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Abstract. In this paper, we introduce one multistep relaxed implicit
extragradient-like scheme and another multistep relaxed explicit extragradient-
like scheme for finding a common element of the set of solutions of the
minimization problem for a convex and continuously Fréchet differen-
tiable functional, the set of solutions of a finite family of generalized
mixed equilibrium problems and the set of solutions of a finite family
of variational inequalities for inverse strongly monotone mappings in
a real Hilbert space. Under suitable control conditions, we establish
the strong convergence of these two multistep relaxed extragradient-like
schemes to the same common element of the above three sets, which
is also the unique solution of a variational inequality defined over the
intersection of the above three sets.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, C
be a nonempty closed convex subset of H and PC be the metric projection
of H onto C. Let T : C → C be a self-mapping on C. We denote by Fix(T )
the set of fixed points of T and by R the set of all real numbers. A mapping
A : H → H is called γ̄-strongly positive on H if there exists a constant
γ̄ > 0 such that

⟨Ax, x⟩ ≥ γ̄∥x∥2, ∀x ∈ H.

A mapping F : C → H is called L-Lipschitz continuous if there exists a
constant L ≥ 0 such that

∥Fx− Fy∥ ≤ L∥x− y∥, ∀x, y ∈ C.
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In particular, if L = 1 then F is called a nonexpansive mapping; if L ∈ [0, 1)
then F is called a contraction. A mapping T : C → C is called k-strictly
pseudocontractive (or a k-strict pseudocontraction) if there exists a constant
k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C.

In particular, if k = 0, then T is a nonexpansive mapping. The mapping T
is pseudocontractive if and only if

⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2, ∀x, y ∈ C.

T is strongly pseudocontractive if and only if there exists a constant λ ∈
(0, 1) such that

⟨Tx− Ty, x− y⟩ ≤ λ∥x− y∥2, ∀x, y ∈ C.

Let A : C → H be a nonlinear mapping on C. The variational inequality
problem (VIP) associated with the set C and the mapping A is stated as
follows: find x∗ ∈ C such that

(1.1) ⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C.

The solution set of VIP (1.1) is denoted by VI(C,A).
There are many applications of VIP (1.1) in various fields. In 1976, Ko-

rpelevich [17] proposed an iterative algorithm for solving VIP (1.1) in Eu-
clidean space Rn:

(1.2)

{
yn = PC(xn − τAxn),
xn+1 = PC(xn − τAyn), ∀n ≥ 0,

with τ > 0 a given number, which is known as the extragradient method.
The literature on the VIP is vast and Korpelevich’s extragradient method
has received great attention given by many authors, who improved it in
various ways; see e.g., [7, 8, 9, 10, 13, 15, 20] and references therein.

On the other hand, let φ : C → R be a real-valued function, A : C → H
be a nonlinear mapping and Θ : C × C → R be a bifunction. In 2008,
Peng and Yao [20] introduced the following generalized mixed equilibrium
problem (GMEP) of finding x ∈ C such that

(1.3) Θ(x, y) + φ(y)− φ(x) + ⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C.

We denote the set of solutions of GMEP (1.3) by GMEP(Θ , φ,A). The
GMEP (1.3) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash
equilibrium problems in noncooperative games and others. The GMEP (1.3)
contains GEP [8], MEP [14] and EP [26] as particular cases.

It was assumed in [20] that Θ : C × C → R is a bifunction satisfying
conditions (A1)-(A4) and φ : C → R is a lower semicontinuous and convex
function with restriction (B1) or (B2), where

• (A1) Θ(x, x) = 0 for all x ∈ C;
• (A2) Θ is monotone, i.e., Θ(x, y) +Θ(y, x) ≤ 0 for any x, y ∈ C;
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• (A3) Θ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

• (A4) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
• (B1) for each x ∈ H and r > 0, there exists a bounded subset
Dx ⊂ C and yx ∈ C such that for any z ∈ C \Dx,

Θ(z, yx) + φ(yx)− φ(z) +
1

r
⟨yx − z, z − x⟩ < 0;

• (B2) C is a bounded set.

Given a positive number r > 0. Let T
(Θ ,φ)
r : H → C be the solution set

of the auxiliary mixed equilibrium problem, that is, for each x ∈ H,

T (Θ ,φ)
r (x) := {y ∈ C : Θ(y, z) + φ(z)− φ(y) +

1

r
⟨y − x, z − y⟩ ≥ 0, ∀z ∈ C}.

In particular, if φ ≡ 0 then T
(Θ ,φ)
r is rewritten as TΘ

r : H → C, i.e.,

TΘ
r (x) := {y ∈ C : Θ(y, z) +

1

r
⟨y − x, z − y⟩ ≥ 0, ∀z ∈ C}.

Furthermore, let f : C → R be a convex and continuously Fréchet differ-
entiable functional. Consider the convex minimization problem (CMP) of
minimizing f over the constraint set C

(1.4) min
x∈C

f(x)

(assuming the existence of minimizers). We denote by Ξ the set of minimiz-
ers of CMP (1.4).

Motivated and inspired by the above facts, we introduce one multistep
relaxed implicit extragradient-like scheme and another multistep relaxed ex-
plicit extragradient-like scheme for finding a common element of the set of
solutions of the CMP (1.4) for a convex functional f : C → R with L-
Lipschitz continuous gradient ∇f , the set of solutions of a finite family of
GMEPs and the set of solutions of a finite family of variational inequali-
ties for inverse-strongly monotone mappings in a real Hilbert space. Under
suitable control conditions, we establish the strong convergence of these two
multistep relaxed extragradient-like schemes to the same common element
of the above three sets, which is also the unique solution of a variational
inequality defined over the intersection of the above three sets. We also re-
fer readers to [1, 2, 3, 5, 6, 12] and references therein for some more related
papers published recently.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space whose
inner product and norm are denoted by ⟨·, ·⟩ and ∥·∥, respectively. Let C be
a nonempty closed convex subset of H. We write xn ⇀ x to indicate that
the sequence {xn} converges weakly to x and xn → x to indicate that the
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sequence {xn} converges strongly to x. Moreover, we use ωw(xn) to denote
the weak ω-limit set of the sequence {xn}, i.e.,

ωw(xn) := {x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}}.
The metric (or nearest point) projection from H onto C is the mapping

PC : H → C which assigns to each point x ∈ H the unique point PCx ∈ C
satisfying the property

∥x− PCx∥ = inf
y∈C

∥x− y∥ =: d(x,C).

