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Abstract

In this paper we establish best proximity point results for monotone multivalued

mappings in partially ordered metric spaces. We consider three notions of monotonicity

of multvalued mappings. The main theorem is obtained by utilizing UC property and

MT-functions. There is no requirment of continuity on the multivalued function which

is illustrate with two supporting examples of the results established in this paper. There

are two corrollaries. Some exisiting results are extended to the domain of partially

ordered metric spaces through one of the corrollaries.
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1 Introduction and mathematical preliminaries

Best proximity points are concepts related to non-self mappings. They are generalizations

of fixed points in that they reduce to fixed points whenever the domain and codomain have

non-null intersection. They are intended to find minimum distances between two sets.

Definition 1.1. Let A and B be two subsets of a metric space (X, d), T : A → B be a

mapping, then a point z ∈ A is called a best proximity point if d(z, Tz) = d(A, B) where

d(A, B) = inf {d(x, y) : x ∈ A, y ∈ B}.

Essentially, the best proximity point problem is a global optimality problem where we

seek to minimize d(z, Tz) over z ∈ A with the constraint that the minimum distance is

achieved with value d(A, B). Technically, we can also treat the problem as an approximate

fixed point problem, that is, we can solve the problem by finding an optimal approximate

solution of the fixed point equation x = Tx while there being no exact solution in the case

where A∩B = φ. We adopt the above mentioned approach in the paper. It may be pointed

out that these results being optimality results are very different from approximation results.

As an instance, the famous Ky Fan’s approximation theorem [17] is not an optimality result.

Best proximity points were introduce in [23]. The literature in this subject has developed

rapidly. Some of the recent works are noted here [4, 5, 8, 9, 10, 13, 18, 20, 21, 22].

Our results are derived in the general context where the domain and co-domain are

subsets of a metric space. There is no requirement of continuity on the function. In fact

we illustrate our result with discontinuous functions. We assume the existence of partial

order in metric spaces. Partial order in metric fixed point problems was initiated by Turinici

[31] in uniform spaces which was followed by a large number of papers like [3, 6, 7, 12].

The existence of best proximity point in partially ordered metric spaces was first studied in

[1]. The best proximity point result in such spaces appeared in [2, 19, 27, 28, 29]. Further

we use MT -function in our result which was introduced in [24] and was used in works like

[9, 11, 14, 15]. Also we use UC-property of the space which was introduced in [30] and was

utilized in a good number of papers on best proximity point problems [2, 9, 26].

Definition 1.2 (Cyclic mapping [16]). Let A, B be two nonempty subsets of a metric space

(X, d). A mapping T : A ∪ B → A ∪ B is said to be a cyclic mapping if Tx ∈ B, for all
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x ∈ A and Ty ∈ A, for all y ∈ B.

The following are the concepts from setvalued analysis which we use in this paper. Let

(X, d) be a metric space. Then

CB(X) = {A : A is a non-empty closed and bounded subset of X}.

We use Hausdorff metric in our paper which is a metric defined on CB(X) as follows:

Definition 1.3 (Hausdorff distance [25]). Let (X, d) be a metric space. Then the

Hausdorff metric H introduced by d is defined as follows.

For A, B ∈ CB(X), H(A, B) = max {sup
x∈A

d(x, B), sup
y∈B

d(y, A)}

where, for any C ∈ CB(X), x ∈ X, d(x, C) = inf {d(x, y) : y ∈ C}.

We call a mapping T : X → CB(X) continuous if it continuous as a mapping from the

metric space (X, d) to (CB(X), H).

If (X, d) is a complete metric space, then (CB(X), H) is also complete [25].

Definition 1.4 (Multivalued cyclic mapping [26]). Let A, B be two nonempty subsets of a

metric space (X, d). A multivalued mapping T : A ∪ B → CB(A) ∪ CB(B) is said to be a

multivalued cyclic mapping if Tx ∈ CB(B), for all x ∈ A and Ty ∈ CB(A), for all y ∈ B.

In the following three definitions we note the monotone property of multivalued mappings

in three different ways.

