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Abstract The purpose of this paper is to introduce the implicit midpoint rule of nonexpan-

sive mappings in CAT(0) spaces. The strong convergence of this method is proved under certain

assumptions imposed on the sequence of parameters. Moreover, it is shown that the limit of the

sequence generated by the implicit midpoint rule solves an additional variational inequality. Ap-

plications to nonlinear Volterra integral equations and nonlinear variational inclusion problem are

included. The results presented in the paper extend and improve some recent results announced

in the current literature.
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1 Introduction

The implicit midpoint rule is one of the powerful numerical methods for solving ordinary
differential equations and differential algebraic equations. For related works, please refer
to [1-8].

Based on the above fact, in 2015, Xu et al. [9] and Yao et al. [10] presented the
following viscosity implicit midpoint rule for nonexpansive mappings in a Hilbert spaces:

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
), ∀n ≥ 0, (1.2)

where αn ∈ (0, 1) and f is a contraction. Under suitable conditions and by using a very
complicated method, the authors proved that the sequence {xn} converges strongly to a
fixed point of T , which is also the unique solution of the following variational inequality

〈(I − f)q, x− q〉 ≥ 0, ∀x ∈ Fix(T ). (1.3)

On the other hand, the theory and applications of CAT(0) space have been studied
extensively by many authors.

Recall that a metric space (X, d) is called a CAT(0) space, if it is geodetically connected
and if every geodesic triangle in X is at least as ’thin’ as its comparison triangle in the
Euclidean plane. It is known that any complete, simply connected Riemannian manifold
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having non-positive sectional curvature is a CAT(0) space. Other examples of CAT(0)
spaces include pre-Hilbert spaces [11, 23], R−trees, Euclidean buildings[12],and many
others. A complete CAT(0) space is often called a Hadamard space. A subset K of a
CAT(0) space X is convex if for any x, y ∈ K, we have [x, y] ⊂ K, where [x, y] is the
uniquely geodesic joining x and y. For a thorough discussion of CAT(0) spaces and of the
fundamental role they play in geometry, we refer the reader to Bridson and Haefliger[11].

Motivated and inspired by the research going on in this direction, it is naturally to
put forward the following

Open Question Can we establish the viscosity implicit midpoint rule for nonex-
panssive mapping in CAT(0) and generalize the main results in [9, 10] to CAT(0) spaces?

The purpose of this paper is to give an affirmative answer to the above open question.
In our paper we introduce and consider the following semi-implicit algorithm which is
called the viscosity implicit midpoint rule in CAT(0):

xn+1 = αnf(xn)⊕ (1− αn)T

(
xn ⊕ xn+1

2

)
, n ≥ 0. (1.4)

Under suitable conditions, some strong converge theorems to a fixed point of the nonex-
pansive mapping in CAT(0) space are proved. Moreover, it is shown that the limit of the
sequence {xn} generated by (1.4) solves an additional variational inequality. As applica-
tions, we shall utilize the results presented in the paper to study the existence problems
of solutions of nonlinear variational inclusion problem, and nonlinear Volterra integral
equations. The results presented in the paper also extend and improve the main results
in Xu [9], Yao et al. [10] and others.

2 Preliminaries

In this paper, we write (1− t)x⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(z, x) = td(x, y), and d(z, y) = (1− t)d(x, y).

The following lemmas play an important role in our paper.

Lemma 2.1 [13] Let X be a CAT (0) space, x, y, z ∈ X and t ∈ [0, 1]. Then
(i) d(tx⊕ (1− t)y, z) ≤ td(x, z) + (1− t)d(y, z).

(ii) d2(tx⊕ (1− t)y, z) ≤ td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y).

Lemma 2.2 [14] Let X be a CAT (0) space, p, q, r, s ∈ X and λ ∈ [0, 1]. Then

d(λp⊕ (1− λ)q, λr ⊕ (1− λ)s) ≤ λd(p, r) + (1− λ)d(q, s).