The following properties of projections are useful and pertinent to our
purpose.

Proposition 2.1. Given any x ∈ H and z ∈ C. One has

(i) z = PCx ⇔ ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C;
(ii) z = PCx ⇔ ∥x− z∥2 ≤ ∥x− y∥2 − ∥y − z∥2, ∀y ∈ C;
(iii) ⟨PCx− PCy, x− y⟩ ≥ ∥PCx− PCy∥2, ∀y ∈ H, which hence implies

that PC is nonexpansive and monotone.

Definition 2.2. A mapping T : H → H is said to be firmly nonexpansive if
2T − I is nonexpansive, or equivalently, if T is 1-inverse strongly monotone
(1-ism),

⟨x− y, Tx− Ty⟩ ≥ ∥Tx− Ty∥2, ∀x, y ∈ H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.

Definition 2.3. A mapping F : C → H is said to be

(i) monotone if

⟨Fx− Fy, x− y⟩ ≥ 0, ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η > 0 such that

⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2, ∀x, y ∈ C;

(iii) α-inverse-strongly monotone if there exists a constant α > 0 such
that

⟨Fx− Fy, x− y⟩ ≥ α∥Fx− Fy∥2, ∀x, y ∈ C.

It can be easily seen that if T is nonexpansive, then I−T is monotone. It
is also easy to see that the projection PC is 1-ism. Inverse strongly monotone
(also referred to as co-coercive) operators have been applied widely in solving
practical problems in various fields.

On the other hand, it is obvious that if F : C → H is α-inverse-strongly
monotone, then F is monotone and 1

α -Lipschitz continuous. Moreover, we
also have that, for all u, v ∈ C and λ > 0,

(2.1) ∥(I − λF )u− (I − λF )v∥2 ≤ ∥u− v∥2 + λ(λ− 2α)∥Fu− Fv∥2.
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So, if λ ≤ 2α, then I − λF is a nonexpansive mapping from C to H.
Next we list some elementary conclusions for the MEP whose solution is

denoted by MEP(Θ , φ).

Proposition 2.4. (see [14]) Assume that Θ : C × C → R satisfies (A1)-
(A4) and let φ : C → R be a proper lower semicontinuous and convex
function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H,

define a mapping T
(Θ ,φ)
r : H → C as follows:

T (Θ ,φ)
r (x) = {z ∈ C : Θ(z, y) + φ(y)− φ(z) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}

for all x ∈ H. Then the following hold:

(i) for each x ∈ H, T
(Θ ,φ)
r (x) is nonempty and single-valued;

(ii) T
(Θ ,φ)
r is firmly nonexpansive, that is, for any x, y ∈ H,

∥T (Θ ,φ)
r x− T (Θ ,φ)

r y∥2 ≤ ⟨T (Θ ,φ)
r x− T (Θ ,φ)

r y, x− y⟩;

(iii) Fix(T
(Θ ,φ)
r ) = MEP(Θ , φ);

(iv) MEP(Θ , φ) is closed and convex;

(v) ∥T (Θ ,φ)
s x− T

(Θ ,φ)
t x∥2 ≤ s−t

s ⟨T (Θ ,φ)
s x − T

(Θ ,φ)
t x, T

(Θ ,φ)
s x − x⟩ for all

s, t > 0 and x ∈ H.

Definition 2.5. A mapping T : H → H is said to be an averaged mapping
if it can be written as the average of the identity I and a nonexpansive
mapping, that is,

T ≡ (1− α)I + αS

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when the
last equality holds, we say that T is α-averaged. Thus firmly nonexpansive
mappings (in particular, projections) are 1

2 -averaged mappings.

Definition 2.6. (see [4]) Let S, T, V : H → H be given operators.

(i) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is averaged and
V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement I−T is firmly
nonexpansive.

(iii) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly nonex-
pansive and V is nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That
is, if each of the mappings {Ti}Ni=1 is averaged, then so is the compos-
ite T1 ···TN . In particular, if T1 is α1-averaged and T2 is α2-averaged,
where α1, α2 ∈ (0, 1), then the composite T1T2 is α-averaged, where
α = α1 + α2 − α1α2.

(v) If the mappings {Ti}Ni=1 are averaged and have a common fixed point,
then

N∩
i=1

Fix(Ti) = Fix(T1 · · · TN ).
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The notation Fix(T ) denotes the set of all fixed points of the mapping
T , that is, Fix(T ) = {x ∈ H : Tx = x}.

We need some facts and tools in a real Hilbert space H which are listed
as lemmas below.

Lemma 2.7. Let X be a real inner product space. Then there holds the
following inequality

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ X.

Lemma 2.8. Let H be a real Hilbert space. Then the following hold:

(a) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩ for all x, y ∈ H;
(b) ∥λx + µy∥2 = λ∥x∥2 + µ∥y∥2 − λµ∥x − y∥2 for all x, y ∈ H and

λ, µ ∈ [0, 1] with λ+ µ = 1;
(c) If {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

∥xn − y∥2 = lim sup
n→∞

∥xn − x∥2 + ∥x− y∥2, ∀y ∈ H.

It is clear that, in a real Hilbert space H, T : C → C is k-strictly pseu-
docontractive if and only if the following inequality holds:

⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2 − 1− k

2
∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C.

Lemma 2.9. (see [19, Proposition 2.1]). Let C be a nonempty closed convex
subset of a real Hilbert space H and T : C → C be a mapping.

(i) If T is a k-strictly pseudocontractive mapping, then T satisfies the
Lipschitzian condition

∥Tx− Ty∥ ≤ 1 + k

1− k
∥x− y∥, ∀x, y ∈ C.

(ii) If T is a k-strictly pseudocontractive mapping, then the mapping
I−T is semiclosed at 0, that is, if {xn} is a sequence in C such that
xn ⇀ x̃ and (I − T )xn → 0, then (I − T )x̃ = 0.

(iii) If T is k-(quasi-)strict pseudocontraction, then the fixed-point set
Fix(T ) of T is closed and convex so that the projection PFix(T ) is
well defined.

