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Abstract

In this paper, we introduce a projected algorithm with Meir-Keeler contraction for finding the fixed points
of the pseudocontractive mappings. We prove that the presented algorithm converges strongly to the fixed
point of the pseudocontractive mapping in Hilbert spaces.
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1. Introduction

In this paper, we assume that H is a real Hilbert space with inner 〈·, ·〉 and norm ‖ · ‖ and C ⊂ H is a
nonempty closed convex set.

Recall that a mapping T : C → C is said to be pseudocontractive if

〈Tu− Tu†, u− u†〉 ≤ ‖u− u†‖2, ∀u, u† ∈ C. (1.1)

It is clear that (1.1) is equivalent to

‖Tu− Tu†‖2 ≤ ‖u− u†‖2 + ‖(I − T )u− (I − T )u†‖2, ∀u, u† ∈ C. (1.2)
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We use Fix(T ) to denote the set of fixed points of T . Recall also that a mapping T : C → C is said to be
L-Lipschitzian if

‖Tu− Tu†‖ ≤ L‖u− u†‖, ∀u, u† ∈ C,

where L > 0 is a constant. If L = 1, T is called nonexpansive.
The interest of pseudocontractions lies in their connection with monotone operators; namely, T is a

pseudocontraction if and only if the complement I − T is a monotone operator. In the literature, there
are a large number references associated with the fixed point algorithms for nonexpansive mappings and
pseudocontractive mappings. See, for instance, [1]-[16] and [21]-[31]. The first interesting result for finding
the fixed points of the pseudocontractive mappings was presented by Ishikawa in 1974 as follows.

Theorem 1.1. (Ishikawa Algorithm, [5]) Let H be a Hilbert space. Let C ⊂ H be a convex compact set.
Let T : C → C be an L-Lipschitzian pseudocontractive mapping with Fix(T ) 6= ∅. For any x0 ∈ C, define
the sequence {xn} iteratively by{

yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)xn + βnTyn,
(1.3)

for all n ∈ N, where {βn} ⊂ [0, 1], {αn} ⊂ [0, 1] satisfy the conditions: limn→∞ αn = 0 and
∑∞

n=1 βnαn =∞.
Then the sequence {xn} generated by (1.3) converges strongly to a fixed point of T .

Remark 1.2. The iteration (1.3) is now refereed as the Ishikawa iterative sequence. We observe that C is
compact subset. We know that strong convergence have not been achieved without compactness assumption
(a counter example can be found in [2]).

In order to obtain strong convergence for pseudocontractive mappings without the compactness assump-
tion, Zhou [15] coupled the Ishikawa algorithm with the hybrid technique and proved the following theorem
for Lipschitz pseudocontractive mappings.

Theorem 1.3. (Hybrid Ishikawa Algorithm, [15]) Let C be a closed convex subset of a real Hilbert
space H and let T : C → C be a Lipschitz pseudocontraction such that Fix(T ) 6= ∅. Suppose that {αn}
and {βn} are two real sequences in (0, 1) satisfying the conditions: (i) αn ≤ βn for all n ∈ N, (ii) 0 <
lim infn→∞ βn ≤ lim supn→∞ βn ≤ β < 1√

1+L2+1
. Let the sequence {xn} be generated by

yn = (1− βn)xn + βnTxn,

zn = (1− αn)xn + αnTyn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ xn − z‖2 − βnαn(1− 2βn − β2nL2)‖xn − Txn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = projCn

⋂
Qn

(x0), n ∈ N.

(1.4)

Then the sequence {xn} generated by (1.4) converges strongly to projFix(T )(x0).

Further, Yao, Liou and Marino [10] introduced the hybrid Mann algorithm and obtained the strong
convergence theorem.

