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1 Introduction and Preliminaries

A classical best approximation theorem ( [5]) states that if A is nonempty compact convex subset of a Banach
space X and T : A→ X is a continuous map, then there exists a point x∗ in A such that

d(x∗, Tx∗) = d(Tx∗, A) = inf{d(x, Tx∗) : x ∈ A}. (1)

A point x∗ in the above theorem is known as the approximate fixed point of T or an approximate solution
of a fixed point equation Tx = x.
The study of conditions that assure the existence and uniqueness of optimal approximate fixed point of

mapping T is an active research area. If A and B are nonempty subsets of a normed linear space X and
T : A→ B. A point x∗ in A which satisfies d(x∗, Tx∗) = d(A,B) is called a best proximity point of T and the
pair (x∗, Tx∗) is called best proximity pair of T. A best proximity point x∗ in A, indeed solves the following
optimization problem:

min
x∈A

d(x, Tx).

The results which analyze the conditions under which the above optimization problem has a solution are
known as Best proximity pair theorems. Clearly, if A = B, then best proximity point of T becomes the
solution of a fixed point equation Tx = x. So, the best proximity point theorems generalize fixed point
theorems in a natural way. For detailed discussion in this direction, we refer to [1, 4, 12,16—20,22—25].
Vetro and Salimi [24] studied best proximity point theorems in the setup of non Archimedean fuzzy

metric spaces ( see also, [18, 25]).
Let us first recall some basic definitions and known results needed in the sequel.

Definition 1.1 ( [21]) A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a continuous t − norm if for any
x, y, w, z ∈ [0, 1], the following conditions hold:

(1) ∗ is associative, commutative and continuous;

(2) x ∗ 1 = x;
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(3) w ∗ x ≤ y ∗ z whenever w ≤ y and x ≤ z.

Classical examples of continuous t−norm are: minimum ∧, usual product · and Lukasiewicz ∗L t−norms,
where, a ∧ b = min{a, b}, a · b = ab, and a ∗L b = max{a+ b− 1, 0} for all a, b ∈ [0, 1].
It is easy to check that ∗L ≤ · ≤ ∧. In fact ∗ ≤ ∧ for all continuous t− norm “∗” .
George and Veeramani [6, 7] modified the notion of fuzzy metric spaces with the help of a continuous

t− norm by generalizing the concept of probabilistic metric space (see [11]) to a fuzzy situation.

Definition 1.2 (compare [7]) Let X be a nonempty set, and “∗”a continuous t − norm. A fuzzy set M
on X ×X × [0,∞) is said to be a fuzzy metric if for any x, y, z ∈ X, the following conditions hold:

(i) M(x, y, t) > 0,

(ii) x = y if and only if M(x, y, t) = 1 for all t > 0,

(iii) M(x, y, t) = M(y, x, t),

(iv) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s > 0,

(v) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

The triplet (X,M, ∗) is called a fuzzy metric space.
Since M is a fuzzy set on X2 × [0,∞), M(x, y, t) is regarded as the degree of closeness of x and y with

respect to t.
It is well known that for each x, y ∈ X, M(x, y, ·) is a nondecreasing function on (0,∞) ( [8]).

Lemma 1.3 ( [8]) M is a continuous function on X2 × (0,∞).

Each fuzzy metric M on X generates Hausdorff topology τM whose base is the family of open M− balls
{BM (x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}, where

BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}.

Note that a sequence {xn} converges to x ∈ X ( with respect to τM ) if and only if lim
n→∞

M(xn, x, t) = 1

for all t > 0.
Let (X, d) be a metric space. Define Md : X ×X × [0,∞)→ [0, 1] by

Md(x, y, t) =
t

t+ d(x, y)
.