Lemma 2.10. (see [25]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C → C be a k-strictly pseudocontractive mapping.
Let γ and δ be two nonnegative real numbers such that (γ + δ)k ≤ γ. Then

∥γ(x− y) + δ(Tx− Ty)∥ ≤ (γ + δ)∥x− y∥, ∀x, y ∈ C.

Lemma 2.11. (see [16, Demiclosedness principle]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let S be a nonexpansive
self-mapping on C. Then I − S is demiclosed. That is, whenever {xn} is a
sequence in C weakly converging to some x ∈ C and the sequence {(I−S)xn}
strongly converges to some y, it follows that (I − S)x = y. Here I is the
identity operator of H.
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Lemma 2.12. Let A : C → H be a monotone mapping. In the context of
the variational inequality problem the characterization of the projection (see
Proposition 2.1 (i)) implies

u ∈ VI(C,A) ⇔ u = PC(u− λAu), λ > 0.

Let C be a nonempty closed convex subset of a real Hilbert space H.
We introduce some notations. Let λ be a number in (0, 1] and let µ >
0. Associating with a nonexpansive mapping T : C → C, we define the
mapping T λ : C → H by

T λx := Tx− λµF (Tx), ∀x ∈ C,

where F : C → H is an operator such that, for some positive constants
κ, η > 0, F is κ-Lipschitzian and η-strongly monotone on C; that is, F
satisfies the conditions:

∥Fx− Fy∥ ≤ κ∥x− y∥ and ⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2

for all x, y ∈ C.

Lemma 2.13. (see [24, Lemma 3.1]). T λ is a contraction provided 0 < µ <
2η
κ2 ; that is,

∥T λx− T λy∥ ≤ (1− λτ)∥x− y∥, ∀x, y ∈ C,

where τ = 1−
√
1− µ(2η − µκ2) ∈ (0, 1].

Lemma 2.14. (see [23, Lemma 2.1]). Let {an} be a sequence of nonnegative
real numbers satisfying

an+1 ≤ (1− ωn)an + ωnδn + rn, ∀n ≥ 0,

where {ωn}, {δn} and {rn} satisfy the following conditions:

(i) {ωn} ⊂ [0, 1] and
∑∞

n=0 ωn = ∞;
(ii) either lim supn→∞ δn ≤ 0 or

∑∞
n=0 ωn|δn| < ∞;

(iii) rn ≥ 0 for all n ≥ 0, and
∑∞

n=1 rn < ∞.

Then, limn→∞ an = 0.

Lemma 2.15. (see [18]). Assume that A is a γ̄-strongly positive bounded
linear operator on H with 0 < ρ ≤ ∥A∥−1. Then ∥I − ρA∥ ≤ 1− ργ̄.

Let LIM be a Banach limit. According to time and circumstances, we use
LIMnan instead of LIMa for every a = {an} ∈ l∞. The following properties
are well known:

• (i) for all n ≥ 1, an ≤ cn implies LIMnan ≤ LIMncn;
• (ii) LIMnan+N = LIMnan for any fixed positive integer N ;
• (iii) lim infn→∞ an ≤ LIMnan ≤ lim supn→∞ an for all {an} ∈ l∞.

The following lemma was given in [22, Proposition 2].

Lemma 2.16. Let a ∈ R be a real number and let a sequence {an} ∈ l∞ sat-
isfy the condition LIMnan ≤ a for all Banach limit LIM. If lim supn→∞(an+1−
an) ≤ 0, then lim supn→∞ an ≤ a.
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Recall that a set-valued mapping T̃ : D(T̃ ) ⊂ H → 2H is called monotone

if for all x, y ∈ D(T̃ ), f ∈ T̃ x and g ∈ T̃ y imply

⟨f − g, x− y⟩ ≥ 0.

A set-valued mapping T̃ is called maximal monotone if T̃ is monotone and

(I + λT̃ )D(T̃ ) = H for each λ > 0, where I is the identity mapping of H.

We denote by G(T̃ ) the graph of T̃ . It is known that a monotone mapping

T̃ is maximal if and only if, for (x, f) ∈ H ×H, ⟨f − g, x− y⟩ ≥ 0 for every

(y, g) ∈ G(T̃ ) implies f ∈ T̃ x. Next we provide an example to illustrate the
concept of maximal monotone mapping.

Let A : C → H be a monotone and Lipschitz-continuous mapping and let
NCv be the normal cone to C at v ∈ C, i.e.,

NCv = {u ∈ H : ⟨v − p, u⟩ ≥ 0, ∀p ∈ C}.
Define

T̃ v =

{
Av +NCv, if v ∈ C,
∅, if v ̸∈ C.

Then, it is known in [21] that T̃ is maximal monotone and 0 ∈ T̃ v if and
only if v ∈ VI(C,A).

3. Main Results

Let C be a nonempty closed convex subset of a real Hilbert space H and
let M,N be two integers. Throughout this section, we always assume the
following:

• F : C → H is a κ-Lipschitzian and η-strongly monotone operator
with positive constants κ, η > 0, and f : C → R is a convex func-
tional with L-Lipschitz continuous gradient ∇f .

• Ai : C → H is ηi-inverse strongly monotone for each i = 1, ..., N , and
Bj : C → H is µj-inverse strongly monotone for each j = 1, ...,M ;

• A is a γ̄-strongly positive bounded linear operator on H with γ̄ ∈
(1, 2) and V : C → H is an l-Lipschitzian mapping with l ≥ 0;

• Θj : C ×C → R is a bifunction satisfying conditions (A1)-(A4) and
φj : C → R ∪ {+∞} is a proper lower semicontinuous and convex
function with restrictions (B1) or (B2) for each j = 1, ...,M ;

• 0 < µ < 2η
κ2 and 0 ≤ γl < τ with τ = 1−

√
1− µ(2η − µκ2);

• PC(I − λt∇f) = stI + (1 − st)Tt where Tt is nonexpansive, st =
2−λtL

4 ∈ (0, 12) and λt : (0, 1) → (0, 2
L) with limt→0 λt =

2
L ;

• PC(I − λn∇f) = snI + (1 − sn)Tn where Tn is nonexpansive, sn =
2−λnL

4 ∈ (0, 12) and {λn} ⊂ (0, 2
L) with limn→∞ λn = 2

L ;