Theorem 1.4. (Hybrid Mann Algorithm, [10]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C → C be an L-Lipschitz pseudocontractive mapping such that Fix(T ) 6= ∅. Let
{αn} be a sequence in (0, 1). Let x0 ∈ H. For C1 = C and x1 = projC1(x0), define a sequence {xn} of C as
follows:

yn = (1− αn)xn + αnTxn,

Cn+1 = {z ∈ Cn : ‖αn(I − T )yn‖2 ≤ 2αn〈xn − z, (I − T )yn〉},
xn+1 = projCn+1(x0), n ∈ N.

(1.5)

Assume the sequence {αn} ⊂ [a, b] for some a, b ∈ (0, 1
L+1). Then the sequence {xn} generated by (1.5)

converges strongly to projFix(T )(x0).
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Motivated and inspired by the above results, in this paper, we introduce a projected algorithm with
Meir-Keeler contraction for finding the fixed points of the pseudocontractive mappings. We prove that
the presented algorithm converges strongly to the fixed point of the pseudocontractive mapping in Hilbert
spaces.

2. Preliminaries

Recall that the metric projection projC : H → C satisfies

‖u− projC(u)‖ = inf{‖u− u†‖ : u† ∈ C}.

The metric projection proj is a typical firmly nonexpansive mapping. The characteristic inequality of the
projection is

〈u− projC(u), u† − projC(u)〉 ≤ 0

for all u ∈ H, u† ∈ C.
Recall that a mapping T is said to be demiclosed if, for any sequence {xn} which weakly converges to

x̃, and if the sequence {T (xn)} strongly converges to x†, then T (x̃) = x†.
It is well-known that in a real Hilbert space H, the following equality holds:

‖ξu+ (1− ξ)u†‖2 = ξ‖u‖2 + (1− ξ)‖u†‖2 − ξ(1− ξ)‖u− u†‖2 (2.1)

for all u, u† ∈ H and ξ ∈ [0, 1].

Lemma 2.1. ([15]) Let H be a real Hilbert space, C a closed convex subset of H. Let T : C → C be a
continuous pseudocontractive mapping. Then

(i) Fix(T ) is a closed convex subset of C;

(ii) (I − T ) is demiclosed at zero.

For convenient, in the sequel we shall use the following expressions:

• xn ⇀ x† denotes the weak convergence of xn to x†;

• xn → x† denotes the strong convergence of xn to x†.

Let the sequence {Cn} be a nonempty closed convex subset of a Hilbert space H. We define s− LinCn

and w − LsnCn as follows.

• x ∈ s− LinCn if and only if there exists {xn} ⊂ Cn such that xn → x.

• x ∈ w − LsnCn if and only if there exists a subsequence {Cni} of {Cn} and a sequence {yi} ⊂ Cni

such that yi ⇀ y.

If C0 satisfies

C0 = s− LinCn = w − LsnCn,

it is said that {Cn} converges to C0 in the sense of Mosco [17] and we write C0 = M − limn→∞Cn. It is
easy to show that if {Cn} is nonincreasing with respect to inclusion, then {Cn} converges to

⋂∞
n=1Cn in the

sense of Mosco. Tsukada [18] proved the following theorem for the metric projection.

Lemma 2.2. ([18]) Let H be a Hilbert space. Let {Cn} be a sequence of nonempty closed convex subsets of
H. If C0 = M − limn→∞Cn exists and is nonempty, then for each x ∈ H, {projCn(x)} converges strongly
to projC0(x), where projCn and projC0 are the metric projections of H onto Cn and C0, respectively.
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Let (X, d) be a complete metric space. A mapping f : X → X is called a Meir-Keeler contraction ([19])
if for every ε > 0, there exists δ > 0 such that

d(x, y) < ε+ δ implies d(f(x), f(y)) < ε

for all x, y ∈ X. It is well known that the Meir-Keeler contraction is a generalization of the contraction.

Lemma 2.3. ([19]) A Meir-Keeler contraction defined on a complete metric space has a unique fixed point.

Lemma 2.4. ([20]) Let f be a Meir-Keeler contraction on a convex subset C of a Banach space E. Then,
for every ε > 0, there exists r ∈ (0, 1) such that

‖x− y‖ ≥ ε implies ‖f(x)− f(y)‖ ≤ r‖x− y‖

for all x, y ∈ C.