Then (X,Md, ·) is a fuzzy metric space and is called the standard fuzzy metric space induced by a metric d
( [6]). The topologies τMd

and τd ( the topology induced by the metric d ) on X are the same. Note that
if d is a metric on a set X, then the fuzzy metric space (X,Md, ∗) is strong for every continuous t − norm
“∗”such that for all ∗ ≤ ·, where Md is the standard fuzzy metric (see, [9]).
A sequence {xn} in a fuzzy metric space X is said to be a Cauchy sequence if for each t > 0 and ε ∈ (0, 1),

there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for all n,m ≥ n0. A fuzzy metric space X is complete
( [7]) if every Cauchy sequence converges in X. A subset A of X is closed if for each convergent sequence
{xn} in A with xn −→ x, we have x ∈ A. A subset A of X is compact if each sequence in A has a convergent
subsequence.
Throughout this paper, we assume that A and B are two nonempty subsets of a fuzzy metric space

(X,M, ∗).

Definition 1.4 ( [24,25]) Let x ∈ X and t > 0. Define A0(t) and B0(t) as follows:

A0(t) = {x ∈ A : M(x, y, t) = M(A,B, t) for some y ∈ B}, and
B0(t) = {y ∈ B : M(x, y, t) = M(A,B, t) for some x ∈ A},
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where,
M(A,B, t) = sup{M(a, b, t) : a ∈ A, b ∈ B}.

The distance of a point x ∈ X from a nonempty set A for t > 0 is defined as

M(x,A, t) = sup
a∈A

M(x, a, t), for t > 0.

Definition 1.5 [18] A self mapping f on A is said to be (a) fuzzy isometry if M(fx, fy, t) = M(x, y, t) for
all x, y ∈ A and t > 0 (b) fuzzy expansive if for any x, y ∈ A and t > 0, we have M(fx, fy, t) ≤M(x, y, t).

Remark 1.6 [18] Note that every fuzzy isometry is fuzzy expansive but converse does not hold in general.

Definition 1.7 [18] A set B is said to be fuzzy approximately compact with respect to A if for every
sequence {yn} in B and for some x ∈ A, M(x, yn, t) −→M(x,B, t) implies that x ∈ A0(t).

Definition 1.8 [18] A point x in A is said to be optimal coincidence point of the pair of mappings (g, T ),
where T : A −→ B and g : A −→ A if

M(gx, Tx, t) = M(A,B, t),

holds.

Lemma 1.9 [25] Let T : A → B. If for t > 0, A0(t) 6= ∅ and T (A0(t)) ⊆ B0(t). Then, there exists a
sequence {xn} ⊂ A0(t) such that

M(xn+1, Txn, t) = M(A,B, t), for all n ∈ N. (2)

Definition 1.10 [25] A sequence {xn} ⊂ A0(t) satisfying condition (2) is called proximal fuzzy Picard
sequence starting with x0 ∈ A0(t).

Definition 1.11 [25] A set A0(t) is fuzzy proximal T−orbitally complete if and only if every Cauchy
proximal fuzzy Picard sequence in A0(t) starting with some x0 ∈ A0(t) converges to an element of A0(t).

Lemma 1.12 [25] Let A and B be nonempty closed subsets of a complete non-Archimedean fuzzy metric
space (X,M, ∗), If A0(t) 6= ∅ and B is fuzzy approximatively compact with respect to A.Then the set A0(t)
is closed.

Let Ψ = { ψ : [0, 1]→ [0, 1] satisfying the conditions (i) and (ii) given below}.

(i) ψ is continuous and strictly decreasing on (0, 1) with ψ(t) > t and ψ(t) = t if t ∈ {0, 1}.

(ii) limn→∞ ψn(t) = 1 if and only if t = 1.

Definition 1.13 A mapping T : A −→ B is said to be a α−proximal fuzzy contraction of type−I if there
exists α ∈ [0, 1] such that for any u, v, x and y in A, the following implication holds:

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
=⇒M(u, v, t) ≥ ψ([M(x, y, t)]α).