• ΛN
t : C → C is a mapping defined by ΛN

t x = PC(I−λN,tAN ) · · ·PC(I−
λ1,tA1)x, t ∈ (0, 1), for {λi,t} ⊂ [ai, bi] ⊂ (0, 2ηi), i = 1, ..., N ;

• ΛN
n : C → C is a mapping defined by ΛN

n x = PC(I−λN,nAN ) · · ·PC(I−
λ1,nA1)x with {λi,n} ⊂ [ai, bi] ⊂ (0, 2ηi) and limn→∞ λi,n = λi, for
each i = 1, ..., N ;
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• ∆M
t : C → C is a mapping defined by ∆M

t x = T
(ΘM ,φM )
rM,t (I −

rM,tBM ) · · ·T (Θ1,φ1)
r1,t (I − r1,tB1)x, t ∈ (0, 1), for {rj,t} ⊂ [cj , dj ] ⊂

(0, 2µj), j = 1, ...,M ;

• ∆M
n : C → C is a mapping defined by ∆M

n x = T
(ΘM ,φM )
rM,n (I −

rM,nBM ) · · ·T (Θ1,φ1)
r1,n (I − r1,nB1)x with {rj,n} ⊂ [cj , dj ] ⊂ (0, 2µj)

and limn→∞ rj,n = rj , for each j = 1, ...,M ;
• Ω := ∩M

j=1GMEP(Θj , φj , Bj)∩∩N
i=1VI(C,Ai)∩Ξ ̸= ∅ and PΩ is the

metric projection of H onto Ω ;
• {αn} ⊂ [0, 1], {sn} ⊂ (0,min{1

2 , ∥A∥
−1}) and {st}t∈(0,min{1, 2−γ̄

τ−γl
}) ⊂

(0,min{1
2 , ∥A∥

−1}).
Next, put

Λi
t = PC(I − λi,tAi)PC(I − λi−1,tAi−1) · · ·PC(I − λ1,tA1), ∀ t ∈ (0, 1),

Λi
n = PC(I − λi,nAi)PC(I − λi−1,nAi−1) · · ·PC(I − λ1,nA1), ∀n ≥ 0,

∆j
t = T

(Θj ,φj)
rj,t (I−rj,tBj)T

(Θj−1,φj−1)
rj−1,t (I−rj−1,tBj−1) · · ·T (Θ1,φ1)

r1,t (I−r1,tB1), ∀ t ∈ (0, 1),

∆j
n = T

(Θj ,φj)
rj,n (I−rj,nBj)T

(Θj−1,φj−1)
rj−1,n (I−rj−1,nBj−1) · · ·T (Θ1,φ1)

r1,n (I−r1,nB1), ∀n ≥ 0,

for i = 1, ..., N, j = 1, ...,M , Λ0
t = Λ0

n = I and ∆0
t = ∆0

n = I, where I is the
identity mapping on H.

It is clear that Fix(Tt) = Fix(Tn) = Ξ . It is also easy to see that Λi
t :

C → C, Λi
n : C → C, ∆j

t : C → C and ∆j
n : C → C are all nonexpansive.

In this section, we introduce the first multistep relaxed implicit extragradient-
like scheme that generates a net {xt}t∈(0,min{1, 2−γ̄

τ−γl
}) in an implicit manner:

(3.1)
ut = T

(ΘM ,φM )
rM,t (I − rM,tBM )T

(ΘM−1,φM−1)
rM−1,t (I − rM−1,tBM−1) · · ·

T
(Θ1,φ1)
r1,t (I − r1,tB1)xt,

vt = PC(I − λN,tAN )PC(I − λN−1,tAN−1) · · ·PC(I − λ1,tA1)ut,
xt = PC [(I − stA)Ttvt + st(tγV xt + (I − tµF )Ttvt)].

We prove the strong convergence of {xt} as t → 0 to a point x̃ ∈ Ω which is
a unique solution to the VIP

(3.2) ⟨(A− I)x̃, p− x̃⟩ ≥ 0, ∀p ∈ Ω .

For arbitrarily given x0 ∈ C, we also propose the second multistep relaxed
explicit extragradient-like scheme, which generates a sequence {xn} in an
explicit way:
(3.3)

un = T
(ΘM ,φM )
rM,n (I − rM,nBM )T

(ΘM−1,φM−1)
rM−1,n (I − rM−1,nBM−1) · · ·

T
(Θ1,φ1)
r1,n (I − r1,nB1)xn,

vn = PC(I − λN,nAN )PC(I − λN−1,nAN−1) · · ·PC(I − λ1,nA1)un,
yn = αnγV xn + (I − αnµF )Tnvn,
xn+1 = PC [(I − snA)Tnvn + snyn], ∀n ≥ 0,
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and establish the strong convergence of {xn} as n → ∞ to the same point
x̃ ∈ Ω , which is also the unique solution to VIP (3.2).

Now, for t ∈ (0,min{1, 2−γ̄
τ−γl}), and st ∈ (0,min{1

2 , ∥A∥
−1}), consider a

mapping Qt : C → C defined by

Qtx = PC [(I − stA)TtΛ
N
t ∆M

t x+ st(tγV x+ (I − tµF )TtΛ
N
t ∆M

t x)], ∀x ∈ C.

It is easy to see that Qt is a contractive mapping with constant 1 − st(γ̄ −
1 + t(τ − γl)). By the Banach contraction principle, Qt has a unique fixed
point, denoted by xt, which uniquely solves the fixed point equation (3.1).

We summary the basic properties of {xt}. The argument techniques in
[11] can be extended to develop the new argument ones for these basic
properties whose proofs will be omitted.