Lemma 2.5. ([20]) Let C be a convex subset of a Banach space E. Let T be a nonexpansive mapping on
C, and let f be a Meir-Keeler contraction on C. Then the following hold.

(i) Tf is a Meir-Keeler contraction on C;

(ii) For each α ∈ (0, 1), (1− α)T + αf is a Meir-Keeler contraction on C.

3. Main results

In this section, we firstly introduce a projected fixed point algorithm with Meir-Keeler contraction
for pseudocontractive mappings in Hilbert spaces. Consequently, we show the strong convergence of our
presented algorithm.

In the sequel, we assume that H is a real Hilbert space and C ⊂ H is a nonempty closed convex set.
Let T : C → C be an L(> 1)-Lipschitzian pseudocontractive mapping with Fix(T ) 6= ∅. Let f : C → C be
a Meir-Keeler contractive mapping. Let {αn} and {βn} be two sequences in [0, 1].

Algorithm 3.1. For x0 ∈ C0 = C arbitrarily, define a sequence {xn} iteratively by
yn = (1− βn)xn + βnTxn,

Cn+1 = {z ∈ Cn : ‖(1− αn)xn + αnTyn − z‖ ≤ ‖xn − z‖},
xn+1 = projCn+1f(xn),∀n ≥ 0,

(3.1)

where proj is the metric projection.

Theorem 3.2. If 0 < a < αn ≤ βn < b < 1√
1+L2+1

, then the sequence {xn} defined by (3.1) converges

strongly to x† = projFix(T )f(x†).

Remark 3.3. By Lemma 2.1, Fix(T ) is a closed convex subset of C. Thus, projFix(T ) is well-defined. Since
f is a Meir-Keeler contraction of C, we get projFix(T )f is a Meir-Keeler contraction of C by Lemma 2.5.

According to Lemma 2.3, there exists a unique fixed point x† ∈ C such that x† = projFix(T )f(x†).

Proof. We first show by induction that Fix(T ) ⊂ Cn for all n ≥ 0.
(i) Fix(T ) ⊂ C0 is obvious.
(ii) Suppose that Fix(T ) ⊂ Ck for some k ∈ N. Then, for x∗ ∈ Fix(T ) ⊂ Ck, we have from (1.2) that

‖Txn − x∗‖2 ≤ ‖xn − x∗‖2 + ‖Txn − xn‖2, (3.2)

and

‖Tyn − x∗‖2 = ‖T ((1− βn)I + βnT )xn − x∗‖2

≤ ‖(1− βn)(xn − x∗) + βn(Txn − x∗)‖2 + ‖(1− βn)xn + βnTxn − Tyn‖2.
(3.3)
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From (2.1), we have that

‖(1− βn)xn + βnTxn − Tyn‖2 = ‖(1− βn)(xn − Tyn) + βn(Txn − Tyn)‖2

= (1− βn)‖xn − Tyn‖2 + βn‖Txn − Tyn‖2

− βn(1− βn)‖xn − Txn‖2.
(3.4)

Since T is L-Lipschitzian and xn − yn = βn(xn − Txn), by (3.4), we get that

‖(1− βn)xn + βnTxn − Tyn‖2 ≤ (1− βn)‖xn − Tyn‖2 + β3nL
2‖xn − Txn‖2

− βn(1− βn)‖xn − Txn‖2

= (1− βn)‖xn − Tyn‖2 + (β3nL
2 + β2n − βn)‖xn − Txn‖2.

(3.5)

By (2.1) and (3.2), we have that

‖(1− βn)(xn − x∗) + βn(Txn − x∗)‖2 = ‖(1− βn)(xn − x∗) + βn(Txn − x∗)‖2

= (1− βn)‖xn − x∗‖2 + βn‖Txn − x∗‖2

− βn(1− βn)‖xn − Txn‖2

≤ (1− βn)‖xn − x∗‖2 + βn(‖xn − x∗‖2 + ‖xn − Txn‖2)
− βn(1− βn)‖xn − Txn‖2

= ‖xn − x∗‖2 + β2n‖xn − Txn‖2.