Definition 1.14 Let T : A −→ B and g : A→ A. A pair {g, T} is said to be a α−proximal fuzzy contraction

of type−II if there exists α ∈ [0, 1] for any u, v, x and y in A satisfying
M(gu, Tx, t) = M(A,B, t)
M(gv, Ty, t) = M(A,B, t)

}
gives

that M(gu, gv, t) ≥ ψ([M(x, y, t)]α).

For a self-mapping, a α−proximal fuzzy contraction of type−II becomes Banach contractions. While a
nonself mapping is not necessarily a Banach’s contraction mapping.
Note that If gx = IA, then every α−proximal fuzzy contraction of type−II becomes α−proximal fuzzy

contraction of type−I.
The aim of this paper is to investigate the optimal coincidence point solution of a function M(gx, Tx, t)

over a nonempty subset of fuzzy metric space, where T : A −→ B is α−proximal contraction mapping of
type−I and type−II and g : A→ A. Our results extend and generalize results in [13], [14] and [10]. We give
some examples to illustrate our results and to compare the results in [13] and [10].
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2 Optimal coincidence point of α−fuzzy proximal contraction map-
pings in non-Archimedean fuzzy metric spaces.

We start with the following result.

Lemma 2.1 Let A and B be nonempty closed subsets of a complete non-Archimedean fuzzy metric space
(X,M, ∗), T : A → B an α−proximal fuzzy contraction of type−I and A0(t) 6= ∅. Then A0(t) is fuzzy
proximal T−orbitally complete provided that T (A0(t)) ⊆ B0(t) if B is approximatively compact with respect
to A.

Proof. Let x0 be a given point in A0(t) and {xn} a proximal fuzzy Picard sequence in A0(t) starting with
x0. As (X,M, ∗) is complete and A is closed, there exist an element x∗ in A such that

lim
n→∞

M(xn, x
∗, t) = 1.

By Lemma 1.12, A0(t) is closed, indeed A0(t) is nonempty and B is approximatively compact with respect
to A. Hence x∗ ∈ A0(t).

Theorem 2.2 Let g : A→ A be a fuzzy expansive mapping and T : A→ B an α−proximal fuzzy contraction
of type−II with T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is fuzzy approximatively compact
with respect to A. Then the pair (g, T ) has a unique optimal coincidence point x∗ in A0(t).

Proof. Let x0 be a given point in A0(t). As T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)), we can choose an element
x1 ∈ A0(t) such that M(gx1, Tx0, t) = M(A,B, t). From Tx1 ∈ T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)), it
follows that there exists an element x2 ∈ A0(t) such that M(gx2, Tx1, t) = M(A,B, t). Continuing this way,
we can obtain a sequence {xn} in A0(t) such that it satisfies

M(gxn, Txn−1, t) = M(A,B, t) and M(gxn+1, Txn, t) = M(A,B, t). (3)

As T is α−proximal fuzzy contraction of type−II, and g is fuzzy expansive,

M(xn, xn+1, t) ≥M(gxn, gxn+1, t) ≥ ψ[M(xn−1, xn, t)]
α) for all n ∈ N. (4)

If, xn = xn+1 holds for some n ∈ N, then the result is obvious. Suppose that xn 6= xn+1 for all n ∈ N. Note
that

M(xn, xn+1, t) ≥ ψ([M(xn−1, xn, t)]
α) ≥ ψ(M(xn−1, xn, t)) > M(xn−1, xn, t).

If we set M(xn, xn+1, t) = τn(t) for all t > 0, n ∈ N ∪ {0}. Then we have

τn(t) ≥ ψ([τn−1(t)]
α) ≥ ψ(τn−1(t)) > τn−1(t). (5)

That is, {τn(t)} is an increasing sequence for all t > 0. Consequently, there exists τ(t) ≤ 1 such that
limn→+∞ τn(t) = τ(t). We claim that τ(t) = 1. Suppose not, there exist some t0 > 0 such that τ(t0) < 1.
Also, τn(t0) ≤ τ(t0). On taking the limit as n→∞ on both sides of

