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Abstract. In the present paper, we use an efficient approach to
solve fractional differential equation, Oxygen diffusion problem
which is used to describe oxygen absorption in human body. The
Oxygen diffusion problem is considered in new Caputo derivative
of fractional order in this paper. Using an iterative approach, we
derive the solutions of the modified system.

1. introduction

The distribution of oxygen into absorbing tissue was first studied
by Crank and Gupta [1]. When the oxygen is allowed to diffuse into
a medium, some part of the oxygen is absorbed by the medium and
absorption of oxygen at the surface of the medium is maintained
constant. This phase of the problem continues until a steady state is
reached in which the oxygen does not penetrate any further is sealed
so that no oxygen passes in or out, the medium continues to absorb
the available oxygen already in it and, as a consequence, the bound-
ary in the steady state starts to recede towards the sealed surface.
Crank and Gupta [2] also employed and uniform space grid mov-
ing with the boundary and necessary interpolations are performed
with either cube splines or polynomials. In this direction Noble sug-
gested the repeated spatial subdivision [3], the heat balance integral
method defined by Reynolds and Dalton [4], an orthogonal collo-
cation for solving the partial differential equation of the diffusion
of oxygen in absorbing tissue described by Liapis et al. [5]. Two
numerical methods for solving the oxygen diffusion problem were
proposed by Gülkaç [6]. Mitchell studied the accurate application
of the integral method [7]. For more references see [8-17].
In applied mathematics, one of the most used concepts is deriva-
tive. Derivative shows the rate of change of the function. This is also
helpful to describe many real phenomena. After this research, the
mathematician faced some complex problems of real world to solve
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them mathematician introduce fractional derivative (see [9-13]).The
concept of fractional calculus having the great importance in many
branches and also important for modeling real world problem (see
[14-17]).
Due to this region a lot of research work, conference, and paper
publication have been done by many researchers. In this concern
varies definitions of fractional derivative have been given till now.
Recently the researcher describes the new fractional derivative oper-
ator named Caputo-Fabrizio fractional derivative [18-21].

1.1. The Caputo and Fabrizio Fractional Order Derivative: Singu-
larity at the end point of the interval is the main problem which is
faced with the definition of fractional order derivative. To avoid this
problem, Caputo and Fabrizio recently proposed a new fractional
order derivative which does not have any singularity. The defini-
tion is based on the convolution of a first order derivative and the
exponential function, given in the following definition:
Definition 1: Let f ∈ H1(a,b), b > a, α ∈ [0,1] then the new frac-
tional order Caputo derivative is defined as:

(1) Dαt (f(t)) =
M(α)
(1−α)

∫ t

a
f′ (x)e[−α

t−x
1−α ] dx .

HereM(α) denote the normalization function such asM(0) =M (1) =
1 for detail see [18]. If f < H1(a,b), then the derivative can be written
as

(2) Dαt (f(t)) =
αM(α)
(1−α)

∫ t

a
(f (t)− f (x))e[−α

t−x
1−α ] dx .

Remark 1: The authors state that, if σ = 1−α
α ∈ [0,∞), α = 1

1+σ ∈
[0,1],then equation (2) reduces to

(3) Dαt (f(t)) =
N (σ )
σ

∫ t

a
f′ (x)e[−

t−x
σ ] dx, N (0) =N (∞) = 1

in addition

(4) lim
σ→0

1
σ
e[−

t−x
1−α ] = δ(x − t) .

As we have define above a new derivative, then there should be its
anti-derivative, the integral of this new fractional derivative is given
by Losada and Nieto [19].
Definition 2: The fractional integral of order α (0 < α < 1) ,of the
function f is defined bellow:

(5) I tα (f (t)) =
2(1−α)

(2−α)M (α)
f (t) +

2α
(2−α)M (α)

∫ t

0
f (s)ds , t ≥ 0 .
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Remark 2: It is clear from equation (5), the fractional integral of or-
der α (0 < α < 1) ,is an average of function f and its integral of order
1. Hence we get the condition [19]

(6)
2(1−α)

(2−α)M (α)
+

2α
(2−α)M (α)

= 1 ,

the above terms yields an explicit formula,

(7) M (α) =
2

(2−α)
, 0 ≤ α ≤ 1 .