Berg and Nikolaev [15] introduced the concept of quasilinearization as follows. Let us

denote a pair (a, b) ∈ X ×X by
−→
ab and call it a vector. Then quasilinearization is defined

as a map 〈·, ·〉 : (X ×X)× (X ×X)→ R defined by

〈
−→
ab,
−→
cd〉 =

1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)) (a, b, c, d ∈ X).
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It is easy to seen that 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉, 〈

−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉 and 〈−→ax,

−→
cd〉 + 〈

−→
xb,
−→
cd〉 =

〈
−→
ab,
−→
cd〉 for all a, b, c, d ∈ X. We say that X satisfies the Cauchy–Schwarz inequality if

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d).

for all a, b, c, d ∈ X. It is well known [15] that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy–Schwarz inequality.

Let C be a nonempty closed convex subset of a complete CAT(0) space X. The metric
projection PC : X → C is defined by

u = PC(x) ⇔ d(u, x) = inf{d(y, x) : y ∈ C}, ∀x ∈ X.

Lemma 2.3 [16] Let C be a nonempty convex subset of a complete CAT(0) space X,
x ∈ X and u ∈ C. Then u = PC(x) if and only if u is a solution of the following variational
inequality

〈−→yu,−→ux〉 ≥ 0, ∀y ∈ C.

i.e., u satisfies the following inequality equation:

d2(x, y)− d2(y, u)− d2(u, x) ≥ 0, ∀y ∈ C.

Lemma 2.4 [17] Every bounded sequence in a complete CAT (0) space always has a
∆−convergent subsequence.

Lemma 2.5 [18] Let X be a complete CAT (0) space, {xn} be a sequence in X and

x ∈ X. Then {xn} ∆−converges to x if and only if lim supn→∞〈
−−→
xxn),−→xy〉 ≤ 0 for all

y ∈ X.

Lemma 2.6 [19] Let X be a complete CAT (0) space. Then for all u, x, y ∈ X, the
following inequality holds

d2(x, u) ≤ d2(y, u) + 2〈−→xy,−→xu〉.

Lemma 2.7 [20] Let X be a complete CAT (0) space. For any t ∈ [0, 1] and u, v ∈ X,
let ut = tu⊕ (1− t)v. Then, for all x, y ∈ X,

(i) 〈−→utx,−→uty〉 ≤ t〈−→ux,−→uty〉+ (1− t)〈−→vx,−→uty〉,
(ii) 〈−→utx,−→uy〉 ≤ t〈−→ux,−→uy〉+ (1− t)〈−→vx,−→uy〉 and 〈−→utx,−→vy〉 ≤ t〈−→ux,−→vy〉+ (1− t)〈−→vx,−→vy〉.

Lemma 2.8 [21] Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0, (2.1)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 γn =∞ ,

(2) lim supn→∞
δn
γn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.
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3 Main Results

Theorem 3.1 Let C be a closed convex subset of a complete CAT (0) space X, and
T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let f be a contraction on C
with coefficient k ∈ [0, 1), and for the arbitrary initial point x0 ∈ C, let {xn} be generated
by

xn+1 = αnf(xn)⊕ (1− αn)T

(
xn ⊕ xn+1

2

)
, n ≥ 0. (3.1)

where {αn} ∈ (0, 1) satisfies the following conditions:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=0 αn =∞,

(iii)
∑∞

n=0 |αn − αn+1| <∞, or limn→∞
αn+1

αn
= 1.

Then the sequence {xn} converges strongly to x̃ = PFix(T )f(x̃), which is a fixed point of T
and it is also a solution of the following variational inequality:

〈
−−−→
x̃f(x̃),

−→
xx̃〉 ≥ 0, ∀x ∈ Fix(T ).

i.e., x̃ satisfies the following inequality equation:

d2(f(x̃), x)− d2(x̃, x)− d2(f(x̃), x̃) ≥ 0, ∀x ∈ Fix(T ).