τn(t) ≥ ψ([τn−1(t)]
α) ≥ ψ(τn−1(t)) > τn−1(t),

we have
τ(t0) ≥ ψ(τ(t0)) > τ(t0),

a contradiction. Hence τ(t) = 1. Now we show that {xn} is a Cauchy sequence. Assume on contrary that
{xn} is not a Cauchy sequence, there exist ε ∈ (0, 1) and t0 > 0 such that for all k ∈ N, there are mk, nk ∈ N
with mk > nk ≥ k and

M(xmk
, xnk , t0) ≤ 1− ε.

Assume that mk is the least integer exceeding nk for which the above inequality holds. Thus

M(xmk−1, xnk , t0) > 1− ε.
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Note that, for all k, we have

1− ε ≥ M(xmk
, xnk , t0),

≥ M(xmk
, xmk−1, t0) ∗M(xmk−1, xnk , t0),

> τmk
(t0) ∗ (1− ε).

On taking limit as k →∞ on both sides of the above inequality, we obtain that limk→+∞M(xmk
, xnk , t0) =

1− ε. Also,

M(xmk+1, xnk+1, t0)

≥ M(xmk+1, xmk
, t0) ∗M(xmk

, xnk , t0) ∗M(xnk , xnk+1, t0),

and

M(xmk
, xnk , t0)

≥ M(xmk
, xmk+1, t0) ∗M(xmk+1, xnk+1, t0) ∗M(xnk+1, xnk , t0),

imply that
lim

k→+∞
M(xmk+1, xnk+1, t0) = 1− ε.

From (3), we obtain that

M(gxmk+1, Txmk
, t0) = M(A,B, t0) and M(gxnk+1, Txnk , t0) = M(A,B, t0).

Hence
M(xmk+1, xnk+1, t0) ≥M(gxmk+1, gxnk+1, t0) ≥ ψ([M(xmk

, xnk , t0)]
α).

On taking limit as k →∞ on both sides of the above inequality, we get that

1− ε ≥ ψ([1− ε]α) ≥ ψ(1− ε) > 1− ε,

a contradiction. Hence {xn} is a Cauchy sequence. As A0(t) is T−orbitally complete (Lemma 2.1), the
sequence {xn} converges to some element x∗ in A0(t), that is,

lim
n→∞

M(xn, x
∗, t) = 1.

Now

M(gx∗, B, t) ≥ M(gx∗, Txn, t)

≥ M(gx∗, gxn+1, t) ∗M(gxn+1, Txn, t)

= M(gx∗, gxn+1, t) ∗M(A,B, t)

≥ M(gx∗, gxn+1, t) ∗M(gx∗, B, t).

Implies that

M(gx∗, B, t) ≥ M(gx∗, Txn, t)

≥ M(gx∗, gxn+1, t) ∗M(gx∗, B, t).

As g is continuous, the sequence {gxn} converges to g(x∗), and M(gx∗, Txn, t)→M(gx∗, B, t). Since B is a
fuzzy approximately compact with respect to A, a sequence {Txn} in B has a subsequence which converges
to some y in B, and M(gx∗, y, t) = M(A,B, t), that is gx∗ ∈ A0(t). Since A0 ⊆ g(A0), there exist some
u ∈ A0(t) such that

M(gu, Tx∗, t) = M(A,B, t) = M(gxn+1, Txn, t), for all n ∈ N.

As {g, T} is α−proximal fuzzy contraction of type−II and g is a fuzzy expansive mapping, we have

M(u, xn+1, t) ≥M(gu, gxn+1, t) ≥ ψ([M(x∗, xn, t)]
α).
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Taking limit as n→∞ on both sides of the above inequality, we obtain that

M(u, x∗, t) ≥ ψ([M(x∗, u, t)]α)

and hence M(u, x∗, t) = 1 which implies that u = x∗. Thus

M(gx∗, Tx∗, t) = M(gu, Tx∗, t) = M(A,B, t)

gives that x∗ is the optimal coincidence point of the pair {g, T}.
If there is another optimal coincidence point y∗ of the pair {g, T} in A0(t), then we have

M(gx∗, Tx∗, t) = M(A,B, t) and M(gy∗, T y∗, t) = M(A,B, t).

