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Abstract

In this paper, we present a novel idea of unification of anti-periodic and multi-point boundary
conditions and develop the existence theory for sequential fractional differential equations supple-
mented with these new conditions. We apply fixed point theorems due to Banach, Krasnoselskii,
Leray-Schauder alternative criterion, and Leray-Schauder degree theory to obtain the desired re-
sults. Our results are well illustrated with the aid of examples and correspond to some new special
cases for particular choices of parameters involved in the problem.
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1 Introduction

In this paper, we study a nonlinear anti-periodic type multi-point boundary value problems of sequen-
tial fractional differential equations given by

(cDq + k cDq−1)u(t) = f(t, u(t)), 2 < q ≤ 3, 0 < t < T,

α1u(0) +
m∑

i=1

aiu(ηi) + γ1u(T ) = β1,

α2u
′(0) +

m∑
i=1

biu
′(ηi) + γ2u

′(T ) = β2,

α3u
′′(0) +

m∑
i=1

ciu
′′(ηi) + γ3u

′′(T ) = β3

(1.1)

where cDq denotes the Caputo fractional derivative of order q, αj , βj , γj ∈ R (j = 1, 2, 3), ai, bi, ci ∈
R (i = 1, 2, . . . ,m), k ∈ R+ and f is an appropriately chosen continuous function. The new boundary
conditions in (1.1) can be interpreted as the values of the unknown function and its first and second-
order derivatives at the end points of the interval under consideration relate to the linear combination
of the values of the unknown function, and its first and second-order derivatives at interior points
ηi ∈ (0, T ).

There has been a great interest in developing theoretical analysis for a variety of boundary value
problems of nonlinear fractional order differential equations in the recent years. Anti-periodic and
multi-point boundary value problems are two important classes of such problems, which have received
considerable attention. Anti-periodic boundary conditions appear in the mathematical modeling of
certain physical processes and phenomena, for example, see [1] and the references cited therein. Nonlo-
cal multi-point conditions are regarded as more plausible than the classical initial/boundary conditions
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as these condition can describe peculiarities of chemical, physical or other processes happening inside
the domain, for instance, see [2]. For some recent works on fractional-order anti-periodic and multi-
point boundary value problems, we refer the reader to a series of papers ([3]-[17]) and the references
cited therein.

The objective of the present paper is to investigate the existence of solutions for sequential frac-
tional differential equations equipped with a new kind of boundary conditions consisting of a combi-
nation of anti-periodic and multi-point boundary conditions. The rest of the paper is organized as
follows. Section 2 contains some preliminary concepts of fractional calculus and an auxiliary lemma,
which plays a key role in the forthcoming analysis. In Section 3, we prove the uniqueness of solutions
for the given problem, while the existence results are presented in Section 4. Illustrative examples are
discussed in Section 5. The paper concludes with some interesting remarks described in Section 6.

2 Preliminary work

First of all, we recall some basic definitions [18, 19].

Definition 2.1 The fractional integral of order r with the lower limit zero for a function f is defined
as

Irf(t) =
1

Γ(r)

∫ t

0

f(s)
(t− s)1−r

ds, t > 0, r > 0,

provided the right hand-side is point-wise defined on [0,∞), where Γ(·) is the gamma function, which
is defined by Γ(r) =

∫∞
0
tr−1e−tdt.

Definition 2.2 The Riemann-Liouville fractional derivative of order r > 0, n − 1 < r < n, n ∈ N ,
is defined as

Dr
0+f(t) =

1
Γ(n− r)

(
d

dt

)n ∫ t

0

(t− s)n−r−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 2.3 The Caputo derivative of order r for a function f : [0,∞) → R can be written as

cDrf(t) = Dr

(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < r < n.

Remark 2.4 If f(t) ∈ Cn[0,∞), then

cDrf(t) =
1

Γ(n− r)

∫ t

0

f (n)(s)
(t− s)r+1−n

ds = In−rf (n)(t), t > 0, n− 1 < q < n.

To define a solution for the given problem, we need the following lemma.

Lemma 2.5 Let h ∈ C[0, T ], u ∈ C3[0, T ]. Then the following linear problem

(cDq + k cDq−1)u(t) = h(t), 2 < q ≤ 3, 0 < t < T,

α1u(0) +
m∑

i=1

aiu(ηi) + γ1u(T ) = β1,

α2u
′(0) +

m∑
i=1

biu
′(ηi) + γ2u

′(T ) = β2,

α3u
′′(0) +

m∑
i=1

ciu
′′(ηi) + γ3u

′′(T ) = β3,

(2.1)
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is equivalent to the fractional integral equation

u(t) = ν1(t) +
∫ t

0

e−k(t−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
h(x)dx

)
ds

+
m∑

i=1

ωi(t)
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
h(x)dx

)
ds

+ν2(t)
∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
h(x)dx

)
ds

+
m∑

i=1

ψi(t)
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
h(s)ds+ ν3(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
h(s)ds

+
m∑

i=1

ϕi(t)
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
h(s)ds+ ν4(t)