Proposition 3.1. Let {xt} be defined via (3.1). Then

(i) {xt} is bounded for t ∈ (0,min{1, 2−γ̄
τ−γl});

(ii) limt→0 ∥xt − Ttxt∥ = 0, limt→0 ∥xt − ΛN
t xt∥ = 0 and limt→0 ∥xt −

∆M
t xt∥ = 0 provided limt→0 λt =

2
L (⇔ limt→0 st = 0);

(iii) xt : (0,min{1, 2−γ̄
τ−γl}) → H is locally Lipschitzian provided st :

(0,min{1, 2−γ̄
τ−γl}) → (0,min{1

2 , ∥A∥
−1}) is locally Lipschitzian, λi,t :

(0,min{1, 2−γ̄
τ−γl}) → [ai, bi] is locally Lipschitzian for each i = 1, ..., N

and rj,t : (0,min{1, 2−γ̄
τ−γl}) → [cj , dj ] is locally Lipschitzian for each

j = 1, ...,M ;
(iv) xt defines a continuous path from (0,min{1, 2−γ̄

τ−γl}) into H provided

st : (0,min{1, 2−γ̄
τ−γl}) → (0,min{1

2 , ∥A∥
−1) is continuous, λi,t : (0,min{1, 2−γ̄

τ−γl}) →
[ai, bi] is continuous for each i = 1, ..., N , and rj,t : (0,min{1, 2−γ̄

τ−γl}) →
[cj , dj ] is continuous for each j = 1, ...,M .

We prove the following theorem for strong convergence of the net {xt}
as t → 0, which guarantees the existence of solutions of the variational
inequality (3.2).

Theorem 3.2. Let the net {xt} be defined via (3.1). If limt→0 st = 0, then
xt converges strongly to a point x̃ ∈ Ω as t → 0, which solves the VIP (3.2).
Equivalently, we have PΩ (2I −A)x̃ = x̃.

Proof. We first note that we have the uniqueness of solutions of the VIP
(3.2), which is indeed a consequence of the strong monotonicity of A− I.

Next, we prove that xt → x̃ as t → 0. Observing Fix(Tt) = Ξ , from (3.1),
we write, for given p ∈ Ω ,

xt − p = xt − wt + wt − p
= xt − wt + (I − stA)Ttvt + st(tγV xt + (I − tµF )Ttvt)− p
= xt − wt + (I − stA)(Ttvt − Ttp) + st[tγV xt + (I − tµF )Ttvt − p] + st(I −A)p
= xt − wt + (I − stA)(Ttvt − Ttp) + st[t(γV xt − µFp) + (I − tµF )Ttvt − (I − tµF )p]
+st(I −A)p,
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where wt = (I − stA)Ttvt + st(tγV xt + (I − tµF )Ttvt). Then, by Proposi-
tion 2.1 (i), we have

∥xt − p∥2
= ⟨xt − wt, xt − p⟩+ ⟨(I − stA)(Ttvt − Ttp), xt − p⟩+ st[t⟨γV xt − µFp, xt − p⟩
+⟨(I − tµF )Ttvt − (I − tµF )p, xt − p⟩] + st⟨(I −A)p, xt − p⟩
≤ (1− stγ̄)∥xt − p∥2 + st[(1− tτ)∥xt − p∥2 + tγl∥xt − p∥2
+t⟨(γV − µF )p, xt − p⟩] + st⟨(I −A)p, xt − p⟩
= [1− st(γ̄ − 1 + t(τ − γl))]∥xt − p∥2 + st(t⟨(γV − µF )p, xt − p⟩+ ⟨(I −A)p, xt − p⟩).

Therefore,

(3.4) ∥xt−p∥2 ≤ 1

γ̄ − 1 + t(τ − γl)
(t⟨(γV −µF )p, xt−p⟩+⟨(I−A)p, xt−p⟩).

Since the net {xt}t∈(0,min{1, 2−γ̄
τ−γl

}) is bounded (due to Proposition 3.1 (i)), we

know that if {tn} is a subsequence in (0,min{1, 2−γ̄
τ−γl}) such that tn → 0 and

xtn ⇀ x∗, then from (3.4), we obtain xtn → x∗. Let us show that x∗ ∈ Ω .
Indeed, by Proposition 3.1 (ii), we know that limn→∞ ∥xtn − Ttnxtn∥ = 0.
Observe that

∥PC(I − λtn∇f)xtn − xtn∥ = ∥stnxtn + (1− stn)Ttnxtn − xtn∥
= (1− stn)∥Ttnxtn − xtn∥
≤ ∥Ttnxtn − xtn∥,

where stn = 2−λtnL
4 ∈ (0, 12) for λtn ∈ (0, 2

L). Hence we have

∥PC(I − 2
L∇f)xtn − xtn∥

≤ ∥PC(I − 2
L∇f)xtn − PC(I − λtn∇f)xtn∥+ ∥PC(I − λtn∇f)xtn − xtn∥

≤ ∥(I − 2
L∇f)xtn − (I − λtn∇f)xtn∥+ ∥PC(I − λtn∇f)xtn − xtn∥

≤ ( 2L − λtn)∥∇f(xtn)∥+ ∥Ttnxtn − xtn∥.

From the boundedness of {xtn}, stn → 0 (⇔ λtn → 2
L) and ∥Ttnxtn−xtn∥ →

0, it follows that

∥x∗ − PC(I −
2

L
∇f)x∗∥ = lim

n→∞
∥xtn − PC(I −

2

L
∇f)xtn∥ = 0.

So, x∗ ∈ VI(C,∇f) = Ξ .

Furthermore, it can be shown that ∆j
tnxtn → x∗, Λm

tnutn → x∗, utn → x∗

and vtn → x∗ where j ∈ {1, ...,M}, m ∈ {1, ..., N}. Let

T̃mv =

{
Amv +NCv, v ∈ C,
∅, v ̸∈ C,

where m ∈ {1, ..., N}. By a standard argument, we can show that

⟨v − x∗, u⟩ ≥ 0.

Since T̃m is maximal monotone, we have x∗ ∈ T̃−1
m 0 and hence x∗ ∈ VI(C,Am),m =

1, 2, ..., N , which implies x∗ ∈ ∩N
m=1VI(C,Am). Next we prove that x∗ ∈
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∩M
j=1GMEP(Θj , φj , Bj). Since ∆j

tnxtn = T
(Θj ,φj)
rj,tn (I − rj,tnBj)∆

j−1
tn xtn , j ∈

{1, ...,M}, we have

Θj(∆
j
tnxtn , y)+φj(y)−φj(∆

j
tnxtn)+⟨Bj∆

j−1
tn xtn , y−∆j

tnxtn⟩+⟨y−∆j
tnxtn ,

∆j
tnxtn −∆j−1

tn xtn
rj,tn

⟩ ≥ 0.