Since {g, T} is α−proximal fuzzy contraction of type−II and g is fuzzy expansive, so

M(x∗, y∗, t) ≥M(gx∗, gy∗, t) ≥ ψ([M(x∗, y∗, t)]α),

implies that M(x∗, y∗, t) = 1 and x∗ = y∗. Hence the optimal coincidence point of the pair {g, T} is unique.

Corollary 2.3 If T : A→ B is an α−proximal fuzzy contraction of type−I with T (A0(t)) ⊆ B0(t) for any
t > 0. Then T has a unique best proximity point x∗ in A0(t) provided that B is fuzzy approximately compact
with respect to A.

Proof. Take g = IA in Theorem 2.2.

Corollary 2.4 If T : A→ B is an α−proximal fuzzy contraction of type−I with T (A0(t)) ⊆ B0(t) for any
t > 0.Then T has a unique best proximity point x∗ in A0(t) provided that B is fuzzy approximative compact
with respect to A.

Proof. By Lemma 1.12, A0(t) is closed subset of complete non-Archimedean fuzzy metric space (X,M, ∗)
which implies that A0(t) is fuzzy proximal T−orbitally complete (Lemma 2.1). The result follows from
Corollary (2.3).

Corollary 2.5 Let g : A→ A be a fuzzy isometric mapping and T : A→ B an α−proximal fuzzy contraction
of type−II with T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is fuzzy approximately compact
with respect to A. Then the pair (g, T ) has a unique optimal coincidence point x∗ in A0(t).

Corollary 2.6 Let g : A → A be a fuzzy expansive mapping and T : A → B with A0(t) 6= φ, T (A0(t)) ⊆
B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is fuzzy approximately compact with respect to A and the
pair (g, T ) satisfies the following implication

M(gu, Tx, t) = M(A,B, t)
M(gv, Ty, t) = M(A,B, t)

}
implies that M(gu, gv, t) ≥ ψ(M(x, y, t)).

Then the pair (g, T ) has a unique optimal coincidence point x∗ in A0(t).

Proof. Following arguments similar to those in the proof of the Theorem 2.2 with α = 1, the result follows.

Remark 2.7 If g is isometry in theorem (2.2), then we obtain the theorem 3.2 in ( [13]).

Remark 2.8 If g = IA in definition (1.14), then we obtain the definition 3.1 in ( [13]).

We now show that our result is proper generalization of the results in ( [13], [10]).
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Example 2.9 If, X = [0, 1]×R, A = {(0, x) : x ≥ 0 and x ∈ R} and B = {(1, y) : y ≥ 0 and y ∈ R}. Then

Md(A,B, t) =
t

t+ 1
, A0(t) = {(0, 0)} and B0(t) = {(1, 0)}.

Define the mappings T : A→ B and g : A→ A (a fuzzy expansive mapping) as:

T (x, 0) = (1,
x

4
) and g(0, x) = 4(0, x).

Obviously, T (A0(t)) = B0(t) and A0(t) = g(A0(t)). Note that the points u = (0, x1), v = (0, x2), x = (0, y1)

and y = (0, y2) in A satisfy M(gu, Tx, t) = M(A,B, t) and M(gv, Ty, t) = M(A,B, t) if x1 =
y1
16

and

x2 =
y2
16
. Also, we have, M(gu, gv, t) ≥ ψ(M(x, y, t)),

where ψ(t) =
√
t. Thus all the conditions of the Corollary (2.6) are satisfied. Moreover, (0, 0) is an optimal

coincidence point of (g, T ) in A0(t).