(3.6)

By (3.3), (3.5) and (3.6), we obtain that

‖Tyn − x∗‖2 ≤ ‖x− x∗‖2 + (1− βn)‖xn − Tyn‖2 − βn(1− 2βn − β2nL2)‖xn − Txn‖2. (3.7)

Since βn < b < 1√
1+L2+1

, we derive that

1− 2βn − β2nL2 > 0,∀n ≥ 0.

This together with (3.7) implies that

‖Tyn − x∗‖2 ≤ ‖xn − x∗‖2 + (1− βn)‖xn − Tyn‖2. (3.8)

By (2.1) and (3.8) and noting that αn ≤ βn, we have that

‖(1− αn)xn + αnTyn − x∗‖2 = (1− αn)‖xn − x∗‖2 + αn‖Tyn − x∗‖2

− αn(1− αn)‖xn − Tyn‖2

≤ ‖xn − x∗‖2 − αn(βn − αn)‖Tyn − x∗‖2

≤ ‖xn − x∗‖2,

and hence x∗ ∈ Ck+1. This indicates that
Fix(T ) ⊂ Cn

for all n ≥ 0.
Next, we show that Cn is closed and convex for all n ≥ 0.
(i) It is obvious from the assumption that C0 = C is closed convex.
(ii) Suppose that Ck is closed and convex for some k ∈ N . For z ∈ Ck, we know that ‖(1 − αk)xk +

αkTyk − z‖ ≤ ‖xk − z‖ is equivalent to

αk‖Tyk − xk‖2 + 2〈Tyk − xk, xk − z〉 ≤ 0.

So, Ck+1 is closed and convex. By induction, we deduce that Cn is closed and convex for all n ≥ 0. This
implies that {xn} is well-defined.
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Next, we prove that
lim
n→∞

‖xn − u‖ = 0

for some u ∈ ∩∞n=1Cn and
〈f(u)− u, u− y〉 ≥ 0

for all y ∈ Fix(T ).
Since

⋂∞
n=1Cn is closed convex, we also have that proj⋂∞

n=1 Cn
is well-defined and so proj⋂∞

n=1 Cn
f is a

Meir-Keeler contraction on C. By Lemma 2.3, there exists a unique fixed point u ∈
⋂∞

n=1Cn of proj⋂∞
n=1 Cn

f .
Since Cn is a nonincreasing sequence of nonempty closed convex subset of H with respect to inclusion, it
follow that

∅ 6= Fix(T ) ⊂
∞⋂
n=1

Cn = M − lim
n→∞

Cn.

Setting un := projCnf(u) and applying Lemma 2.2, we can conclude that

lim
n→∞

un = proj⋂∞
n=1 Cn

f(u) = u.

Now we show that limn→∞ ‖xn − u‖ = 0.
Assume d = limn‖xn − u‖ > 0, then 0 < ∀ε < d, we can choose a δ1 > 0 such that

lim
n
‖xn − u‖ > ε+ δ1. (3.9)

Since f is a Meir-Keeler contraction, for above ε, there exists another δ2 > 0 such that

‖x− y‖ < ε+ δ2 implies ‖f(x)− f(y)‖ < ε, (3.10)

for all x, y ∈ C.
In fact, we can choose a common δ > 0 such that (3.9) and (3.10) hold. If δ1 > δ2, then

lim
n
‖xn − u‖ > ε+ δ1 > ε+ δ2.

If δ1 ≤ δ2, then from (3.10), we deduce that

‖x− y‖ < ε+ δ1 implies ‖f(x)− f(y)‖ < ε,

for all x, y ∈ C.
Thus, we have that

lim
n
‖xn − u‖ > ε+ δ, (3.11)

and

‖x− y‖ < ε+ δ implies ‖f(x)− f(y)‖ < ε for all x, y ∈ C. (3.12)

Since un → u, there exists n0 ∈ N such that

‖un − u‖ < δ, ∀n ≥ n0 (3.13)

We now consider two possible cases.
Case 1. There exists n1 ≥ n0 such that

‖xn1 − u‖ ≤ ε+ δ.