∫ T

0

(T − s)q−3

Γ(q − 2)
h(s)ds,

(2.2)

where

ν1(t) =
β1

λ1
−
(∑m

i=1 aiηi + γ1T

λ1λ2

)
β2 −

β3

k2λ1λ2δ3

(
λ2δ1 + kδ2(

m∑
i=1

aiηi + γ1T )
)

+
β3e

−kt

k2δ3

+
t

λ2

(
β2 +

β3δ2
kδ3

)
,

ωi(t) =
ciδ1
δ3λ1

− ai

λ1
−
(k(∑m

i=1 aiηi + γ1T )
λ1λ2δ3

)(
biδ3 − δ2ci

)
− cie

−kt

δ3
+

kt

λ2δ3

(
biδ3 − δ2ci

)
,

ν2(t) =
γ3δ1
δ3λ1

− γ1

λ1
−
(k(∑m

i=1 aiηi + γ1T )
λ1λ2δ3

)(
γ2δ3 − δ2γ3

)
− γ3e

−kt

δ3
+

kt

λ2δ3

(
γ2δ3 − δ2γ3

)
,

ψi(t) =
−δ1ci
kλ1δ3

−
(∑m

i=1 aiηi + γ1T

λ1λ2δ3

)(
δ2ci − biδ3

)
+
cie

−kt

kδ3
+

t

λ2δ3

(
δ2ci − biδ3

)
,

ν3(t) =
−δ1γ3

kλ1δ3
−
(∑m

i=1 aiηi + γ1T

λ1λ2δ3

)(
δ2γ3 − γ2δ3

)
+
γ3e

−kt

kδ3
+

t

λ2δ3

(
δ2γ3 − γ2δ3

)
,

ϕi(t) =
ci

k2δ3λ1λ2

(
λ2δ1 + δ2k(

m∑
i=1

aiηi + γ1T )
)
− cie

−kt

k2δ3
− ciδ2t

kδ3λ2
,

ν4(t) =
γ3

k2δ3λ1λ2

(
λ2δ1 + δ2k(

m∑
i=1

aiηi + γ1T )
)
− γ3e

−kt

k2δ3
− γ3δ2t

kδ3λ2
,

δ1 = α1 +
m∑

i=1

aie
−kηi + γ1e

−kT , δ2 = α2 +
m∑

i=1

bie
−kηi + γ2e

−kT ,

δ3 = α3 +
m∑

i=1

cie
−kηi + γ3e

−kT 6= 0, λ1 = α1 +
m∑

i=1

ai + γ1 6= 0, λ2 = α2 +
m∑

i=1

bi + γ2 6= 0.

(2.3)

Proof. We know that the general solution of (2.1) can be expressed in term of an integral equation
as

u(t) = A0e
−kt +A1 +A2t+

∫ t

0

e−k(t−s)Iq−1h(s)ds, (2.4)

where A0, A1 and A2 are arbitrary constants and

Iq−1h(t) =
∫ t

0

(t− x)q−2

Γ(q − 1)
h(x)dx.
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Differentiating (2.4) with respect to t, we obtain

u′(t) = −kA0e
−kt +A2 − k

∫ t

0

e−k(t−s)Iq−1h(s)ds+ Iq−1h(t), (2.5)

u′′(t) = k2A0e
−kt + k2

∫ t

0

e−k(t−s)Iq−1h(s)ds− kIq−1h(t) + Iq−2h(t). (2.6)

Using the boundary conditions given by (2.1) in (2.4)-(2.6), together with the notations (2.3), we get

δ1A0 + λ1A1 +A2(
m∑

i=1

aiηi + γ1T ) +
m∑

i=1

ai

∫ ηi

0

e−k(η−s)Iq−1h(s)ds

+γ1

∫ T

0

e−k(T−s)Iq−1h(s)ds = β1,

(2.7)

−kδ2A0 + λ2A2 +
m∑

i=1

bi

(
− k

∫ ηi

0

e−k(ηi−s)Iq−1h(s)ds+ Iq−1h(ηi)
)

+γ2

(
− k

∫ T

0

e−k(T−s)Iq−1h(s)ds+ Iq−1h(T )
)

= β2,

(2.8)

A0k
2δ3 +

m∑
i=1

ci

(
k2

∫ ηi

0

e−k(ηi−s)Iq−1h(s)ds− kIq−1h(ηi) + Iq−2h(ηi)
)

+γ3

(
k2

∫ T

0

e−k(T−s)Iq−1h(s)ds− kIq−1h(T ) + Iq−2h(T )
)

= β3.