3 Optimal coincidence point of α−proximal fuzzy contraction in
fuzzy metric spaces

Lemma 3.1 Let A and B be nonempty subsets of a complete fuzzy metric space (X,M, ∗), T : A → B
an α−proximal fuzzy contraction of type−I and A0(t) a nonempty closed subset of A. Then A0(t) is fuzzy
proximal T−orbitally complete provided that T (A0(t)) ⊆ B0(t).

Proof. Assume that x0 be a given point in A0(t) and {xn} is a proximal fuzzy Picard sequence in A0(t)
starting with x0. As (X,M, ∗) is complete and A0(t) is closed, there exist an element x∗ in A0(t) such that

lim
n→∞

M(xn, x
∗, t) = 1.

Theorem 3.2 Let (A,B) be a pair of nonempty subset of a complete fuzzy metric space (X,M, ∗), g : A→ A
a fuzzy expansive and T : A→ B with T (A0(t)) ⊆ B0(t) and A0 ⊆ g(A0). If the pair {g, T} is an α−proximal
fuzzy contraction of type−II. Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is
closed and B is a fuzzy approximately compact with respect to A.

Proof. Let x0 be a given point in A0(t). Following arguments similar to those in the proof of the Theorem
(2.2), we obtain a sequence {xn} in A0(t) such that it satisfies

M(gxn, Txn−1, t) = M(A,B, t), M(gxn+1, Txn, t) = M(A,B, t) (6)

and
lim
n→∞

M(xn, xn+1, t) = lim
n→∞

τn(t) = 1.

Now we show that {xn} is a Cauchy sequence. Suppose on contrary that {xn} is not a Cauchy sequence,
there exist ε ∈ (0, 1) and t0 > 0 such that for all k ∈ N, there are mk, nk ∈ N, with mk > nk ≥ k with

M(xmk
, xnk , t0) ≤ 1− ε.

Assume that mk is the least integer exceeding nk which satisfies the above inequality, then

M(xmk−1, xnk , t0) > 1− ε.

Note that, for all k, we have

1− ε ≥ M(xmk
, xnk , t0),

≥ M(xmk
, xmk−1,

t0
2

) ∗M(xmk−1, xnk ,
t0
2

),

> τmk
(
t0
2

) ∗ (1− ε).
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On taking limit as k →∞ on both sides of the above inequality, we obtain that limk→∞M(xmk
, xnk , t0) =

1− ε. Note that

M(xmk+1, xnk+1, t0)

≥ M(xmk+1, xmk
,
t0
3

) ∗M(xmk
, xnk ,

t0
3

) ∗M(xnk , xnk+1,
t0
3

),

and

M(xmk
, xnk , t0)

≥ M(xmk
, xmk+1,

t0
3

) ∗M(xmk+1, xnk+1,
t0
3

) ∗M(xnk+1, xnk ,
t0
3

),

imply that
lim

k→+∞
M(xmk+1, xnk+1, t0) = 1− ε.

From (6), we have

M(gxmk+1, Txmk
, t0) = M(A,B, t0) and M(gxnk+1, Txnk , t0) = M(A,B, t0).

Thus
M(xmk+1, xnk+1, t0) ≥M(gxmk+1, gxnk+1, t0) ≥ ψ([M(xmk

, xnk , t0)]
α).

On taking limit as k →∞ on both sides of the above inequality, we get that

1− ε ≥ ψ([1− ε]α) ≥ ψ(1− ε) > 1− ε,

a contradiction. Hence {xn} is a Cauchy sequence. Since A0(t) is closed, the sequence {xn} converges to
some element x∗ in A0(t)

lim
n→∞

M(xn, x
∗, t) = 1.

Now
M(gx∗, B, t) ≥M(gx∗, Txn, t) ≥M(A,B, t) ≥M(gx∗, B, t).

Implies that
M(gx∗, B, t) ≥M(gx∗, Txn, t) ≥M(gx∗, B, t).