By (A2), we have

φj(y)−φj(∆
j
tnxtn)+⟨Bj∆

j−1
tn xtn , y−∆j

tnxtn⟩+⟨y−∆j
tnxtn ,

∆j
tnxtn −∆j−1

tn xtn
rj,tn

⟩ ≥ Θj(y,∆
j
tnxtn).

Let zt = ty+(1− t)x∗ for all t ∈ (0, 1] and y ∈ C. This implies that zt ∈ C.
Then, we have
(3.5)

⟨zt −∆j
tnxtn , Bjzt⟩

≥ φj(∆
j
tnxtn)− φj(zt) + ⟨zt −∆j

tnxtn , Bjzt⟩ − ⟨zt −∆j
tnxtn , Bj∆

j−1
tn xtn⟩

−⟨zt −∆j
tnxtn ,

∆j
tn

xtn−∆j−1
tn

xtn

rj,tn
⟩+Θj(zt,∆

j
tnxtn)

= φj(∆
j
tnxtn)− φj(zt) + ⟨zt −∆j

tnxtn , Bjzt −Bj∆
j
tnxtn⟩

+⟨zt −∆j
tnxtn , Bj∆

j
tnxtn −Bj∆

j−1
tn xtn⟩ − ⟨zt −∆j

tnxtn ,
∆j

tn
xtn−∆j−1

tn
xtn

rj,tn
⟩+Θj(zt,∆

j
tnxtn).

Note that ∥Bj∆
j
tnxtn − Bj∆

j−1
tn xtn∥ → 0 as n → ∞. Furthermore, by the

monotonicity of Bj , we obtain ⟨zt − ∆j
tnxtn , Bjzt − Bj∆

j
tnxtn⟩ ≥ 0. Then,

by (A4) we obtain

(3.6) ⟨zt − x∗, Bjzt⟩ ≥ φj(x
∗)− φj(zt) +Θj(zt, x

∗).

Utilizing (A1), (A4) and (3.6), we obtain

0 = Θj(zt, zt) + φj(zt)− φj(zt)
≤ tΘj(zt, y) + (1− t)Θj(zt, x

∗) + tφj(y) + (1− t)φj(x
∗)− φj(zt)

≤ t[Θj(zt, y) + φj(y)− φj(zt)] + (1− t)⟨zt − x∗, Bjzt⟩
= t[Θj(zt, y) + φj(y)− φj(zt)] + (1− t)t⟨y − x∗, Bjzt⟩,

and hence

0 ≤ Θj(zt, y) + φj(y)− φj(zt) + (1− t)⟨y − x∗, Bjzt⟩.

Letting t → 0, we have, for each y ∈ C,

0 ≤ Θj(x
∗, y) + φj(y)− φj(x

∗) + ⟨y − x∗, Bjx
∗⟩.

This implies that x∗ ∈ GMEP(Θj , φj , Bj) and hence x∗ ∈ ∩M
j=1GMEP(Θj , φj , Bj).

Therefore, x∗ ∈ ∩M
j=1GMEP(Θj , φj , Bj) ∩ ∩N

i=1VI(C,Ai) ∩ Ξ =: Ω .
Next, we prove that xt → x̃ as t → 0. First, let us assert that x∗ is a

solution of the VIP (3.2). As a matter of fact, since

xt = xt − wt + (I − stA)TtΛ
N
t ∆M

t xt + st(tγV xt + (I − tµF )TtΛ
N
t ∆M

t xt),

we have

xt−TtΛ
N
t ∆M

t xt = xt−wt+st(I−A)TtΛ
N
t ∆M

t xt+stt(γV xt−µFTtΛ
N
t ∆M

t xt).
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Since Tt, Λ
N
t and∆M

t are nonexpansive mappings, I−TtΛ
N
t ∆M

t is monotone.
So, from the monotonicity of I − TtΛ

N
t ∆M

t , it follows that, for p ∈ Ω ,

0 ≤ ⟨(I − TtΛ
N
t ∆M

t )xt − (I − TtΛ
N
t ∆M

t )p, xt − p⟩ = ⟨(I − TtΛ
N
t ∆M

t )xt, xt − p⟩
= ⟨xt − wt, xt − p⟩+ st⟨(I −A)TtΛ

N
t ∆M

t xt, xt − p⟩+ stt⟨γV xt − µFTtΛ
N
t ∆M

t xt, xt − p⟩
≤ st⟨(I −A)TtΛ

N
t ∆M

t xt, xt − p⟩+ stt⟨γV xt − µFTtΛ
N
t ∆M

t xt, xt − p⟩
= st⟨(I −A)xt, xt − p⟩+ st⟨(I −A)(TtΛ

N
t ∆M

t − I)xt, xt − p⟩
+stt⟨γV xt − µFTtΛ

N
t ∆M

t xt, xt − p⟩.
This implies that

⟨(A−I)xt, xt−p⟩ ≤ ⟨(I−A)(TtΛ
N
t ∆M

t −I)xt, xt−p⟩+t⟨γV xt−µFTtΛ
N
t ∆M

t xt, xt−p⟩.

That is,
(3.7)
⟨(A− I)xt, xt − p⟩ ≤ ⟨(I −A)(Ttvt − xt), xt − p⟩+ t⟨γV xt − µFTtvt, xt − p⟩.

Now, replacing t in (3.7) with tn and letting n → ∞, noticing the bounded-
ness of {γV xtn − µFTtnvtn} and the fact that (I −A)(Ttnvtn − xtn) → 0 as
n → ∞, we obtain

⟨(A− I)x∗, x∗ − p⟩ ≤ 0.

That is, x∗ ∈ Ω is a solution of the VIP (3.2); hence x∗ = x̃ by uniqueness.
In summary, we have proven that each cluster point of {xt} (as t → 0) equals
x̃. Consequently, xt → x̃ as t → 0. �

Now, we prove the following result in order to establish the strong con-
vergence of the sequence {xn} generated by the multistep relaxed explicit
extragradient-like scheme (3.3).