Definition 1.5 (Multivalued monotone increasing mapping). A multivalued mapping T :

X → 2X where (X, �) is a partially ordered sets is said to be monotone increasing if x � y

and y ∈ Tx implies that a � b whenever a ∈ Tx and b ∈ Ty.

Definition 1.6 (Multivalued approximately monotone increasing mapping). A multivalued

mapping T : X → 2X where (X, �) is a partially ordered set is said to be a approximately

monotone increasing if x � y and y ∈ Tx implies that y � z whenever z ∈ Ty.

Definition 1.7 (Multivalued partly monotone increasing mapping). Let (X, d, �) be a

metric space with a partial order. Let S be a subset of X. A multivalued mapping T : S →

2X is said to be partly monotone increasing if x, y ∈ S with x � y and y ∈ Tx implies that

there exists z ∈ Ty such that y � z and d(y, z) ≤ H(Tx, Ty).
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It is apparent that in a metric space with a partial order (X, d, �), definition 1.5

implies definition 1.6 and definition 1.6 in turn implies definition 1.7, that is, definition 1.5

to definition 1.7 are gradually weaker definitions.

When T is a single valued mapping, that is, in the case, when T : X → X, all the above

definitions 1.5-1.7 reduce to the usual definition of monotone increasing operator with the

metric inequality in 1.7 being trivial.

Definition 1.8 (Property UC [30]). Let A and B be two nonempty subsets of a metric space

(X, d). Then (A,B) is said to satisfy the property UC if the following holds:

If {xn} and {x′n} are sequences in A and {yn} is a sequence inB such that lim
n→∞

d(xn, yn) =

d(A, B) and lim
n→∞

d(x′n, yn) = d(A, B), then lim
n→∞

d(xn, x
′
n) = 0.

Definition 1.9 (MT -function [24]). A function φ : [0, ∞) → [0, 1) is said to be

an MT -function (or R-function) if it satisfies Mizoguchi-Takahashi’s condition, that is,

lim sup
s→t+

φ(s) < 1 for all t ∈ [0,∞).

Lemma 1.1 ([14]). Let φ : [0, ∞)→ [0, 1) be an MT -function (or R-function). Then for

any non-increasing sequence {tn} in [0, ∞),

0 ≤ sup
n∈N

φ(tn) < 1.

Lemma 1.2 ([30]). Let A and B be subsets of a metric space (X, d). Assume that (A, B)

has the property UC. Let {xn} and {yn} be sequences in A and B, respectively, such that

the following holds:

lim
n→∞

sup
m≥n

d(xm, yn) = d(A, B).

Then {xm} is a Cauchy sequence.

2 Main Results

Theorem 2.1. Let (X, d,�) be a partially ordered complete metric space, A and B be

two nonempty closed subsets of X such that (A,B) and (B,A) satisfy the property UC. Let

T : A ∪B → CB(A) ∪ CB(B) be a multi-valued cyclic mapping such that

(i) T is partly monotone increasing on A ∪B,
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(ii) there exists x0 ∈ A such that x0 � x1 and x1 ∈ Tx0 for some x1 ∈ B,

(iii)

H(Tx, Ty) ≤ φ(d(x, y))d(x, y) + (1− φ(d(x, y)))d(A, B) (2.1)

where x ∈ A and y ∈ B, either x � y or y � x and φ is an MT-function,

(iv) for any monotone increasing sequence {xn} in X such that {xn} → x, the relation

xn � x holds for all n.

Then T has a best proximity point in A.

Proof. From the assumption ii) of the theorem there exist x0 ∈ A and x1 ∈ B such that

x1 ∈ Tx0 and x0 � x1. By the partly increasing property of T , there exists x2 ∈ Tx1 ⊂ A

such that x1 � x2 and d(x1, x2) ≤ H(Tx0, Tx1). Then, by (2.1), we have

d(x1, x2) ≤ H(Tx0, Tx1)

≤ φ(d(x0, x1))d(x0, x1) + (1− φ(d(x0, x1)))d(A, B).

Again, by the partly increasing property of T , there exists x3 ∈ Tx2 ⊂ B such that x2 � x3

and d(x2, x3) ≤ H(Tx1, Tx2).