As g is continuous and the sequence {xn} converges to x∗, the sequence {gxn} converges to g(x∗), M(gx∗, Txn, t)→
M(gx∗, B, t). The rest of the proof follows on the similar lines in the proof of Theorem (2.2).

Example 3.3 Let X = [0, 1] × R and A = {(0, x) : for all x ∈ R+ ∪ {0}} and B = {(1, y) : for all y ∈
R+ ∪ {0}}. Then

A0(t) = A and B0(t) = B.

Let
M(x, y, t) = e−

d(x,y)
t for all t > 0,

where d(x, y) = |x1 − y1| + |x2 − y2| for all x = (x1, y1), y = (x2, y2) in X. Note that, M(A,B, t) = e−
1
t .

Define the mappings T : A→ B and g : A→ A as:

T (0, x) = (1,
x

4
), and g(0, x) = (0, 2x).

0.0 0.5 1.0
0.0

0.5

1.0

x

y
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Note that T (A0(t)) ⊆ B0(t), and the points u = (0, a), v = (0, b), x = (0, c) and y = (0, d) ∈ A satisfy

M(gu, Tx, t) = M(A,B, t), and M(gv, Ty, t) = M(A,B, t),

where a = c
8 , and b = d

8 . Also,
M(gu, gv, t) ≥ ψ([M(x, y, t)]α)

holds true with ψ(t) =
√
t. Hence pair {g, T} satisfies all conditions of Theorem (3.2). Moreover, (0, 0) is

the unique α−optimal best proximity point of the pair {g, T}.

Remark 3.4 Note that, Theorem 3.2 in [13] does not hold in this setup. As, every fuzzy expansive mapping
is fuzzy isometry, hence theorem 3.2 is a proper generalization of the Theorem 3.2 in [13].

Note that, if the mapping g in Theorem 3.2 is a fuzzy isometry in instead of fuzzy expansive, then we
obtain the following result.

Theorem 3.5 Let (A,B) be a pair of nonempty subset of a complete fuzzy metric space (X,M, ∗), g : A→ A
a fuzzy isometry and T : A→ B with T (A0(t)) ⊆ B0(t) and A0 ⊆ g(A0). If the pair {g, T} is an α−proximal
fuzzy contraction of type−II. Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is
closed and B is a fuzzy approximately compact with respect to A.

Proof. It follows from the Remark 1.6 and Theorem 3.2.
An example is provided to show that our result also hold in the setting of [13].

Example 3.6 If X = [0, 1]× R and A = {(0, x) : for all x ∈ R} and B = {(1, y) : for all y ∈ R}. Then

A0(t) = A and B0(t) = B.

Let
M(x, y, t) = e−

d(x,y)
t for all t > 0,

where d(x, y) = |x1 − y1| + |x2 − y2| for all x = (x1, y1), y = (x2, y2) in X. Note that, M(A,B, t) = e−
1
t .

Define the mappings T : A→ B and g : A→ A as:

T (0, x) = (1,
x

4
) and g(0, x) = (0,−x).

Note that T (A0(t)) ⊆ B0(t) and the points u = (0, a), v = (0, b), x = (0, c) and y = (0, d) ∈ A satisfy

M(gu, Tx, t) = M(A,B, t), and M(gv, Ty, t) = M(A,B, t),

where a = −c
4 , and b = −d

4 . Also,
M(gu, gv, t) ≥ ψ([M(x, y, t)]α)

holds with ψ(t) =
√
t. Hence pair {g, T} satisfies all conditions of theorem (3.5). Moreover, (0, 0) is the

unique α−optimal best proximity point of the pair {g, T}.

Corollary 3.7 Let (A,B) be a pair of nonempty subsets of a complete fuzzy metric space (X,M, ∗), g a
fuzzy expansive mapping on A, T : A → B, A0(t) a closed and fuzzy proximal T−orbitally complete with
T (A0(t)) ⊆ B0(t), If the the following implication hold:

M(gu, Tx, t) = M(A,B, t)
M(gv, Ty, t) = M(A,B, t)

}
=⇒M(gu, gv, t) ≥ ψ[M(x, y, t)].