Theorem 3.3. Let {xn} be the sequence generated by the explicit scheme
(3.3), where {αn} and {sn} satisfy the following condition:

(C1): {αn} ⊂ [0, 1], {sn} ⊂ (0, 12) and αn → 0, sn → 0 as n → ∞.

Let LIM be a Banach limit. Then

LIMn⟨(A− I)x̃, x̃− xn⟩ ≤ 0,

where x̃ = limt→0+ xt with xt being defined by

(3.8) xt = PC [(I − stA)TΛ
N∆Mxt + st(tγV xt + (I − tµF )TΛN∆Mxt)],

where T,ΛN ,∆M : C → C are defined by

Tx = PC(I −
2

L
∇f)x,

ΛNx = PC(I − λNAN ) · · ·PC(I − λ1A1)x

and

∆Mx = T (ΘM ,φM )
rM

(I − rMBM ) · · ·T (Θ1,φ1)
r1 (I − r1B1)x

for λi ∈ [ai, bi] ⊂ (0, 2ηi), i = 1, ..., N and rj ∈ [cj , dj ] ⊂ (0, 2µj), j =
1, ...,M .
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Proof. First, note that from the condition (C1), without loss of generality,
we may assume that 0 < sn ≤ ∥A∥−1 for all n ≥ 0.

Let {xt} be the net generated by (3.8). Since T, ΛN and ∆M is are
nonexpansive self-mappings on C, by Theorem 3.2 with Tt = T, ΛN

t = ΛN

and ∆M
t = ∆M , there exists limt→0 xt ∈ Ω . Denote it by x̃. Moreover,

x̃ is the unique solution of the VIP (3.2). From Proposition 3.1 (i) with
Tt = T, ΛN

t = ΛN and ∆M
t = ∆M , we know that {xt} is bounded and so

are the nets {V xt}, {∆Mxt}, {ΛN∆Mxt} and {FTΛN∆Mxt}.
First of all, let us show that {xn} is bounded. To this end, take p ∈ Ω .

Then we get

∥yn − p∥ = ∥αnγV xn + (I − αnµF )TnΛ
N
n ∆M

n xn − p∥
= ∥αn(γV xn − µFp) + (I − αnµF )TnΛ

N
n ∆M

n xn − (I − αnµF )TnΛ
N
n ∆M

n p∥
≤ αnγl∥xn − p∥+ αn∥(γV − µF )p∥+ (1− αnτ)∥xn − p∥
= (1− αn(τ − γl))∥xn − p∥+ αn∥(γV − µF )p∥,

which together with Lemma 2.15, implies that

∥xn+1 − p∥ = ∥PC [(I − snA)TnΛ
N
n ∆M

n xn + snyn]− p∥
≤ ∥(I − snA)TnΛ

N
n ∆M

n xn + βnyn − p∥
= ∥(I − snA)TnΛ

N
n ∆M

n xn − (I − snA)TnΛ
N
n ∆M

n p+ sn(yn − p) + sn(I −A)p∥
≤ ∥(I − snA)TnΛ

N
n ∆M

n xn − (I − snA)TnΛ
N
n ∆M

n p∥+ sn∥yn − p∥+ sn∥I −A∥∥p∥
≤ (1− snγ̄)∥xn − p∥+ sn[(1− αn(τ − γl))∥xn − p∥
+αn∥(γV − µF )p∥] + sn∥I −A∥∥p∥
≤ (1− sn(γ̄ − 1))∥xn − p∥+ sn(∥(γV − µF )p∥+ ∥I −A∥∥p∥)
= (1− sn(γ̄ − 1))∥xn − p∥+ sn(γ̄ − 1)∥(γV−µF )p∥+∥I−A∥∥p∥

γ̄−1

≤ max{∥xn − p∥, ∥(γV−µF )p∥+∥I−A∥∥p∥
γ̄−1 }.

By induction

∥xn − p∥ ≤ max{∥x0 − p∥, ∥(γV − µF )p∥+ ∥I −A∥∥p∥
γ̄ − 1

}, ∀n ≥ 0.

This implies that {xn} is bounded and so are {V xn}, {un}, {vn}, {FTnvn}
and {yn}. Thus, utilizing the control condition (C1), we get

∥xn+1 − Tnvn∥ = ∥PC [(I − snA)Tnvn + snyn]− Tnvn∥
≤ ∥(I − snA)Tnvn + snyn − Tnvn∥
= sn∥yn −ATnvn∥ → 0 as n → ∞.

One can show that

(3.9) ∥TΛN∆Mxn−TnΛ
N
n ∆M

n xn∥ ≤ ∥ΛN∆Mxn−ΛN
n ∆M

n xn∥+M̂ | 2
L
−λn|.

where supn≥0{L∥PC(I − 2
L∇f)vn∥ + 4∥∇f(vn)∥ + L∥vn∥} ≤ M̂ for some

M̂ > 0. Also it is not difficult to derive that

(3.10) ∥ΛN∆Mxn − ΛN
n ∆M

n xn∥ ≤ M̂0

N∑
i=1

|λi − λi,n|+ ∥∆Mxn −∆M
n xn∥,
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where supn≥0{
∑N

i=1 ∥AiΛ
i−1∆Mxn∥} ≤ M̂0 for some M̂0 > 0. Observe that

(3.11) ∥∆Mxn −∆M
n xn∥ ≤ M̂1

M∑
j=1

|rj − rj,n|,

where supn≥0{
∑M

j=1[∥Bj∆
j−1xn∥+ 1

rj
∥T (Θj ,φj)

rj (I−rjBj)∆
j−1xn−(I−rjBj)∆

j−1xn∥]} ≤
M̂1 for some M̂1 > 0. In terms of (3.9)-(3.11) we calculate

∥TΛN∆Mxn − TnΛ
N
n ∆M

n xn∥ ≤ ∥ΛN∆Mxn − ΛN
n ∆M

n xn∥+ M̂ | 2L − λn|

≤ ∥∆Mxn −∆M
n xn∥+ M̂0

N∑
i=1

|λi − λi,n|+ M̂ | 2
L

− λn|

≤ M̂1

M∑
j=1

|rj − rj,n|+ M̂0

N∑
i=1

|λi − λi,n|+ M̂ | 2
L

− λn|.