By (3.12) and (3.13), we get that

‖xn1+1 − u‖ ≤ ‖xn1+1 − un1+1‖+ ‖un1+1 − u‖
= ‖projCn1+1f(xn1)− projCn1+1f(u)‖+ ‖un1+1 − u‖
≤ ‖f(xn1)− f(u)‖+ ‖un1+1 − u‖
≤ ε+ δ.
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By induction, we can obtain that

‖xn1+m − u‖ ≤ ε+ δ,

for all m ≥ 1, which implies that

lim
n
‖xn − u‖ ≤ ε+ δ,

which contradicts with (3.11). Therefore, we conclude that ‖xn − u‖ → 0 as n→∞.
Case 2. ‖xn − u‖ > ε+ δ for all n ≥ n0.
We shall prove that case 2 is impossible. Suppose case 2 holds true. By Lemma 2.4, there exists r ∈ (0, 1)

such that

‖f(xn)− f(u)‖ ≤ r‖xn − u‖,∀n ≥ n0.

Thus, we have that

‖xn+1 − un+1‖ = ‖projCn+1f(xn)− projCn+1f(u)‖
≤ ‖f(xn)− f(u)‖
≤ r‖xn − u‖,

for every n ≥ n0.
It follows that

lim
n
‖xn+1 − u‖ = lim

n
‖xn+1 − un+1‖

≤ rlim
n
‖xn − u‖

< lim
n
‖xn − u‖,

which gives a contradiction.
Hence, we obtain that

lim
n→∞

‖xn − u‖ = 0,

and therefore, {xn} is bounded.
Finally, we prove that u ∈ Fix(T ).
Observe that

‖xn+1 − xn‖ ≤ ‖xn − u‖+ ‖u− un+1‖+ ‖un+1 − xn+1‖
= ‖xn − u‖+ ‖u− un+1‖+ ‖projCn+1f(xn)− projCn+1f(u)‖
≤ ‖xn − u‖+ ‖u− un+1‖+ ‖f(xn)− f(u)‖.

Therefore,

lim
n→∞

‖xn+1 − xn‖ = 0. (3.14)

From xn+1 ∈ Cn+1, we have that

‖(1− αn)xn + αnTyn − xn+1‖ ≤ ‖xn − xn+1‖.

This together with (3.14) implies that

lim
n→∞

‖Tyn − xn‖ = 0.

Note that

‖xn − Txn‖ ≤ ‖xn − Tyn‖+ ‖Tyn − Txn‖
≤ ‖xn − Tyn‖+ L‖xn − yn‖
≤ ‖xn − Tyn‖+ L(1− βn)‖xn − Txn‖.
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It follows that

‖xn − Txn‖ ≤
1

1− (1− βn)L
‖xn − Tyn‖ ≤

1

1− (1− a)L
‖xn − Tyn‖ → 0. (3.15)

By Lemma 2.1 and (3.15), we have that u ∈ Fix(T ).
Since xn+1 = projCn+1f(xn), we have that

〈f(xn)− xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Cn+1.

Since Fix(T ) ⊂ Cn+1, we get that

〈f(xn)− xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Fix(T ).

We have from xn → u ∈ Fix(T ) that

〈f(u)− u, u− y〉 ≥ 0, ∀y ∈ Fix(T ).

Thus, u = projFix(T )f(u) = x†. This completes the proof.

Remark 3.4. It is obvious that (3.1) is simpler than (1.4) and (1.5).

From Theorem 3.2, we can deduce several corollaries.

Corollary 3.5. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C
be an L(> 1)-Lipschitzian pseudocontractive mapping with Fix(T ) 6= ∅. Let f : C → C be a ρ-contraction.
Let {αn} and {βn} be two sequences in [0, 1]. If 0 < a < αn ≤ βn < b < 1√

1+L2+1
, then the sequence {xn}

defined by (3.1) converges strongly to x† = projFix(T )f(x†).

