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Abstract

In this paper, we solve the quadratic ρ-functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (1)

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥ ,
where ρ is a fixed complex number with |ρ| < 1, and∥∥∥∥4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥ (2)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖,

where ρ is a fixed complex number with |ρ| < 1.
Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ-functional

inequalities (1) and (2) in β-homogeneous complex Banach spaces.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [23]
concerning the stability of group homomorphisms.

The functional equation f(x + y) = f(x) + f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers
[8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [2] for additive mappings and by Rassias [14] for linear
mappings by considering an unbounded Cauchy difference. A generalization of the Rassias
theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Rassias’ approach.

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the quadratic
functional equation. In particular, every solution of the quadratic functional equation is
said to be a quadratic mapping. The stability of quadratic functional equation was proved
by Skof [22] for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach
space. Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain E1 is
replaced by an Abelian group. The stability problems of various functional equations have
been extensively investigated by a number of authors (see [1, 3, 4, 6, 9, 10, 11, 12, 13, 15,
17, 18, 19, 20, 21, 24, 25]).

Definition 1.1. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an F -norm
if it satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;
(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided xn → 0.
Then (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ C
(see [16]). A β-homogeneous F -space is called a β-homogeneous complex Banach space.

In Section 2, we solve the quadratic ρ-functional inequality (1) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (1) in β2-homogeneous complex Banach
space.

In Section 3, we solve the quadratic ρ-functional inequality (2) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (2) in β2-homogeneous complex Banach
space.

Throughout this paper, let β1, β2 be positive real numbers with β1 ≤ 1 and β2 ≤ 1.
Assume that X is a β1-homogeneous real or complex normed space with norm ‖ · ‖ and that
Y is a β2-homogeneous complex Banach space with norm ‖ · ‖.

2. Quadratic ρ-functional inequality (1) in β-homogeneous complex Banach spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1
2 .

We solve and investigate the quadratic ρ-functional inequality (1) in complex normed
spaces.
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Lemma 2.1. If a mapping f : G→ Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.1)

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
for all x, y ∈ G, then f : G→ Y is quadratic.

Proof. Assume that f : G→ Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
Letting y = x in (2.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ G.

Thus

f
(x

2

)
=

1

4
f(x) (2.2)

for all x ∈ G.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
= |ρ|‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G.

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1) in
β-homogeneous complex Banach spaces.

Theorem 2.2. Let r > 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be a
mapping satisfying f(0) = 0 and

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.3)

≤
∥∥∥∥ρ(4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2β1r − 4β2
‖x‖r (2.4)

for all x ∈ X.

Proof. Letting y = x in (2.3), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r (2.5)

for all x ∈ X. So∥∥∥f(x)− 4f
(x

2

)∥∥∥ ≤ 2θ

2β1r
‖x‖r
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for all x ∈ X. Hence∥∥∥4lf
( x

2l

)
− 4mf

( x

2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥
≤ 2

2β1r

m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6) that
the sequence {4kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence

{4kf( x
2k

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kf
( x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.4).

It follows from (2.3) that

‖Q (x+ y) +Q (x− y)− 2Q(x)− 2Q(y)‖

= lim
n→∞

∥∥∥∥4n
(
f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y
2n

))∥∥∥∥
≤ lim

n→∞

∥∥∥∥4nρ

(
4f

(
x+ y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y
2n

))∥∥∥∥
+ lim
n→∞

4β2n

2β1rn
θ(‖x‖r + ‖y‖r)

=

∥∥∥∥ρ(4Q

(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. So∥∥∥∥Q(x+ y

2

)
+Q

(
x− y

2

)
− 2Q(x)− 2Q(y)

∥∥∥∥
≤
∥∥∥∥ρ(4Q

(
x+ y

2

)
+Q (x− y)− 2Q(x)− 2Q(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping Q : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.4). Then we have

‖Q(x)− T (x)‖ =
∥∥∥4qQ

( x
2q

)
− 4qT

( x
2q

)∥∥∥
≤
∥∥∥4qQ

( x
2q

)
− 4qf

( x
2q

)∥∥∥+
∥∥∥4qT

( x
2q

)
− 4qf

( x
2q

)∥∥∥
≤ 2θ

2β1r − 4β2
4β2q

2β1qr
‖x‖r,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that Q(x) = T (x) for all
x ∈ X. This proves the uniqueness of Q, as desired.
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Theorem 2.3. Let r < 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be an
even mapping satisfying f(0) = 0 and (2.3). Then there exists a unique quadratic mapping
Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4β2 − 2β1r
‖x‖r (2.7)

for all x ∈ X.

Proof. It follows from (2.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 2θ

4β2
‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx
)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥
≤ 2θ

4β2

m−1∑
j=l

2β1r

4β2j
‖x‖r (2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.8) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.8), we get (2.7).
The rest of the proof is similar to the proof of Theorem 2.2.

Remark 2.4. If ρ is a real number such that −1 < ρ < 1 and Y is a β-homogeneous real
Banach space, then all the assertions in this section remain valid.

3. Quadratic ρ-functional inequality (2) in β-homogeneous complex Banach spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1.
We solve and investigate the quadratic ρ-functional inequality (2) in β-homogeneous

complex normed spaces.

Lemma 3.1. If a mapping f : G→ Y satisfies∥∥∥∥4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥ (3.1)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖

for all x, y ∈ G, then f : G→ Y is quadratic.
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Proof. Assume that f : G→ Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.1), we get

∥∥4f
(
x
2

)
− f(x)

∥∥ ≤ 0 and so

4f
(x

2

)
= f(x) (3.2)

for all x ∈ G.
It follows from (3.1) and (3.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

=

∥∥∥∥4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥
≤ |ρ|‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G.

Now, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1) in
β-homogeneous complex Banach spaces.

Theorem 3.2. Let r > 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be a
mapping satisfying f(0) = 0 and∥∥∥∥4f

(
x+ y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥ (3.3)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2β1rθ

2β1r − 4β2
‖x‖r (3.4)

for all x ∈ X.

Proof. Letting y = 0 in (3.3), we get∥∥∥f(x)− 4f
(x

2

)∥∥∥ =
∥∥∥4f

(x
2

)
− f(x)

∥∥∥ ≤ θ‖x‖r (3.5)

for all x ∈ X. So∥∥∥4lf
( x

2l

)
− 4mf

( x

2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥
≤

m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (3.6)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6) that
the sequence {4kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence

{4kf( x
2k

)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
k→∞

4kf
( x

2k

)
for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).

The rest of the proof is similar to the proof of Theorem 2.2

Theorem 3.3. Let r < 2β2
β1

and θ be nonnegative real numbers and let f : X → Y be an
even mapping satisfying f(0) = 0 and (3.3). Then there exists a unique quadratic mapping
Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2β1rθ

4β2 − 2β1r
‖x‖r (3.7)

for all x ∈ X.

Proof. It follows from (3.5) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 2β1r

4β2
θ‖x‖r

for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

4j
f
(
2jx
)
− 1

4j+1
f
(
2j+1x

)∥∥∥∥
≤

m∑
j=l+1

2β1rj

4β2j
θ‖x‖r (3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.8) that the
sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{ 1
4n f(2nx)} converges. So one can define the mapping Q : X → Y by

Q(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.8), we get (3.7).
The rest of the proof is similar to the proof of Theorem 2.2.

Remark 3.4. If ρ is a real number such that −1 < ρ < 1 and Y is a β-homogeneous real
Banach space, then all the assertions in this section remain valid.
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