(2.9)

Solving the system (2.7)-(2.9) for A0, A1 and A2, we obtain

A0 =
1

k2δ3

{
β3 −

m∑
i=1

ci

(
k2

∫ ηi

0

e−k(ηi−s)Iq−1h(s)ds− kIq−1h(ηi) + Iq−2h(ηi)
)

−γ3

(
k2

∫ T

0

e−k(T−s)Iq−1h(s)ds− kIq−1h(T ) + Iq−2h(T )
)}
,

A1 =
β1

λ1
−
(∑m

i=1 aiηi + γ1T

λ1λ2

)
β2 −

( δ1
k2δ3λ1

+
δ2(
∑m

i=1 aiηi + γ1T )
kδ3λ1λ2

)
β3

+
m∑

i=1

( δ1ci
δ3λ1

−
(∑m

i=1 aiηi + γ1T

λ1

)(bik
λ2

− kδ2ci
δ3λ2

)
− ai

λ1

)∫ ηi

0

e−k(ηi−s)Iq−1h(s)ds

+
( δ1γ3

δ3λ1
−
(β1η + γ1T

λ1

)(γ2k

λ2
− kδ2γ3

δ3λ2

)
− γ1

λ1

)∫ T

0

e−k(T−s)Iq−1h(s)ds

−
m∑

i=1

( δ1ci
kδ3λ1

+
(∑m

i=1 aiηi + γ1T

λ1

)( δ2ci
δ3λ2

− bi
λ2

))
Iq−1h(ηi)

−
( δ1γ3

kδ3λ1
+
(β1η + γ1T

λ1

)( δ2γ3

δ3λ2
+
γ2

λ2

))
Iq−1h(T )

+
m∑

i=1

( δ1ci
k2δ3λ1

+
δ2ci(

∑m
i=1 aiηi + γ1T )
kδ3λ1λ2

)
Iq−2h(ηi)
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+
( δ1γ3

k2δ3λ1
+
δ2γ3(β1η + γ1T )

kδ3λ1λ2

)
Iq−2h(T ),

A2 =
β2

λ2
+

δ2β3

kδ3λ2
+

m∑
i=1

(bik
λ2

− kδ2ci
δ3λ2

)∫ ηi

0

e−k(ηi−s)Iq−1h(s)ds

+
(γ2k

λ2
− kδ2γ3

δ3λ2

)∫ T

0

e−k(T−s)Iq−1h(s)ds+
m∑

i=1

( δ2ci
δ3λ2

− bi
λ2

)
Iq−1h(ηi)

+
( δ2γ3

δ3λ2
− γ2

λ2

)
Iq−1h(T )−

m∑
i=1

δ2ci
kδ3λ2

Iq−2h(ηi)−
δ2γ3

kδ3λ2
Iq−2h(T ).

Substituting the values of A0, A1 and A2 in (2.4), we get the desired solution (2.2). The converse of
the lemma follows by direct computation. This completes the proof. 2

3 Uniqueness result

Let P = C([0, T ],R) denote the Banach space of all continuous functions from [0, T ] → R endowed
with the norm defined by ‖u‖ = sup{|u(t)|, t ∈ [0, T ]}.
In view of Lemma 2.5, we transform problem (1.1) into an equivalent fixed point problem as

u = Hu, (3.1)

where H : P → P is defined by

(Hu)(t) = ν1(t) +
∫ t

0

e−k(t−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
f(x, u(x))dx

)
ds

+
m∑

i=1

ωi(t)
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
f(x, u(x))dx

)
ds

+ν2(t)
∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
f(x, u(x))dx

)
ds

+
m∑

i=1

ψi(t)
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
f(s, u(s))ds+ ν3(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s))ds

+
m∑

i=1

ϕi(t)
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
f(s, u(s))ds+ ν4(t)

∫ T

0

(T − s)q−3

Γ(q − 2)
f(s, u(s))ds.

(3.2)

Observe that problem (1.1) has solutions if the operator equation (3.1) has fixed points.

For computational convenience, we set

Q = sup
t∈[0,T ]

{ tq−1(1− e−kt)
kΓ(q)

+
|
∑m

i=1 ωi(t)η
q−1
i (1− e−kηi)|

kΓ(q)
+
|ν2(t)|T q−1(1− e−kT )

kΓ(q)

+
|
∑m

i=1 ψi(t)η
q−1
i |

Γ(q)
+
|ν3(t)|T q−1

Γ(q)
+
|
∑m

i=1 ϕi(t)η
q−2
i |

Γ(q − 1)
+
|ν4(t)|T q−2

Γ(q − 1)

}
.

(3.3)

Now we are in a position to discuss the existence of a unique solution for the problem (1.1) via
Banach’s contraction mapping principle.
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Theorem 3.1 Assume that f : [0, T ] × R → R is a continuous functions satisfying the Lipschitz
condition:

(A1) there exists a positive number ` such that |f(t, u)− f(t, v)| ≤ `|u− v|, ∀t ∈ [0, T ], u, v ∈ R.

Then the boundary value problem (1.1) has a unique solution on [0, T ] if ` < 1/Q, where Q is given
by (3.3).

Proof. Consider a set Br = {u ∈ P : ‖u‖ ≤ r}, where r ≥ QM + ‖ν1‖
1− `Q

, sup
t∈[0,T ]

|f(t, 0)| = M , and

Q, ν1 are respectively given by (3.3) and (2.3). In the first step, we show that HBr ⊂ Br, where the
operator H is defined by (3.2). For any u ∈ Br, t ∈ [0, T ], observe that

|f(t, u(t))| = |f(t, u(t))− f(t, 0) + f(t, 0)| ≤ |f(t, u(t))− f(t, 0)|+ |f(t, 0)|
≤ `‖u‖+M ≤ `r +M.