Then,

d(x2, x3) ≤ H(Tx1, Tx2)

≤ φ(d(x1, x2))d(x1, x2) + (1− φ(d(x1, x2)))d(A, B).

Proceeding in this way, generally, we have, for all n ≥ 1, xn � xn+1,

xn+1 ∈ Txn with x2n ∈ A, x2n+1 ∈ B,

such that

d(xn, xn+1) ≤ H(Txn−1, Txn)

≤ φ(d(xn−1, xn))d(xn−1, xn) + (1− φ(d(xn−1, xn)))d(A, B). (2.2)

that is, for all n ≥ 1,

d(xn, xn+1)− d(A, B) ≤ φ(d(xn−1, xn))[d(xn−1, xn)− d(A, B)]. (2.3)
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Since φ(t) < 1 for all t ∈ [0, ∞), it follows that for all n ≥ 1,

d(xn, xn+1)− d(A, B) < d(xn−1, xn)− d(A, B),

that is, for all n ≥ 1,

d(xn, xn+1) < d(xn−1, xn), (2.4)

that is, {d(xn, xn+1)} is a strictly decreasing sequence of positive real numbers. Hence

lim
n→∞

d(xn, xn+1) exists. Also, since φ is an MT -function and {d(xn, xn+1)} is a strictly

decreasing sequence in [0, ∞), by lemma 1.1, we get

0 ≤ sup
n∈N

φ(d(xn, xn+1)) < 1.

Let λ = sup
n∈N

φ(d(xn, xn+1)), where λ ∈ [0, 1). Then

0 ≤ φ(d(xn, xn+1)) ≤ λ < 1, for all n ∈ N.

By repeated applications of (2.3), we get

d(xn, xn+1)− d(A, B) ≤ φ(d(xn−1, xn))[d(xn−1, xn)− d(A, B)]

≤ λ [d(xn−1, xn)− d(A, B)]

≤ λ2 [d(xn−2, xn−1)− d(A, B)]

.....

≤ λn [d(x0, x1)− d(A, B)].

Taking limit n→∞ in the above inequality, we get

lim
n→∞

d(xn, xn+1) = d(A, B). (2.5)

Then, from (2.5), we have

lim
n→∞

d(x2n, x2n+1) = d(A, B) (2.6)

and

lim
n→∞

d(x2n+2, x2n+1) = d(A, B). (2.7)

Since x2n and x2n+2 are two sequences in A, and x2n+1 is sequence in B where (A, B) satisfies

the property UC, from (2.6) and (2.7), we conclude that

lim
n→∞

d(x2n, x2n+2) = 0. (2.8)
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Since the pair (B, A) also satisfies the property UC, using (2.5) and by a similar argument,

we have

lim
n→∞

d(x2n−1, x2n+1) = 0. (2.9)

Next we prove that {x2n} is a Cauchy sequence in A. For that purpose we first establish

that

lim
n→∞ m≥ n

d(x2m, x2n+1) = d(A, B) (2.10)

which is the same as establishing that given ε > 0 we can find a positive integer N such that

for all m ≥ n > N ,

d(x2m, x2n+1) ≤ d(A, B) + ε. (2.11)

If (2.11) is not valid, then, particularly in view of (2.6), there exists ε > 0 and a natural

number k0 such that for each k ≥ k0 there exist m(k) > n(k) > k for which

d(x2m(k), x2n(k)+1) > d(A, B) + ε (2.12)

and additionally

d(x2m(k)−2, x2n(k)+1) ≤ d(A, B) + ε. (2.13)

Then, by (2.11) and (2.12), for all k ≥ 1,

d(A, B) + ε

< d(x2m(k), x2n(k)+1)

≤ d(x2m(k), x2m(k)−2) + d(x2m(k)−2, x2n(k)+1)

≤ d(x2m(k), x2m(k)−2) + d(A, B) + ε.