Proof We divided the proof into four steps.

Step 1. We prove that {xn} is bounded. To see this we take p ∈ Fix(T ) to deduce
that

d(xn+1, p) = d

(
αnf(xn)⊕ (1− αn)T

(
xn ⊕ xn+1

2

)
, p

)
≤ αnd(f(xn), p) + (1− αn)d

(
T

(
xn ⊕ xn+1

2

)
, p

)
≤ αn(d(f(xn), f(p)) + d(f(p), p)) + (1− αn)d

(
T

(
xn ⊕ xn+1

2

)
, p

)
≤ αnkd(xn, p) + αnd(f(p), p) + (1− αn)d

(
xn ⊕ xn+1

2
, p

)
≤ αnkd(xn, p) + αnd(f(p), p) +

1− αn
2

(d(xn, p) + d(xn+1, p)).

It then follows that

1 + αn
2

d(xn+1, p) ≤
1 + (2k − 1)αn

2
d(xn, p) + αnd(f(p), p),

and, moreover

d(xn+1, p) ≤
1 + (2k − 1)αn

1 + αn
d(xn, p) +

2αn
1 + αn

d(f(p), p)

=

(
1− 2(1− k)αn

1 + αn

)
d(xn, p) +

2(1− k)αn
1 + αn

1

1− k
d(f(p), p)

≤ max

{
d(xn, p),

1

1− k
d(f(p), p)

}
.
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By induction we readily obtain

d(xn, p) ≤ max{d(x0, p),
1

1− k
d(f(p), p)}.

for all n ≥ 0. Hence {xn} is bounded, and so are {f(xn)} and {T (xn⊕xn+1

2 )}.
Step 2. We show that limn→∞ d(xn+1, xn) = 0. Observe that

d(xn+1, xn) = d

(
αnf(xn)⊕ (1− αn)T

(
xn ⊕ xn+1

2

)
, αn−1f(xn−1)⊕ (1− αn−1)T

(
xn−1 ⊕ xn

2

))
≤ d
(
αnf(xn)⊕ (1− αn)T (

xn ⊕ xn+1

2
), αnf(xn)⊕ (1− αn)T (

xn−1 ⊕ xn
2

)

)
+ d

(
αnf(xn)⊕ (1− αn)T (

xn−1 ⊕ xn
2

), αnf(xn−1)⊕ (1− αn)T (
xn−1 ⊕ xn

2
)

)
+ d

(
αnf(xn−1)⊕ (1− αn)T (

xn−1 ⊕ xn
2

), αn−1f(xn−1)⊕ (1− αn−1)T (
xn−1 ⊕ xn

2
)

)
≤ (1− αn)d

(
T (
xn ⊕ xn+1

2
), T (

xn−1 ⊕ xn
2

)

)
+ αnd(f(xn), f(xn−1))

+ |αn − αn−1|d
(
f(xn−1), T (

xn−1 ⊕ xn
2

)

)
≤ (1− αn)d

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)
+ αnkd(xn, xn−1) + |αn − αn−1|M

≤ (1− αn)

2

[
d(xn+1, xn) + d(xn, xn−1)

]
+ αnkd(xn, xn−1) + |αn − αn−1|M.

Here M > 0 is a constant such that

M ≥ sup

{
d

(
f(xn−1), T (

xn−1 ⊕ xn
2

)

)
, n ≥ 0

}
.

It turns out that

1 + αn
2

d(xn+1, xn) ≤ 1 + (2k − 1)αn
2

d(xn, xn−1) +M |αn − αn−1|.

Consequently, we arrive at

d(xn+1, xn) ≤ 1 + 2kαn − αn
1 + αn

d(xn, xn−1) +M |αn − αn−1|

=
1 + αn + 2kαn − 2αn

1 + αn
d(xn, xn−1) +M |αn − αn−1|

=

(
1− 2(1− k)αn

1 + αn

)
d(xn, xn−1) +M |αn − αn−1|.