Then, for u ∈ Br, we obtain

‖(Hu)‖

≤ sup
t∈[0,T ]

{
|ν1(t)|+

∫ t

0

e−k(t−s)
(∫ s

0

(s− x)α−2

Γ(α− 1)
|f(x, u(x))|dx

)
ds

+|
m∑

i=1

ωi(t)|
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
|f(x, u(x))|dx

)
ds

+|ν2(t)|
∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
|f(x, u(x))|dx

)
ds

+|
m∑

i=1

ψi(t)|
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
|f(s, u(s))|ds+ |ν3(t)|

∫ T

0

(T − s)α−2

Γ(α− 1)
|f(s, u(s))|ds

+|
m∑

i=1

ϕi(t)|
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
|f(s, u(s))|ds+ |ν4(t)|

∫ T

0

(T − s)q−3

Γ(q − 2)
|f(s, u(s))|ds.

}

≤ (`r +M) sup
t∈[0,T ]

{∫ t

0

e−k(t−s)
(∫ s

0

(s− x)α−2

Γ(α− 1)
dx
)
ds

+|
m∑

i=1

ωi(t)|
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
dx
)
ds+ |ν2(t)|

∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
dx
)
ds

+|
m∑

i=1

ψi(t)|
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
ds+ |ν3(t)|

∫ T

0

(T − s)α−2

Γ(α− 1)
ds+ |

m∑
i=1

ϕi(t)|
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
ds

+|ν4(t)|
∫ T

0

(T − s)q−3

Γ(q − 2)
ds.
}

+ ‖ν1‖

≤ (`r +M)Q+ ‖ν1‖ ≤ r.

This shows that HBr ⊂ Br. Next we show that the operator H is a contraction. Let u, v ∈ P. Then

‖Hu−Hv‖
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≤ sup
t∈[0,T ]

{∫ t

0

e−k(t−s)
(∫ s

0

(s− x)α−2

Γ(α− 1)
|f(x, u(x))− f(x, v(x))|dx

)
ds

+|
m∑

i=1

ωi(t)|
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)

∣∣∣f(x, u(x))− f(x, v(x))
∣∣∣dx)ds

+|ν2(t)|
∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)

∣∣∣f(x, u(x))− f(x, v(x))
∣∣∣dx)ds

+|
m∑

i=1

ψi(t)|
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+|ν3(t)|
∫ T

0

(T − s)q−2

Γ(q − 1)

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+|
m∑

i=1

ϕi(t)|
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds

+|ν4(t)|
∫ T

0

(T − s)q−3

Γ(q − 2)

∣∣∣f(s, u(s))− f(s, v(s))
∣∣∣ds}

≤ ` ‖ u− v ‖ sup
t∈[0,T ]

{∫ t

0

e−k(t−s)
(∫ s

0

(s− x)α−2

Γ(α− 1)
dx
)
ds

+|
m∑

i=1

ωi(t)|
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
dx
)
ds+ |ν2(t)|

∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
dx
)
ds

+|
m∑

i=1

ψi(t)|
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
ds+ |ν3(t)|

∫ T

0

(T − s)α−2

Γ(α− 1)
ds+ |

m∑
i=1

ϕi(t)|
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
ds

+|ν4(t)|
∫ T

0

(T − s)α−3

Γ(α− 2)
ds
}

≤ `Q ‖ u− v ‖,

where we have used (3.3). By the given assumption: ` < 1/Q, it follows that the operator H is a
contraction. Thus, by Banach’s contraction mapping principle, we deduce that the operator H has a
fixed point, which corresponds to a unique solution of the problem (1.1) on [0, T ]. 2

4 Existence results

In this section, we obtain different criteria for the existence of solutions for the problem (1.1) under
different constraints on the nonlinearity involved in the problem. The first results relies on Krasnosel-
skii’s fixed point theorem.
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Lemma 4.1 (Krasnoselskii’s fixed point theorem) [20]. Let Y be a closed bounded, convex and
nonempty subset of a Banach space X. Let B1, B2 be the operators such that (i) B1y1 + B2y2 ∈ Y
whenever y1, y2 ∈ Y ; (ii) B1 is compact and continuous and (iii) B2 is a contraction mapping. Then
there exists z ∈ Y such that z = B1z +B2z.

Theorem 4.2 Let f : [0, T ]× R → R be continuous functions satisfying the condition (A1) and that
|f(t, x)| ≤ g(t), ∀(t, x) ∈ [0, T ]× R with g ∈ C([0, T ],R+),and supt∈[0,T ] |g(t)| = ‖g‖. In addition, it
is assumed that `Q1 < 1, where

Q1 = sup
t∈[0,T ]

{ |∑m
i=1 ωi(t)η

q−1
i (1− e−kηi)|

kΓ(q)
+
|ν2(t)|T q−1(1− e−kT )

kΓ(q)

+
|
∑m

i=1 ψi(t)η
q−1
i |

Γ(q)
+
|ν3(t)|T q−1

Γ(q)
+
|
∑m

i=1 ϕi(t)η
q−2
i |

Γ(q − 1)
+
|ν4(t)|T q−2

Γ(q − 1)

}
.