Corollary 3.6. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be
a nonexpansive mapping with Fix(T ) 6= ∅. Let f : C → C be a Meir-Keeler contractive mapping. Let {αn}
and {βn} be two sequences in [0, 1]. If 0 < a < αn ≤ βn < b < 1

1+
√
2
, then the sequence {xn} defined by

(3.1) converges strongly to x† = projFix(T )f(x†).

Corollary 3.7. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C
be a nonexpansive mapping with Fix(T ) 6= ∅. Let f : C → C be a ρ-contraction. Let {αn} and {βn} be
two sequences in [0, 1]. If 0 < a < αn ≤ βn < b < 1

1+
√
2
, then the sequence {xn} defined by (3.1) converges

strongly to x† = projFix(T )f(x†).

Algorithm 3.8. For x0 ∈ C0 = C arbitrarily, define a sequence {xn} iteratively by
yn = (1− βn)xn + βnTxn,

Cn+1 = {z ∈ Cn : ‖(1− αn)xn + αnTyn − z‖ ≤ ‖xn − z‖},
xn+1 = projCn+1(x0), ∀n ≥ 0,

(3.16)

where proj is the metric projection.

Corollary 3.9. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be
an L(> 1)-Lipschitzian pseudocontractive mapping with Fix(T ) 6= ∅. Let {αn} and {βn} be two sequences
in [0, 1]. If 0 < a < αn ≤ βn < b < 1√

1+L2+1
, then the sequence {xn} defined by (3.16) converges strongly to

x† = projFix(T )(x0).

Corollary 3.10. Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let T : C → C be
a nonexpansive mapping with Fix(T ) 6= ∅. Let {αn} and {βn} be two sequences in [0, 1]. If 0 < a < αn ≤
βn < b < 1

1+
√
2
, then the sequence {xn} defined by (3.16) converges strongly to x† = projFix(T )(x0).



Y. Yao, N. Shahzad, Y. C. Liou, L. J. Zhu, J. Nonlinear Sci. Appl. 0 (0000), 000–000 9

Acknowledgments

Yeong-Cheng Liou was supported in part by NSC 101-2628-E-230-001-MY3 and NSC 101-2622-E-230-
005-CC3. Li-Jun Zhu was supported in part by NNSF of China (61362033).

References

[1] L. C. Ceng, A. Petrusel, J. C. Yao, Strong convergence of modified implicit iterative algorithms with perturbed mappings
for continuous pseudocontractive mappings, Appl. Math. Comput., 209(2009), 162–176. 1

[2] C.E. Chidume, S. A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc.
Amer. Math. Soc., 129(2001), 2359–2363. 1.2

[3] C. E. Chidume, M. Abbas, B. Ali, Convergence of the Mann iteration algorithm for a class of pseudocontractive mappings,
Appl. Math. Comput., 194(2007), 1–6.

[4] L. Ciric, A. Rafiq, N. Cakic, J. S. Ume, Implicit Mann fixed point iterations for pseudocontractive mappings, Appl. Math.
Lett., 22(2009), 581–584.

[5] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147–150. 1.1
[6] C. Moore, B. V. C. Nnoli, Strong convergence of averaged approximants for Lipschitz pseudocontractive maps, J. Math.

Anal. Appl., 260(2001), 269–278.
[7] Y. Yao, M. Postolache, Y. C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed

Point Theory Appl., 2013(2013), 12 pages.
[8] A. Udomene, Path convergence, approximation of fixed points and variational solutions of Lipschitz pseudocontractions in

Banach spaces, Nonlinear Anal., 67(2007), 2403–2414.
[9] Y. Yao, M. Aslam Noor, S. Zainab, Y.C. Liou, Mixed equilibrium problems and optimization problems, J. Math. Anal.