Taking k →∞, and using (2.8), we obtain

lim
k→∞

d(x2m(k), x2n(k)+1) = d(A, B) + ε. (2.14)
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Then, for all k ≥ 1,

d(x2m(k), x2n(k)+1)

≤ d(x2m(k), x2m(k)+2) + d(x2m(k)+2, x2n(k)+3) + d(x2n(k)+3, x2n(k)+1)

< d(x2m(k), x2m(k)+2) + d(x2m(k)+1, x2n(k)+2) + d(x2n(k)+3, x2n(k)+1) (by (2.4))

≤ d(x2m(k), x2m(k)+2) + d(x2n(k)+3, x2n(k)+1) +H(Tx2m(k), Tx2n(k)+1)

(by the first inequality of (2.2))

≤ d(x2m(k), x2m(k)+2) + d(x2n(k)+3, x2n(k)+1) + φ(d(x2m(k), x2n(k)+1))d(x2m(k), x2n(k)+1)

+(1− φ(d(x2m(k), x2n(k)+1)))d(A, B) (by 2.1)

= d(x2m(k), x2m(k)+2) + d(x2n(k)+3, x2n(k)+1) + d(A,B)

+φ(d(x2m(k), x2n(k)+1)[d(x2m(k), x2n(k)+1)− d(A,B)]. (2.15)

By (2.12) and (2.14), since φ is an MT-function (definition 1.9), it follows that

δ = lim
k→∞

sup φ(d(x2m(k), x2n(k)+1))

≤ lim
s→(d(A,B)+ε)+

sup φ(s) < 1. (2.16)

Taking limsup as k →∞ in (2.15), using (2.8), (2.9) and (2.12), we have

d(A, B) + ε ≤ d(A,B) + δε,

which is a contradiction since δ < 1 by (2.16). This establishes (2.11) and hence (2.10). Then

by lemma 1.2, {x2m} is a Cauchy sequence in A. The set A being closed in the complete

metric space X, there exists x ∈ A such that

x2n −→ x as n −→∞. (2.17)

Since x ∈ A and x2n−1 ∈ B, we have

d(A, B) ≤ d(x, x2n−1) ≤ d(x, x2n) + d(x2n, x2n−1).

Taking limit n→∞ in the above inequality and using (2.6) and (2.17), we have

lim
n→∞

d(x, x2n−1) = d(A, B). (2.18)
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Now, by construction, x2n � x2n+2 � x2n+4 � ......

Therefore, by condition (iv) of our theorem, x2n � x for all n.

Again, x2n−1 � x2n and x2n � x. Therefore, x2n−1 � x for all n.

Using (2.1), we have

d(A, B) ≤ d(x, Tx)

≤ d(x, x2n) + d(x2n, Tx)

≤ d(x, x2n) +H(Tx2n−1, Tx) (since x2n ∈ Tx2n−1)

≤ d(x, x2n) + φ(d(x, x2n−1))d(x, x2n−1) + (1− φ(d(x, x2n−1)))d(A, B)

≤ d(x, x2n) + φ(d(x, x2n−1))(d(x, x2n−1)− d(A, B)) + d(A, B).

Taking limit n→∞ in the above inequality and using (2.17) and (2.18), we have

d(A, B) ≤ d(x, Tx) ≤ d(A, B),

which implies that d(x, Tx) = d(A, B), that is, x is a best proximity point of T in A.

Corollary 2.1. Let (X, d,�) be a partially ordered complete metric space and A and B be

two nonempty closed subsets of X such that (A,B) and (B,A) satisfy the property UC. Let

T : A∪B → CB(A)∪CB(B) be a multi-valued cyclic mapping. Let T satisfies the following

assumptions:

(i) T is approximately monotone increasing,

(ii) there exists x0 ∈ A and x1 ∈ B such that x0 � x1 and x1 ∈ Tx0,

(iii) the inequality (2.1) is satisfied for x ∈ A and y ∈ B, either x � y or y � x and φ

is a MT -function,

(iv) for any monotone increasing sequence {xn} ⊂ X with {xn} → x as n → ∞, it

proves that xn � x.

Then T has a best proximity point in A.

Proof. Since an approximately monotone increasing mapping is also a partly monotone in-

creasing mapping, the proof follows by an application of the theorem 2.1.
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Example 2.1. Let d(X, d) be a metric with X = R2 and

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| for all (x1, x2), (y1, y2) ∈ R2.