Then, a pair {g, T} has a unique best proximity point x∗ in A0(t) provided that B is a fuzzy approximately
compact with respect to A.

Proof. The pair of mapping {g, T} satisfies all the conditions of Theorem (3.2) with α = 1. The result then
follows from Theorem (3.2).

9



Theorem 3.8 Let (A,B) be a pair of nonempty subset of a complete fuzzy metric space (X,M, ∗) and
T : A → B an α−proximal fuzzy contraction of type−I with T (A0(t)) ⊆ B0(t). Then T has a unique best
proximity point x∗ in A0(t) provided that A0(t) is closed and B is a fuzzy approximately compact with respect
to A.

Proof. Take g = IA (a identity mapping) in the proof of Theorem (3.2).

Example 3.9 Let X = [0, 1]× R and A = {(0, x) : 0 ≤ x ≤ 1, x ∈ R} and B = {(1, y) : 0 ≤ y ≤ 1, y ∈ R}.
Then

A0(t) = A and B0(t) = B.

Let
M(x, y, t) = e−

d(x,y)
t for all t > 0,

where d(x, y) = |x1 − y1| + |x2 − y2| for all x = (x1, y1), y = (x2, y2) in X. Note that, M(A,B, t) = e−
1
t .

Define the mapping T : A→ B by
T (0, x) = (1,

x

4
).

0.0 0.5 1.0
0.0

0.5

1.0

x

y

Note that T (A0(t)) ⊆ B0(t) and the points u = (0, a), v = (0, b), x = (0, c) and y = (0, d) ∈ A satisfy

M(u, Tx, t) = M(A,B, t) and M(v, Ty, t) = M(A,B, t),

where a = c
4 , and b = d

4 . Also,
M(u, v, t) ≥ ψ([M(x, y, t)]α).

holds true where ψ(t) =
√
t. Thus, all the conditions of Corollary (3.8) are satisfied. Moreover, (0, 0) is the

unique best proximity point of T .

Remark 3.10 Definition 1.13 reduces to Definition 3.1 in [13] only when ψ(t) = t. Thus, our results extend
and generalize the results in [13].

Corollary 3.11 Let (A,B) be a pair of nonempty subset of a complete fuzzy metric space (X,M, ∗) such
that A0(t) is a fuzzy proximal T−orbitally complete. If T : A→ B satisfies the following implication

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
=⇒M(u, v, t) ≥ ψ[M(x, y, t)].

Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is closed, B is a fuzzy approximately
compact with respect to A and T (A0(t)) ⊆ B0(t).

Proof. The mapping T satisfies all condition of Theorem (3.2) with α = 1. Also, if g = IA (identity mapping
on A). The result follows from Theorem (3.2).

Corollary 3.12 Let (A,B) be a pair of nonempty subset of a complete fuzzy metric space (X,M, ∗), g is
fuzzy isometry on A and T : A → B with T (A0(t)) ⊆ B0(t). If the pair {g, T} is an α−proximal fuzzy
contraction of type−II. Then the pair has a unique best proximity point x∗ in A0(t) provided that A0(t) is
fuzzy proximal T−orbitally complete.

10



Proof. The result follows from Theorem (3.2).

Corollary 3.13 Let (A,B) be a pair of nonempty closed subset of a complete fuzzy metric space (X,M, ∗).
If T : A→ B satisfies the following implication

M(u, Tx, t) = M(A,B, t)
M(v, Ty, t) = M(A,B, t)

}
=⇒M(u, v, t) ≥ ψ[M(x, y, t)].

Then T has a unique best proximity point x∗ in A0(t) provided that A0(t) is fuzzy proximal T−orbitally
complete and T (A0(t)) ⊆ B0(t).

Proof. Proof of this corollary is on the same lines as proof of theorem (3.2).
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