Appl., 354(2009), 319–329.
[10] Y. Yao, Y.C. Liou, G. Marino, A hybrid algorithm for pseudo-contractive mappings, Nonlinear Anal., 71(2009), 997–5002.

1, 1.4
[11] Y. Yao, M. Postolache, Y.C. Liou, Coupling Ishikawa algorithms with hybrid techniques for pseudocontractive mappings,

Fixed Point Theory Appl., 2013(2013), 8 pages.
[12] H. Zegeye, N. Shahzad, T. Mekonen, Viscosity approximation methods for pseudocontractive mappings in Banach spaces,

Appl. Math. Comput., 185(2007), 538–546.
[13] H. Zegeye, N. Shahzad, M. A. Alghamdi, Convergence of Ishikawas iteration method for pseudocontractive mappings,

Nonlinear Anal., 74(2011), 7304–7311.
[14] H. Zegeye, N. Shahzad, An algorithm for a common fixed point of a family of pseudocontractive mappings, Fixed Point

Theory Appl., 2013(2013), 14 pages.
[15] H. Zhou, Convergence theorems of fixed points for Lipschitz pseudocontractions in Hilbert spaces, J. Math. Anal. Appl.,

343(2008) 546–556. 1, 1.3, 2.1
[16] H. Zhou, Strong convergence of an explicit iterative algorithm for continuous pseudocontractions in Banach spaces, Non-

linear Anal., 70(2009), 4039–4046. 1
[17] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics, 3(1969),

510–585. 2
[18] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. Approximation Theory, 40(1984), 301–309.

2, 2.2
[19] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326–329. 2, 2.3
[20] T. Suzuki, Moudafi’s viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl., 325(2007), 342–352.

2.4, 2.5
[21] Y. Yao, M. Postolache, S. M. Kang, Strong convergence of approximated iterations for asymptotically pseudocontractive

mappings, Fixed Point Theory Appl., 2014(2014), 13 pages. 1
[22] Y. Yao, Y. C. Liou, J. C. Yao, Split common fixed point problem for two quasi-pseudo-contractive operators and its algorithm

construction, Fixed Point Theory Appl., 2015(2015), 19 pages.
[23] Y. Yao, N, Shahzad, Implicit and explicit methods for finding fixed points of strictly pseudo-contractive mappings in Banach

spaces, J. Nonlinear Convex Anal., 13(2012), 183–194.
[24] Y. Yao, N. Shahzad, New methods with perturbations for non-expansive mappings in Hilbert spaces, Fixed Point Theory

Appl., 2011(2011), 9 pages.
[25] Y. J. Cho, X. Qin, H. Zhou, Strong convergence theorems of fixed points for quasi-pseudo-contractions by hybrid projection

algorithms, Fixed Point Theory, 11(2010), 347–354.
[26] Y. J. Cho, S. M. Kang, X. Qin, Strong convergence of an implicit iterative process for an infinite family of strict pseudo-

contractions, Bull. Korean Math. Soc., 47(2010), 1259–1268.
[27] W. Guo, M. S. Choi, Y. J. Cho, Convergence theorems for continuous pseudocontractive mappings with applications, J.

Inequal. Appl., 2014(2014), 10 pages.
[28] N. Shahzad, N. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal.

71(2009), 838–844.



Y. Yao, N. Shahzad, Y. C. Liou, L. J. Zhu, J. Nonlinear Sci. Appl. 0 (0000), 000–000 10

[29] H. Zegeye, N. Shahzad, Approximating common solution of variational inequality problems for two monotone mappings in
Banach spaces, Optim. Lett. 5(2011), 691–704.

[30] H. Zegeye, N. Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings,
Nonlinear Anal. 70 (2009), 2707–2716.

[31] H. Zegeye, E. U. Ofoedu, N. Shahzad, Convergence theorems for equilibrium problem, variational inequality problem and
countably infinite relatively quasi-nonexpansive mappings, Appl. Math. Comput. 216 (2010), 3439–3449. 1


	1 Introduction
	2 Preliminaries
	3 Main results