(3.2)

Since {αn} ∈ (0, 1),then 1 + αn < 2, 1
1+αn

> 1
2 , (1− 2(1−k)αn

1+αn
) < (1− (1− k)αn). we have

d(xn+1, xn) ≤ (1− (1− k)αn)d(xn, xn−1) +M |αn − αn−1|. (3.3)

By virtue of the conditions (ii) and (iii), we can apply Lemma 2.8 to (3.3) to obtain
limn→∞ d(xn+1, xn) = 0.
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Step 3. We show that limn→∞ d(xn, Txn) = 0. In fact, we have

d(xn, Txn) ≤ d(xn, xn+1) + d

(
xn+1, T (

xn ⊕ xn+1

2
)

)
+ d

(
T (
xn ⊕ xn+1

2
), Txn

)
≤ d(xn, xn+1) + αnd

(
f(xn), T (

xn ⊕ xn+1

2
)

)
+ d

(
xn ⊕ xn+1

2
, xn

)
≤ d(xn, xn+1) + αnd

(
f(xn), T (

xn ⊕ xn+1

2
)

)
+

1

2
d(xn, xn+1)

≤ 3

2
d(xn, xn+1) + αnM → 0 (as n→∞).

Step 4. Now we prove

lim sup
n→∞

〈
−−−→
f(x̃)x̃,

−−→
xnx̃〉 ≤ 0.

Since {xn} is bounded, there exist a subsequence {xnj} of {xn} such that ∆−converges
to x̃ and

lim sup
n→∞

〈
−−−→
f(x̃)x̃,

−−→
xnx̃〉 = lim sup

n→∞
〈
−−−→
f(x̃)x̃,

−−→
xnj x̃〉. (3.4)

Since {xnj} ∆−converges to x̃, by Lemma 2.5, we have

lim sup
n→∞

〈
−−−→
f(x̃)x̃,

−−→
xnj x̃〉 ≤ 0.

This together with (3.4) shows that

lim sup
n→∞

〈
−−−→
f(x̃)x̃,

−−→
xnx̃〉 = lim sup

n→∞
〈
−−−→
f(x̃)x̃,

−−→
xnj x̃〉 ≤ 0.

Step 5. Finally, we prove that xn → x̃ ∈ Fix(T ) as n→∞. For any n ∈ N, we set
zn = αnx̃⊕ (1− αn)T (xn⊕xn+1

2 ). It follows from Lemma 2.6 and Lemma 2.7 that

d2(xn+1, x̃) ≤ d2(zn, x̃) + 2〈−−−−→xn+1zn,
−−−→
xn+1x̃〉

≤ (1− αn)2d2
(
T (
xn ⊕ xn+1

2
), x̃

)
+ 2

[
αn〈
−−−−−→
f(xn)zn,

−−−→
xn+1x̃〉

+ (1− αn)

〈−−−−−−−−−−−−→
T (
xn ⊕ xn+1

2
) zn,
−−−→
xn+1x̃

〉]
≤ (1− αn)2d2

(
xn ⊕ xn+1

2
, x̃

)
+ 2

[
αnαn〈

−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

+ αn(1− αn)

〈−−−−−−−−−−−−−−→
f(xn)T (

xn ⊕ xn+1

2
),
−−−→
xn+1x̃

〉
+ αn(1− αn)

〈−−−−−−−−−−−→
T (
xn ⊕ xn+1

2
) x̃,
−−−→
xn+1x̃

〉
+ (1− αn)2

〈−−−−−−−−−−−−−−−−−−−−−→
T (
xn ⊕ xn+1

2
)T (

xn ⊕ xn+1

2
),
−−−→
xn+1x̃

〉]
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≤ (1− αn)2d2
(
xn ⊕ xn+1

2
, x̃

)
+ 2

[
α2
n〈
−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

+ αn(1− αn)