(4.1)

Then the problem (1.1) has at least one solution on [0, T ].

Proof. Consider Br̄ = {u ∈ P : ‖u‖ ≤ r̄}, where r̄ ≥ Q‖g‖+ ‖ν1‖ and Q is given by (3.3). Introduce
the operators H1 and H2 on Br̄ as

(H1u)(t) =
∫ t

0

e−k(t−s)
(∫ s

0

(s− x)α−2

Γ(α− 1)
f(x, u(x))dx

)
ds,

(H2u)(t) = ν1(t) +
m∑

i=1

ωi(t)
∫ ηi

0

e−k(ηi−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
f(x, u(x))dx

)
ds

+ν2(t)
∫ T

0

e−k(T−s)
(∫ s

0

(s− x)q−2

Γ(q − 1)
f(x, u(x))dx

)
ds

+
m∑

i=1

ψi(t)
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
f(s, u(s))ds+ ν3(t)

∫ T

0

(T − s)q−2

Γ(q − 1)
f(s, u(s))ds

+
m∑

i=1

ϕi(t)
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
f(s, u(s))ds+ ν4(t)

∫ T

0

(T − s)q−3

Γ(q − 2)
f(s, u(s))ds.

For u, v ∈ Br̄, it is easy to verify that ‖H1u + H2v‖ ≤ Q‖g‖ + ‖ν1‖. Thus, H1u + H2v ∈ Br̄. Using the
assumption (A1) and (4.1), we can get ‖H2u−H2v‖ ≤ `Q1 ‖ u− v ‖, which implies that H2 is a contraction
in view of the given condition: `Q1 < 1.
Notice that continuity of f implies that the operator H1 is continuous. Also, H1 is uniformly bounded on Br̄

as

‖H1u‖ ≤
(1− e−kT )T q−1‖g‖

kΓ(q)
.

In the last step, it will be shown that the operator H1 is compact. Fixing sup(t,u)∈[0,T ]×Br̄
|f(t, u)| = fr̄

and for t1, t2 ∈ [0, T ], we obtain

|(H1u)(t2)− (H1u)(t1)|

= fr̄

∣∣∣∣(e−kt2 − e−kt1)

∫ t1

0

eks
( ∫ s

0

(s− x)q−2

Γ(q − 1)
dx

)
ds+

∫ t2

t1

e−k(t2−s)
( ∫ s

0

(s− x)q−2

Γ(q − 1)
dx

)
ds

∣∣∣∣
≤ |1− e−k(t2−t1)|

kΓ(q)

(
|tq−1

1 (1− e−kt1)|+ tq−1
2

)
fr̄ → 0 as t2 − t1 → 0, independently of u ∈ Br̄.

This implies that H1 is relatively compact on Br̄. Hence, by the Arzelá-Ascoli Theorem, the operator H1

is compact on Br̄. Thus all the assumptions of Lemma 4.1 are satisfied. In consequence, the conclusion of
Lemma 4.1 applies and hence the problem (1.1) has at least one solution on [0, T ]. 2

Our second existence result is based on the following (Schaefer like) fixed point theorem.
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Lemma 4.3 [20] Let X be a Banach space. Assume that Ω : X → X is a completely continuous operator and
the set Y = {u ∈ X | u = µΩu, 0 < µ < 1} is bounded. Then Ω has a fixed point in X.

Theorem 4.4 Let f : [0, T ]× R → R be a continuous function. Assume that there exists a positive constant
L1 such that |f(t, u(t))| ≤ L1 for t ∈ [0, T ], u ∈ R. Then the boundary value problem (1.1)) has at least one
solution on [0, T ].

Proof. In the first step, we show that the operator H defined by (3.2) is completely continuous. Observe that
continuity of H follows from the continuity of f. For a positive constant r, let Br = {u ∈ P : ‖u‖ ≤ r} be a
bounded ball in P. Then for t ∈ [0, T ], we have

‖(Hu)‖ ≤ sup
t∈[0,T ]

{
|ν1(t)|+ L1

[ ∫ t

0

e−k(t−s)
( ∫ s

0

(s− x)α−2

Γ(α− 1)
dx

)
ds

+|
m∑

i=1

ωi(t)|
∫ ηi

0

e−k(ηi−s)
( ∫ s

0

(s− x)q−2

Γ(q − 1)
dx

)
ds

+|ν2(t)|
∫ T

0

e−k(T−s)
( ∫ s

0

(s− x)q−2

Γ(q − 1)
dx

)
ds

+|
m∑

i=1

ψi(t)|
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
|f(s, u(s))|ds+ |ν3(t)|