Due to the above relation, Nieto and Losada [19] anticipated that the
new Caputo derivative of order 0 < α < 1 can be written as:

(8) CF
0 Dαt (f(t)) =

1
(1−α)

∫ t

a
f′ (x)e[−α

t−x
1−α ] dx

Theorem 1.1. The function f (t)is defined such as, for the new Caputo
fractional order derivative:

(9) f (s)(a) = 0, s = 1,2, ...,n

then, we have

(10) Dαt (Dnt (f (t))) =Dnt (Dαt (f (t)))

For more detail see [18,19 ].

1.2. Laplace Transform. One of the simplest and most important
integral transforms which has been a subject of wide and extensive
study by various authors due to its various uses in applied mathe-
matics, is well-known Laplace transform defined as follows:

(11) L (f (t)) = F(s)

(12) L {f (t) ; s} =
∫ ∞

0
e−st f (t) dt ,

The Laplace transform and the Caputo-Fabrizio fractional order de-
rivative is given as [12], defined bellow

(13) L
((
CF
0 Dα

t

)
(f (t))

)
=

[
sL (f (t))− f (0)
s+α (1− s)

]
.

1.3. Oxygen Diffusion Problem Fractional Module. The model of
oxygen diffusion problem is given by Crank and Gupta [1]. The oxy-
gen diffusion problem having two mathematical stages. At the first
stage, the stable condition occurs once the oxygen is injected into
either from the inside or outside of the cell then the cell surface is
isolated.
At the second stage, tissues start to absorb the injected oxygen. The
moving boundary problem caused by this level. The aim of this pro-
cess is to find a balance position and to determine the time-dependent
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moving boundary position. For detail of time-fractional of oxygen
diffusion problem (see [1, 7]).
We consider the following oxygen diffusion problem:

(14)
(
CF
0 Dα

t

)
(c(x, t)) = cxx − 1; x, t ∈ φ

with the following initial and boundary conditions

(15) c(x,0) =
(1− x)2

2
, 0 ≤ x ≤ 1,

(16)
∂c
∂x

= 0, x = 0, t ≥ 0

(17) c =
∂c
∂x

= 0, x = s(t), t ≥ 0, with s(0) = 1 .

where 0 < α ≤ 1.

2. Existence of the Coupled solutions:

By using the Fixed-Point theorem, we define the existence of the
coupled-solution. Now first of all transform equation (14) in to an
integral equation as follows:

(18) c(x, t)− c(x,0) = CF
0 Iαt [cxx − 1]

on using the definition defined by Nieto, we get
(19)

c(x, t) = c(x,0)+
2(1−α)

(2−α)M(α)

{
∂2c (x, t)
∂x2 − 1

}
+

2α
(2−α)M(α)

∫ t

0

[
∂2c (x,s)
∂x2 − 1

]
ds.

Let us consider the following kernels:

(20) K1(x, t, c) =
∂2c (x, t)
∂x2 − 1 ,

Theorem 2.1. Show that K1 satisfy Lipschiz condition and contraction
if the following inequality holds:

0 ≤ δ2 ≤ 1,

Proof. First of all we prove this condition forK1. Let cand c1 be two
functions, then we have

(21) ‖K1(x, t, c)−K1(x, t, c1)‖ =

∥∥∥∥∥∥∂2c (x, t)
∂x2 − ∂

2c1 (x, t)
∂x2

∥∥∥∥∥∥ ,
Since we know that the operator derivative satisfies the Lipchitz con-
dition, then we can find positive parameterδsuch that:

(22)

∥∥∥∥∥∥∂2c (x, t)
∂x2 − ∂

2c1 (x, t)
∂x2

∥∥∥∥∥∥ ≤ δ2 ‖(c (x, t)− c1 (x, t))‖ ,
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Putting the value from eqn. (??) into eqn. (??), we obtain:

(23) ‖K1(x, t, c)−K1(x, t, c1)‖ ≤ δ2 ‖(c (x, t)− c1 (x, t))‖ ,

or
where consider δ2 = A,then we get

(24) ‖K1(x, t, c)−K1(x, t, c1)‖ ≤ A‖(c (x, t)− c1 (x, t))‖ ,

Therefore K1satisfies the Lipschiz conditions and if in addition 0 ≤
δ2 ≤ 1,then it is also a contraction.
We consider the following recursive formula
(25)

cn(x, t) = c(x,0)+
2(1−α)

(2−α)M(α)
K1(x, t, cn−1)+

2α
(2−α)M(α)

∫ t

0
{K1(x, t, cn−1)} ds.

With initial component

c0(x, t) = c(x,0).

Now the difference between the consecutive terms is
(26)
Un (t) = cn(x, t)− cn−1(x, t) = 2(1−α)

(2−α)M(α)K1(x, t, cn−1)− 2(1−α)
(2−α)M(α)K1(x, t, cn−2)

+ 2α
(2−α)M(α)

∫ t
0 {K1(x,s, cn−1)−K1(x,s, cn−1)} ds ,

here

cn(x, t) =
∞∑
i=0

Un (x, t) .

Now take norm on both sides of equation (26),we get
(27)
‖Un (t)‖ = ‖cn(x, t)− cn−1(x, t)‖ =∥∥∥∥∥∥∥

2(1−α)
(2−α)M(α)K1(x,s, cn−1)− 2(1−α)

(2−α)M(α)K1(x, t, cn−2)

+ 2α
(2−α)M(α)

∫ t
0 {K1(x,s, cn−1)−K1(x,s, cn−1)} ds

∥∥∥∥∥∥∥ ,
From the eqn. (27) we can say that

(28)

‖Un (x, t)‖ = ‖cn (x, t)− cn−1 (x, t)‖
≤ 2(1−α)

(2−α)M(α) ‖K1(x,s, cn−1)−K1(x, t, cn−2)‖
+ 2α

(2−α)M(α)

∥∥∥∥∫ t0 {K1(x,s, cn−1)−K1(x, t, cn−2)}
∥∥∥∥ ds

Since by the above discussion we have seen that kernel satisfies the
Lipchitz condition, so we get:

(29)

‖cn (x, t)− cn−1 (x, t)‖
≤ 2(1−α)

(2−α)M(α)A‖cn−1 (x, t)− cn−2 (x, t)‖
+ 2α

(2−α)M(α)B
∫ t

0 {‖cn−1 (x,s)− cn−2 (x,s)‖} ds
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or

(30)

‖Un (x, t)‖
≤ 2(1−α)

(2−α)M(α)A‖Un−1 (x, t)‖
+ 2α

(2−α)M(α)B
∫ t

0 {‖Un−1 (x,s)‖} ds
�

Theorem 2.2. Show that the Oxygen Diffusion Problem Fractional
Module is the model of the oxygen absorption in human body having a
coupled-solution.

Proof. As we have seen that, the above equation (??), is bounded, as
well as, we have proved that the kernel satisfy the Lipschiz condi-
tion, therefore the following results obtained in equation (??) using
the recursive technique, we get the following relation

(31)
‖Un (x, t)‖
≤ ‖U (x,0)‖

{( 2(1−α)
(2−α)M(α)A

)n
+
(

2α
(2−α)M(α)Bt

)n}
Therefore the above solutions exist and are continuous. Nonetheless,
to show that the above is a solution of eqn. (14), we get

(32) c (x, t) = cn (x, t)− Pn (x, t)

thus

(33)
G (t)−Gn (t) = 2(1−α)

(2−α)M(α)K1 (x, t, c − Pn (t))

+ 2α
(2−α)M(α)

∫ t
0
K1 (s, t, c − Pn (t)) ds,

It follows from the above that:
(34)
c (x, t)− 2(1−α)

(2−α)M(α)K1(x, t, c)− c (x,0)− 2α
(2−α)M(α)

∫ t
0
K1(s, t, c)ds

= Pn (x, t) + 2(1−α)
(2−α)M(α)K1(x, t, c) + 2α

(2−α)M(α)

∫ t
0 {K1 (s, t, c − Pn (s, t))−K1 (s, t, c)} ds.