〈−−−−−−−−−−−−−−→
f(xn)T (

xn ⊕ xn+1

2
),
−−−→
xn+1x̃

〉
+ αn(1− αn)

〈−−−−−−−−−−−→
T (
xn ⊕ xn+1

2
) x̃,
−−−→
xn+1x̃

〉]
≤ (1− αn)2d2

(
xn ⊕ xn+1

2
, x̃

)
+ 2[α2

n〈
−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

+ αn(1− αn)〈
−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

≤ (1− αn)2d2
(
xn ⊕ xn+1

2
, x̃

)
+ 2αn〈

−−−−→
f(xn)x̃,

−−−→
xn+1x̃〉

≤ (1− αn)2
[

1

2
d2(xn, x̃) +

1

2
d2(xn+1, x̃)− 1

4
d2(xn, xn+1)

]
+ 2αn〈

−−−−−−−→
f(xn)f(x̃),

−−−→
xn+1x̃+ 2αn〈

−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

≤ (1− αn)2

2
[d2(xn, x̃) + d2(xn+1, x̃)]

+ 2αnkd(xn, x̃)d(xn+1, x̃) + 2αn〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

≤ (1− αn)2

2
[d2(xn, x̃) + d2(xn+1, x̃)]

+ αnk[d2(xn, x̃) + d2(xn+1, x̃)] + 2αn〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

≤
(

(1− αn)2

2
+ αnk

)
[d2(xn, x̃) + d2(xn+1, x̃)] + 2αn〈

−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

≤ 1− 2(1− k)αn
2

[d2(xn, x̃) + d2(xn+1, x̃)] + α2
nM1 + 2αn〈

−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉.

Here M1 > 0 is a constant such that

M1 ≥ sup{d2(xn, x̃), n ≥ 0}.

It follows that

d2(xn+1, x̃) ≤ 1− 2(1− k)αn
1 + 2(1− k)αn

d2(xn, x̃) +
2α2

n

1 + 2(1− k)αn
M1

+
4αn

1 + 2(1− k)αn
〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

≤
(

1− 2(1− k)αn
1 + (1− k)αn

)
d2(xn, x̃) +

2α2
n

1 + (1− k)αn
M1

+
4αn

1 + (1− k)αn
〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉.
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Since 1 + (1− k)αn < 2− k, 1
1+(1−k)αn

> 1
2−k . we have

d2(xn+1, x̃) ≤
(

1− 2(1− k)αn
2− k

)
d2(xn, x̃) +

2α2
n

1 + (1− k)αn
M1

+
4αn

1 + (1− k)αn
〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

≤
(

1− 2(1− k)αn
2− k

)
d2(xn, x̃) + 2α2

nM1 +
4αn

1 + (1− k)αn
〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉.

Take γn = 2(1−k)αn

2−k , δn = 2α2
nM1 + 4αn

1+(1−k)αn
〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉. It follows from conditions

(i), (ii) and (3.4) that {γn} ⊂ (0, 1),
∑∞

n=1 γn =∞ and

lim sup
n→∞

δn
γn

= lim sup
n→∞

2− k
1− k

(
αnM1 +

2

1 + (1− k)αn
〈
−−−→
f(x̃)x̃,

−−−→
xn+1x̃〉

)
≤ 0.

From Lemma 2.8 we have that xn → x̃ as n→∞. This completes the proof.

Remark 3.2 Since every Hilbert space is a complete CAT(0) space, Theorem 3.1 is
an improvement and generalization of the main results in Xu et al. [9] and Yao et al. [10].

The following result can be obtained from Theorem 3.1 immediately.