∫ T

0

(T − s)α−2

Γ(α− 1)
ds

+|
m∑

i=1

ϕi(t)|
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
ds+ |ν4(t)|

∫ T

0

(T − s)q−3

Γ(q − 2)
ds

]}
≤ ‖ν1‖+ L1Q,

where Q is defined by (3.3).
Next we show that the operator H maps bounded sets into equicontinuous sets of P. Let τ1, τ2 ∈ [0, T ] with

τ1 < τ2 and u ∈ Br. Then we have

|(Hu)(τ2)− (Hu)(τ1)|

≤
∣∣∣ β3

k2δ3
(e−kτ2 − e−kτ1)

∣∣∣ +
∣∣∣ (τ2 − τ1)

λ2

(
β2 +

β3δ2
kδ3

)∣∣∣
+

|1− e−k(t2−t1)|
kΓ(q)

(
|tq−1

1 (1− e−kt1)|+ tq−1
2

)
L1

+

m∑
i=1

[∣∣∣ci(e−kτ2 − e−kτ1)

δ3

∣∣∣ +
∣∣∣k(τ2 − τ1)

λ2δ3

(
biδ3 − δ2ci

)∣∣∣]L1η
q−1
i

kΓ(q)

(
1− e−kηi

)

+
[∣∣∣γ3(e

−kτ2 − e−kτ1)

δ3

∣∣∣ +
∣∣∣k(τ2 − τ1)

λ2δ3

(
γ2δ3 − δ2γ3

)∣∣∣]L1T
q−1

kΓ(q)

(
1− e−kT

)

+|
m∑

i=1

[∣∣∣ci(e−kτ2 − e−kτ1)

kδ3

∣∣∣ +
∣∣∣ (τ2 − τ1)

λ2δ3

(
biδ3 − δ2ci

)∣∣∣]L1η
q−1
i

Γ(q)

+
[∣∣∣γ3(e

−kτ2 − e−kτ1)

kδ3

∣∣∣ +
∣∣∣ (τ2 − τ1)

λ2δ3

(
γ2δ3 − δ2γ3

)∣∣∣]L1T
q−1

Γ(q)

+

m∑
i=1

[∣∣∣ci(e−kτ2 − e−kτ1)

k2δ3

∣∣∣ +
∣∣∣ciδ2(τ2 − τ1)

kλ2δ3

∣∣∣] L1η
q−2
i

Γ(q − 1)

+
[∣∣∣γ3(e

−kτ2 − e−kτ1)

k2δ3

∣∣∣ +
∣∣∣γ3δ2(τ2 − τ1)

kλ2δ3

∣∣∣] L1T
q−2

Γ(q − 1)
.
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As τ2 − τ1 → 0, the right-hand side of the above inequality tends to zero independently of u ∈ Br. Therefore,
by the Arzelá-Ascoli theorem, the operator H : P → P is completely continuous.

Finally, we consider the set V = {u ∈ P : u = µHu, 0 < µ < 1} and show that V is bounded. For u ∈ V
and t ∈ [0, T ], we get

‖u‖ ≤ L1Q+ ‖ν1‖.

Therefore, V is bounded. Hence, by Lemma 4.3, the problem (1.1) has at least one solution on [0, T ]. 2

Now we show the existence of solutions for the problem (1.1) via Leray-Schauder nonlinear alternative for
single valued maps.

Lemma 4.5 (Leray-Schauder alternative [21]). Let E be a Banach space, C a closed, convex subset of E, U
an open subset of C and 0 ∈ U. Suppose that H : U → C is a continuous, compact (that is, H(U) is a relatively
compact subset of C) map. Then either

(i) H has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λH(u).

Theorem 4.6 Let f : [0, T ]× R → R be a continuous function. Assume that

(A3) there exist functions p ∈ C([0, T ],R+), and nondecreasing function Ψ : R+ → R+ such that |f(t, u)| ≤
p(t)Ψ(‖u‖), ∀(t, u) ∈ [0, T ]× R;

(A4) there exists a constant M > 0 such that

M

‖ν1‖+ ‖p‖Ψ(‖M‖)Q
> 1. (4.2)

Then the boundary value problem (1.1) has at least one solution on [0, T ].

Proof. We establish the proof in several steps. Firstly we show that the operator H : P → P defined
by (3.2) maps bounded sets into bounded sets in C([0, T ],R). For the positive number r, let Br = {u ∈
C([0, T ],R) : ‖u‖ ≤ r}, be a bounded set in C([0, T ],R). Then

