahshour, and D Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Advances in Difference Equations 2013 (2013), no. 1, 1–29. 1
- [7] T Allahviranloo and M B Ahmadi, Fuzzy Laplace transforms, Soft Computing 14 (2010), no. 3, 235–243. 1
- [8] T Allahviranloo, A Armand, and Z Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology 26 (2014), no. 3, 1481– 1490. 1
- T Allahviranloo, S Salahshour, and S Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Computing 16 (2012), no. 2, 297–302.
- S Arshad and V Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods & Applications 74 (2011), no. 11, 3685–3693. 2.9
- [11] B Bede and S G Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems 151 (2005), no. 3, 581–599. 2.7
- [12] B Bede, I J Rudas, and A L Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences 177 (2007), no. 7, 1648–1662. 2.7
- [13] D A Benson, S W Wheatcraft, and M M Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research 36 (2000), no. 6, 1403–1412. 1
- [14] H Bulut, H M Baskonus, and F B M Belgacem, The analytical solution of some fractional ordinary differential equations by the Sumudu transform method, Abstract and Applied Analysis, vol. 2013, Hindawi Publishing Corporation, 2013. 1
- [15] V B L Chaurasia, R S Dubey, and F B M Belgacem, Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, International Journal of Mathematics in Engineering Science and Aerospace 3 (2012), no. 2, 1–10.
- [16] V B L Chaurasia and J Singh, Application of Sumulu transform in Schödinger equation occurring in quantum mechanics, Applied Mathematical Sciences 4 (2010), no. 57, 2843–2850. 2.13
- [17] M Friedman, M Ma, and A Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems 106 (1999), no. 1, 35–48. 2.1
- [18] V Garg and K Singh, An improved Grunwald-Letnikov fractional differential mask for image texture enhancement, International Journal of Advanced Computer Science and Applications 3 (2012), no. 3. 1
- [19] W G Glöckle and T F Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophysical Journal 68 (1995), no. 1, 46–53. 1
- [20] F Jarad and K Tas, Application of Sumulu and double Sumulu transforms to Caputo-fractional differential equations, Journal of Computational Analysis and Applications 14 (2012), no. 3, 475–483. 2.13
- [21] G Jumarie, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, Journal of Applied Mathematics and Computing 24 (2007), no. 1-2, 31–48.
- [22] O Kaleva, A note on fuzzy differential equations, Nonlinear Analysis: Theory, Methods & Applications 64 (2006), no. 5, 895–900. 2.2
- [23] Q D Katatbeh and F B M Belgacem, Applications of the Sumudu transform to fractional differential equations, Nonlinear Studies 18 (2011), no. 1, 99–112. 1
- [24] A Kaufmann and M M Gupta, Introduction to fuzzy arithmetic: Theory and applications, Van Nostrand Reinhold, New York, 1985. 2.4
- [25] A Khastan, J J Nieto, and R Rodríguez-López, Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets and Systems 177 (2011), no. 1, 20–33. 1
- [26] A A Kilbas and S A Marzan, Nonlinear differential equations with the caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), no. 1, 84–89. 1
- [27] A A Kilbas, H M Srivastava, and J J Trujillo, Theory and applications of fractional differential equations, vol. 204, Elsevier Science Limited, 2006. 1
- [28] J W Layman, The Hankel transform and some of its properties, Journal of Integer Sequences 4 (2001), no. 1, 1–11. 1
- [29] V Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets and Systems **265** (2015), 63 85. 1
- [30] M Ma, M Friedman, and A Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems 105 (1999), no. 1, 133–138. 2.1
- [31] F Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters 9 (1996), no. 6, 23–28. 1
- [32] M Mazandarani and A V Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Communications in Nonlinear Science and Numerical Simulation 18 (2013), no. 1, 12–21. 2.2, 2.10, 2.11, 2.12
- [33] I Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198, Academic Press, 1998. 1
- [34] S Salahshour, T Allahviranloo, and S Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communications in Nonlinear Science and Numerical Simulation 17 (2012), no. 3, 1372–1381. 1, 2.8

- [35] R A Spinelli, Numerical inversion of a Laplace transform, SIAM Journal on Numerical Analysis 3 (1966), no. 4, 636–649.
- [36] L Stefanini, L Sorini, and M L Guerra, Parametric representation of fuzzy numbers and application to fuzzy calculus, Fuzzy Sets and Systems 157 (2006), no. 18, 2423–2455. 2.1
- [37] D Takači, A Takači, and A Takači, On the operational solutions of fuzzy fractional differential equations, Fractional Calculus and Applied Analysis 17 (2014), no. 4, 1100–1113. 1
- [38] C J Tranter, The use of the Mellin transform in finding the stress distribution in an infinite wedge, The Quarterly Journal of Mechanics and Applied Mathematics 1 (1948), no. 1, 125–130. 1
- [39] G K Watugala, Sumudu transforms-a new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology 24 (1993), no. 1, 35–43. 1
- [40] _____, Sumudu transforms-a new integral transform to solve differential equations and control engineering problems, Mathematical Engineering in Industry 6 (1998), no. 4, 319–329. 1
- [41] H C Wu, The improper fuzzy Riemann integral and its numerical integration, Information Sciences 111 (1998), no. 1, 109–137. 2.5
- [42] J Xu, Z Liao, and Z Hu, A class of linear differential dynamical systems with fuzzy initial condition, Fuzzy Sets and Systems 158 (2007), no. 21, 2339–2358. 2.1
- [43] L A Zadeh, Fuzzy sets, Information and control 8 (1965), no. 3, 338-353. 1