Theorem 3.3 Let C be a closed convex subset of a real Hilbert space H, and let
T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let f be a contraction on
C with coefficient k ∈ [0, 1), and for the arbitrary initial point x0 ∈ C, let {xn} be the
sequence generated by

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ≥ 0. (3.5)

where {αn} ∈ (0, 1) satisfies the conditions: (i), (ii) and (iii) in Theorem 3.1. Then the
sequence {xn} defined by (3.5) converges strongly to x̃ such that x̃ = PFix(T )f(x̃) which is
equivalent to the following variational inequality:

〈x̃− f(x̃), x− x̃〉 ≥ 0, ∀x ∈ Fix(T ).

4 Applications

4.1 Application to nonlinear variation inclusion problem

Let H be a real Hilbert space, M : H → 2H be a multi-valued maximal monotone
mapping. Then, the resolvent mapping JMλ : H → H associated with M , is defined by

JMλ (x) := (I + λM)−1(x), ∀x ∈ H, (4.1)

for some λ > 0, where I stands identity operator on H.

We note that for all λ > 0 the resolvent operator JMλ is a single-valued nonexpansive
mapping.
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The “so-called” monotone variational inclusion problem (in short, MVIP) is to find
x∗ ∈ H such that

0 ∈ B1(x
∗). (4.2)

From the definition of resolvent mapping JMλ , it is easy to know that (MVIP) (4.2) is
equivalent to find x∗ ∈ H such that

x∗ ∈ Fix(JMλ ) for some λ > 0. (4.3)

For any given function x0 ∈ H, define a sequence by

xn+1 = αnf(xn) + (1− αn)JMλ

(
xn ⊕ xn+1

2

)
, n ≥ 0. (4.4)

From Theorem 3.3 we have the following

Theorem 4.1 Let M, JMλ be the same as above. Let f : H → H be a contraction.
Let {xn} be the sequence defined by (4.4). If the sequence {αn} ∈ (0, 1) satisfies the
conditions: (i), (ii) and (iii) in Theorem 3.1 and Fix(JMλ ) 6= ∅, then {xn} converges
strongly to the solution of monotone variational inclusion (4.2), which is also a solution
of the following variational inequality:

〈x̃− f(x̃), x− x̃〉 ≥ 0, ∀ x ∈ Fix(JMλ ).

4.2 Application to nonlinear Volterra integral equations

Let us consider the following nonlinear Volterra integral equation

x(t) = g(t) +

∫ t

0
F (t, s, x(s))ds, t ∈ [0, 1], (4.5)

where g is a continuous function on [0, 1] and F : [0, 1]× [0, 1]×R→ R is continuous and
satisfies the following condition.

|F (t, s, x)− F (t, s, y)| ≤ |x− y|, t, s ∈ [0, 1] x, y ∈ R,

then equation (4.5) has at least one solution in L2[0, 1] (see, for example, [22]).

Define a mapping T : L2[0, 1]→ L2[0, 1] by

(Tx)(t) = g(t) +

∫ t

0
F (t, s, x(s))ds, t ∈ [0, 1]. (4.6)

It is easy to see that T is a nonexpansive mapping. This means that to find the solution
of integral equation (4.5) is reduced to find a fixed point of the nonexpansive mapping T
in L2[0, 1].

For any given function x0 ∈ L2[0, 1], define a sequence of functions {xn} in L2[0, 1] by

xn+1 = αnf(xn) + (1− αn)T

(
xn ⊕ xn+1

2

)
, n ≥ 0. (4.7)

From Theorem 3.3 we have the following
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Theorem 4.2 Let F, g, T, L2[0, 1] be the same as above. Let f be a contraction
on L2[0, 1] with coefficient k ∈ [0, 1). Let {xn} be the sequence defined by (4.7). If the
sequence {αn} ∈ (0, 1) satisfies the conditions: (i), (ii) and (iii) in Theorem 3.1. Then
{xn} converges strongly in L2[0, 1] to the solution of integral equation (4.5) which is also
a solution of the following variational inequality:

〈x̃− f(x̃), x− x̃〉 ≥ 0, ∀ x ∈ Fix(T ).
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