|Hu(t)| ≤ |ν1(t)|+
∫ t

0

e−k(t−s)
( ∫ s

0

(s− x)α−2

Γ(α− 1)
p(x)Ψ(‖u‖)dx

)
ds

+|
m∑

i=1

ωi(t)|
∫ ηi

0

e−k(ηi−s)
( ∫ s

0

(s− x)q−2

Γ(q − 1)
p(x)Ψ(‖u‖)dx

)
ds

+|ν2(t)|
∫ T

0

e−k(T−s)
( ∫ s

0

(s− x)q−2

Γ(q − 1)
p(x)Ψ(‖u‖)dx

)
ds

+|
m∑

i=1

ψi(t)|
∫ ηi

0

(ηi − s)q−2

Γ(q − 1)
p(s)Ψ(‖u‖)ds+ |ν3(t)|

∫ T

0

(T − s)α−2

Γ(α− 1)
p(s)Ψ(‖u‖)ds

+|
m∑

i=1

ϕi(t)|
∫ ηi

0

(ηi − s)q−3

Γ(q − 2)
p(s)Ψ(‖u‖)ds+ |ν4(t)|

∫ T

0

(T − s)q−3

Γ(q − 2)
p(s)Ψ(‖u‖)ds

≤ ‖ν1‖+ ‖p‖Ψ(‖u‖)Q,

which, on taking the norm for t ∈ [0, T ], yields ‖Hu‖ ≤ ‖ν1‖+ ‖p‖Ψ(r)Q.
Next we show that H maps bounded sets into equicontinuous sets of C([0, T ],R). Let t1, t2 ∈ [0, T ] with

t1 < t2 and u ∈ Br, where Br is a bounded set of C([0, T ],R). Then we obtain

|Hu(t2)−Hu(t1)|

≤ |ν1(t2)− ν1(t1)|+ ‖p‖Ψ(r)
[ ∫ t1

0

∣∣∣e−k(t2−s) − e−k(t1−s)
∣∣∣ sq−1

Γ(q)
ds+

∫ t2

t1

e−k(t2−s) s
q−1

Γ(q)
ds
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+

m∑
i=1

|ωi(t2)− ωi(t1)|
∫ ηi

0

e−k(ηi−s) s
q−1

Γ(q)
ds+ |ν2(t2)− ν2(t1)|

∫ T

0

e−k(T−s) s
q−1

Γ(q)
ds

+

m∑
i=1

|ψi(t2)− ψi(t1)|
ηq−1

i

Γ(q)
+ |ν3(t2)− ν3(t1)|

T q−1

Γ(q)

+

m∑
i=1

|ϕi(t2)− ϕi(t1)|
ηq−2

i

Γ(q − 1)
+ |ν4(t2)− ν4(t1)|

T q−2

Γ(q − 1)

]
.

Obviously the right hand side of the above inequality tends to zero independently of u ∈ Br as t2− t1 → 0. As
H satisfies the above assumptions, therefore it follows by the Arzelá-Ascoli theorem that H : C([0, T ],R) →
C([0, T ],R) is completely continuous.

The result will follow form the Leray-Schauder nonlinear alternative (Lemma 4.5) once we have proved
the boundendness of the set of all solutions to the equation u = λHu for λ ∈ [0, 1].

Let u be a solution. Then, for t ∈ [0, T ], and using the computations in proving that H is bounded, we
have

|u(t)| = |λ(Hu)(t)| ≤ ‖ν1‖+ ‖p‖Ψ(‖r‖)Q,

which implies that

‖u‖
‖ν1‖+ ‖p‖Ψ(r)Q

≤ 1.

In view of (A4), there exists M such that ‖u‖ 6= M . Let us set

U = {u ∈ C([0, T ],R) : ‖u‖ < M}.

Note that the operator H : U → C([0, T ],R) is continuous and completely continuous. From the choice of
U , there is no u ∈ ∂U such that u = λH(u) for some λ ∈ (0, 1). Consequently, by the nonlinear alternative
of Leray-Schauder type (Lemma 4.5), we deduce that H has a fixed point u ∈ U which is a solution of the
problem (1.1). This completes the proof. 2

In our final existence result for the problem (1.1), we apply Leray-Schauder degree theory [21].

Theorem 4.7 Let f : [0, T ] × R → R. Assume that there exist constants 0 ≤ k < 1
Q

, where Q is given by

(3.3) and M > 0 such that |f(t, u(t))| ≤ k‖u‖+M for all t ∈ [0, T ], u ∈ R . Then the boundary value problem
(1.1) has at least one solution.

Proof. In view of the fixed point problem (3.1), we just need to show that there exists at least one solution
u ∈ R for (3.1). Define a suitable ball BR ⊂ C([0, T ] with radius R > 0 as

BR = {u ∈ C([0, T ] : ‖u‖ ≤ R},

where R will be fixed later. Then, it is sufficient to show that H : BR → C satisfies

u 6= λHu,∀u ∈ ∂BR and ∀λ ∈ [0, 1]. (4.3)

Let us set
Φ(λ, u) = λHu, u ∈ C, λ ∈ [0, 1].

Then, by the Arzelá-Ascoli Theorem, ωλ(u) = u−Φ(λ, u) = u−Hu is completely continuous. If (4.3) is true,
then the following Leray-Schauder degrees are well defined and by the homotopy invariance of topological
degree, it follows that

deg(ωλ, BR, 0) = deg(I − λH, BR, 0) = deg(ω1, BR, 0)

= deg(ω0, BR, 0) = deg(I,BR, 0) = 1 6= 0, 0 ∈ BR,
(4.4)
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where I denotes the unit operator. By the nonzero property of Leray-Schauder degree, ω1(t) = u− λHu = 0
for at least one u ∈ BR . To prove (4.3), we assume that u = λHu = 0 for some λ ∈ [0, 1] and for all t ∈ [0, 1].
Then, as before, one can obtain

|u(t)| = |λ(Hu)(t)| ≤ ‖ν1‖+ (k‖u‖+M)Q,

which implies that

‖u‖ ≤ ‖ν1‖+MQ

1− kQ
.