Let A = (−∞, −1]×R and B = [1, ∞)×R.

Here d(A, B) = 2 and (A,B) and (B,A) satisfy the property UC.

We define a partial order on X as (x1, y1) � (x2, y2) iff either x1 = x2 and y1 = y2 or

y1 > y2 and x1 and x2 are rational numbers.

Define the cyclic mapping T : A ∪B → CB(A) ∪ CB(B) by

T (x, y) =



{(p, y
2
) : 1 ≤ p ≤ 1−x

2
}, if (x, y) ∈ A and y is rational,

{(p, y
2
) : −1−x

2
≤ p ≤ −1}, if (x, y) ∈ B and y is rational,

{(
√

2, p) : 1 ≤ p ≤ 2}, if (x, y) ∈ A and x is irrational,

{(−
√

2, p) : 1 ≤ p ≤ 2}, if (x, y) ∈ B and x is irrational.

T is a partly monotone increasing mapping which follows by the following observation.

Let p = (x, y) ∈ A. Let q ∈ Tp such that p � q. Then x is rational and q = (z, y
2
) where

z is a rational number with 1 ≤ z ≤ 1−x
2

.

Then it is possible to find a rational number ω such that −z−1
2
≤ ω ≤ −1. Then r =

(ω, y
4
) ∈ Tq such that q � r. The case where p = (x, y) ∈ B is similar.

Further with any p0 = (x0, y0) ∈ A with x0 rational, we can find r0 = (x1, y1) ∈ Tp0 with

x1 = 1+x0
2

and y1 = y0
2

such that p0 � r0.

Also the inequality (2.1) is satisfied for any p ∈ A and q ∈ B with either p � q or q � p

with

φ(t) =

 kt, if 0 ≤ k ≤ 1

1
2

if t > 1 where 0 < k < 1.

Then by an application of theorem 2.1, there exists a best proximity point of T in A.

Remark 2.1. In the above example, the inequality is not satisfied for arbitrary choices of

x ∈ A and y ∈ B. Further, the inequality is also not satisfied for arbitrary choices of p and

q with the following q ∈ Tp. We also see that the multivalued function T is discontinuous.

Corollary 2.2. Let (X, d) be a complete metric space and (A, B) be a pair of nonempty

closed subsets of X. Let T : A ∪B → A ∪B be a cyclic mapping such that
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(i) T is monotone increasing (Definition 1.5),

(ii) there exists x0 ∈ A such that x0 � x1 for some x1 ∈ B,

(iii) when x ∈ A and y ∈ B, either x � y or y � x and φ is a MT-function

d(Tx, Ty) ≤ φ(d(x, y))d(x, y) + (1− φ(d(x, y)))d(A, B).

Also for any monotone increasing sequence {xn} → x, xn � x for all x.

Then T has a best proximity point in A.

Remark 2.2. Corollary 2.2 is a generalization of [15] and [16] in partially ordered metric

spaces.

Example 2.2. Let d(X, d) be a metric with X = R2 and

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| for all (x1, x2), (y1, y2) ∈ R2.

Let A = (−∞, −1]×R and B = [1, ∞)×R.

Here d(A, B) = 2 and (A,B) and (B,A) satisfy the property UC.

We define a partial order on X as (x1, y1) � (x2, y2) iff either x1 = x2, y1 = y2 or

−1− |x1−1|
2
≤ x2 ≤ 1 + |x1−1|

2
, |y1| > |y2|.

Define the cyclic mapping T : A ∪B → C(A) ∪ C(B) by

T (x, y) =

 {(p, y
2
) : 1 ≤ p ≤ 1−x

2
}, if (x, y) ∈ A,

{(p, y
2
) : −1−x

2
≤ p ≤ −1}, if (x, y) ∈ B.

Let

φ(t) =

 kt, if 0 ≤ k ≤ 1

1
2

if t > 1 where 0 < k < 1.

Then T is approximately monotone increasing and corollary 2.1 is applicable to this

example.

Remark 2.3. T is not monotone increasing (Definition 1.5). Therefore corollary 2.2 is not

applicable.
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