Now apply the norm on both sides and using the Lipchitz condition,
we get
(35)∥∥∥∥c (x, t)− 2(1−α)

(2−α)M(α)K1(x, t, c)− c (x,0)− 2α
(2−α)M(α)

∫ t
0
K1(s, t, c)ds

∥∥∥∥
≤ ‖Pn (x, t)‖+

{ 2(1−α)
(2−α)M(α)A+ 2α

(2−α)M(α)Bt
}
‖Pn (x, t)‖ ,

On taking limit n→∞ of equation (35), we get
(36)

c (x, t) =
2(1−α)

(2−α)M (α)
K1(x, t, c) + c (x,0) +

2α
(2−α)M (α)

∫ t

0
K1(s, t, c)ds,

Eqn. (36) is the coupled solution of the eqn. (14), hence we can say
that solution exists.

�
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3. Uniqueness of the Solution

Now in this part, we want to show that the solution presented in the
above section is unique.
To prove this, we consider that we can find another solution for sys-
tem (14), say c (x, t) then:

(37)
c (x, t)− c1 (x, t) = 2(1−α)

(2−α)M(α) {K1(x, t, c)−K1(x, t, c1)}
+ 2α

(2−α)M(α)

∫ t
0 {K1(s, t, c)−K1(s, t, c1)} ds,

apply the norm on the both sides of equation (37),

(38)
‖c (x, t)− c1 (x, t)‖ ≤ 2(1−α)

(2−α)M(α) {‖K1(x, t, c)−K1(x, t, c1)‖}
+ 2α

(2−α)M(α)

∫ t
0 {‖K1(s, t, c)−K1(s, t, c1)‖} ds.

On using the Lipchitz condition, having the fact in mind that the
solution is bounded, we get

(39) ‖c (x, t)− c1 (x, t)‖ <
2(1−α)

(2−α)M (α)
HD +

{
2α

(2−α)M (α)
(J1Dt)

}n
this is true for any n hence

c (x, t) = c1 (x, t) .

Hence it shows the uniqueness of the solution of system (14).

4. Application of Fabrizio derivative to Oxygen Diffusion

Problem Fractional

To get the best solution of Oxygen Diffusion Problem Fractional
Module we use an iterative technique. The method involves the
Laplace transform and it’s inverse.
Applying the Laplace transform on both sides of (14),we get

(40)
pL (c (x, t))− c (x,0)

p+α (1− p)
= L (cxx − 1) ,

or

(41) L (c (x, t)) =
c (x,0)
p

+
(p+α (1− p))

p
L

{
∂2c

∂x2 − 1
}
,

applying the inverse Laplace transform on both sides of (41), we get

(42) c (x, t) = c (x,0) +L−1
[
(p+α (1− p))

p
L

{
∂2c

∂x2 − 1
}]
,

We next obtain the following recursive formula from (42)

(43) cn+1 (x, t) = cn (x,0) +L−1
[
(p+α (1− p))

p
L

{
∂2cn
∂x2 − 1

}]
,
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The coupled solution is thus provided as:

(44) c(x, t) = lim
n→∞

cn(x, t)

we get the required solution.

5. Conclusions

In this paper, our aim is to find the possibility of extending the ap-
plication of the new fractional derivative of without singular ker-
nel in to other fields of science and technology. We have applied
the fractional derivative to the Oxygen Diffusion Problem Fractional
Module and use the fixed-point theorem to prove the existence and
uniqueness of the coupled-solution. A derivation of the special so-
lution was done via an iterative approach. Through this process we
can present the biological behavior of the real life problems.
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