Letting R = ‖ν1‖+MQ

1−kQ
+ 1, (4.3) holds. This completes the proof. 2

5 Examples

Example 5.1 Consider the following anti-periodic multi-point fractional boundary value problem:

(cD5/2 + 2cD3/2)u(t) = f(t, u(t)), t ∈ [0, 2],

u(0) + u(1/4) + 1/2u(3/4)− u(5/4) + u(7/4)− u(2) = 1,

u′(0)− u′(1/4) + u′(3/4)− 1/2u′(5/4) + 1/4u′(7/4)− 1/2u′(2) = 2,

1/2u′′(0) + 1/4u′′(1/4)− u′(3/4) + u′′(5/4) + u′′(7/4) + u′′(2) = 1.

(5.1)

T = 2, 0 < η1 = 1/4, η2 = 3/4, η3 = 5/4, η4 = 7/4 < T, k = 2, α1 = 1, γ1 = −1, α2 = 1, γ2 = −1/2, α3 =
1/2, γ3 = 1, a1 = 1, a2 = 1/2, a3 = −1, a4 = 1, b1 = −1, b2 = 1, b3 = −1/2, b4 = 1/4, c1 = 1/4, c2 =
−1, c3 = 1, c4 = 1, β1 = 1, β2 = 2, β3 = 1, Q = 193.8001283, Q1 = 192.7557672, where Q and Q1 are respec-
tively given by (3.3) and (4.1).

• For the applicability of Theorem 3.1 to the problem (5.1), let f(t, u(t)) = 1
200

tan−1 u(t) + cost in (5.1).
It is easy to find that ` = 1/200 as |f(t, u) − f(t, v)| ≤ 1

200
|u − v| and that `Q ≈ 0.9690006415 < 1.

Clearly all the conditions of Theorem 3.1 are satisfied. Hence we deduce by the conclusion of Theorem
3.1 that there exists a unique solution for problem (5.1)on [0, 2].

• For the illustration of Theorem 4.2, we take f(t, u(t)) = 1
200

tan−1 u(t) + cost in (5.1). Obviously
|f(t, u)| ≤ π/400 + cos t = g(t), ‖g‖ = π+400

400
and `Q1 ≈ 0.9637788360 < 1. Thus all the conditions of

Theorem 4.2 are satisfied. Hence the conclusion of Theorem 4.2 applies to the problem (5.1).

• Let us take f(t, u(t)) = 1
2

sinu(t) + e−t + 2 in (5.1) such that |f(t, u)| ≤ 7/2. Thus, by the conclusion of
Theorem 4.4, we deduce that that that problem (5.1) has at least one solution on [0, 2].

• For the elaboration of Theorem 4.6, let f(t, u(t)) = 1√
t2+4

|u|
1+|u| in (5.1). Clearly |f(t, u)| ≤ 1√

t2+4
.

Fixing Ψ(‖u‖) = 1, p(t) = 1√
t2+4

, we find by (4.2) that M > 136.8973405. In consequence, it follows by

the conclusion of Theorem 4.6 that the problem (5.1) has at least one solution on [0, 2].

• In order to demonstrate the application of Theorem 4.7, we take f(t, u(t)) = 1
400

sin(2u) + 1 in (5.1)

and note that |f(t, u)| ≤ ‖u‖/200 + 1. Clearly k = 1
200

, M = 1 and 0 < k = 1
200

< 1
193.8001283

= 1
Q
. As

all the conditions of Theorem 4.7 hold true, so the conclusion of Theorem 4.7 applies and hence there
exists at least one solution for the problem (5.1) on [0, 2].
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6 Concluding remarks

In this paper, we have discussed the existence and uniqueness of solutions for a new class of boundary value
problems consisting of sequential fractional differential equations and a combination of anti-periodic and multi-
point boundary conditions by means of appropriate tools of the fixed point theory. Our results are not only
new in the given configuration but also correspond to the ones for certain new problems for particular values
of the parameters involved in the problem at hand. For example, by taking ai, bi, ci = 0, i = 1, 2, ...,m,
βj = 0, αj = 1 = γj , j = 1, 2, 3 in the results of this paper, we obtain the new ones for the problem of
sequential fractional differential equations with anti-periodic boundary conditions:

(cDq + k cDq−1)u(t) = f(t, u(t)), 2 < q ≤ 3, 0 < t < T,

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0, u′′(0) + u′′(T ) = 0.
.

Similarly the results for nonlocal multi-point boundary value problems associated with either left-end point
(x = 0) or right-end point (x = T ) of the interval [0, T ] can be obtained by taking γj = 0 and αj = 0
(j = 1, 2, 3) respectively in our results. So the present work is a useful contribution to the existing literature
on the topic.
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