Consequently, it is not hard to find that
(3.12)

∥TΛN∆Mxt − xn+1∥
≤ ∥TΛN∆Mxt − TΛN∆Mxn∥+ ∥TΛN∆Mxn − TnΛ

N
n ∆M

n xn∥+ ∥TnΛ
N
n ∆M

n xn − xn+1∥

≤ ∥xt − xn∥+ M̂1

M∑
j=1

|rj − rj,n|+ M̂0

N∑
i=1

|λi − λi,n|+ M̂ | 2L − λn|+ ∥Tnvn − xn+1∥

= ∥xt − xn∥+ ϵn,

where ϵn = M̂1
∑M

j=1 |rj − rj,n|+ M̂0
∑N

i=1 |λi−λi,n|+ M̂ | 2L −λn|+ ∥Tnvn−
xn+1∥ → 0 as n → ∞. Also observing that A is strongly positive, we have

(3.13) ⟨Axt −Axn, xt − xn⟩ = ⟨A(xt − xn), xt − xn⟩ ≥ γ̄∥xt − xn∥2.

For simplicity, we write wt = (I−stA)TΛ
N∆Mxt+st(tγV xt+(I−tµF )TΛN∆Mxt).

Then we obtain that xt = PCwt and

xt − xn+1

= xt − wt + (I − stA)TΛ
N∆Mxt + st(tγV xt + (I − tµF )TΛN∆Mxt)− xn+1

= (I − stA)TΛ
N∆Mxt − (I − stA)xn+1 + st(tγV xt + (I − tµF )TΛN∆Mxt −Axn+1)

+xt − wt.

Applying Lemma 2.7, we have
(3.14)

∥xt − xn+1∥2
≤ ∥(I − stA)TΛ

N∆Mxt − (I − stA)xn+1∥2
+2st⟨TΛN∆Mxt − t(µFTΛN∆Mxt − γV xt)−Axn+1, xt − xn+1⟩+ 2⟨xt − wt, xt − xn+1⟩
≤ ∥(I − stA)TΛ

N∆Mxt − (I − stA)xn+1∥2
+2st⟨TΛN∆Mxt − t(µFTΛN∆Mxt − γV xt)−Axn+1, xt − xn+1⟩
≤ (1− stγ̄)

2∥TΛN∆Mxt − xn+1∥2 + 2st⟨TΛN∆Mxt − xt, xt − xn+1⟩
−2stt⟨µFTΛN∆Mxt − γV xt, xt − xn+1⟩+ 2st⟨xt −Axn+1, xt − xn+1⟩.
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Using (3.12) and (3.13) in (3.14), we obtain
(3.15)

∥xt − xn+1∥2
≤ (1− stγ̄)

2∥TΛN∆Mxt − xn+1∥2 + 2st⟨TΛN∆Mxt − xt, xt − xn+1⟩
+2stt⟨γV xt − µFTΛN∆Mxt, xt − xn+1⟩+ 2st⟨xt −Axn+1, xt − xn+1⟩
≤ (1− stγ̄)

2(∥xt − xn∥+ ϵn)
2 + 2st∥TΛN∆Mxt − xt∥∥xt − xn+1∥

+2stt∥γV xt − µFTΛN∆Mxt∥∥xt − xn+1∥+ 2st⟨xt −Axn+1, xt − xn+1⟩
= (s2t γ̄ − 2st)γ̄∥xt − xn∥2 + ∥xt − xn∥2
+(1− stγ̄)

2[2∥xt − xn∥ϵn + ϵ2n] + 2st∥TΛN∆Mxt − xt∥∥xt − xn+1∥
+2stt∥γV xt − µFTΛN∆Mxt∥∥xt − xn+1∥+ 2st⟨xt −Axn+1, xt − xn+1⟩
= (s2t γ̄ − 2st)γ̄∥xt − xn∥2 + ∥xt − xn∥2 + (1− stγ̄)

2[2∥xt − xn∥ϵn + ϵ2n]
+2st∥TΛN∆Mxt − xt∥∥xt − xn+1∥+ 2stt∥γV xt − µFTΛN∆Mxt∥∥xt − xn+1∥
+2st⟨xt −Axn+1, xt − xn+1⟩
≤ (s2t γ̄ − 2st)⟨Axt −Axn, xt − xn⟩+ ∥xt − xn∥2 + (1− stγ̄)

2[2∥xt − xn∥ϵn + ϵ2n]
+2st∥TΛN∆Mxt − xt∥∥xt − xn+1∥+ 2stt∥γV xt − µFTΛN∆Mxt∥∥xt − xn+1∥
+2st⟨xt −Axn+1, xt − xn+1⟩
= s2t γ̄⟨Axt −Axn, xt − xn⟩+ ∥xt − xn∥2 + (1− stγ̄)

2[2∥xt − xn∥ϵn + ϵ2n]
+2st∥TΛN∆Mxt − xt∥∥xt − xn+1∥+ 2stt∥γV xt − µFTΛN∆Mxt∥∥xt − xn+1∥
+2st[⟨xt −Axn+1, xt − xn+1⟩ − ⟨Axt −Axn, xt − xn⟩]
= s2t γ̄⟨A(xt − xn), xt − xn⟩+ ∥xt − xn∥2 + (1− stγ̄)

2[2∥xt − xn∥ϵn + ϵ2n]
+2st∥TΛN∆Mxt − xt∥∥xt − xn+1∥+ 2stt∥γV xt − µFTΛN∆Mxt∥∥xt − xn+1∥
+2st[⟨(I −A)xt, xt − xn+1⟩+ ⟨A(xt − xn+1), xt − xn+1⟩ − ⟨A(xt − xn), xt − xn⟩].

Applying the Banach limit LIM to (3.15), from ϵn → 0 we have
(3.16)

LIMn∥xt − xn+1∥2
≤ s2t γ̄LIMn⟨A(xt − xn), xt − xn⟩+ LIMn∥xt − xn∥2
+2st∥TΛN∆Mxt − xt∥LIMn∥xt − xn+1∥+ 2stt∥γV xt − µFTΛN∆Mxt∥LIMn∥xt − xn+1∥
+2st[LIMn⟨(I −A)xt, xt − xn+1⟩+ LIMn⟨A(xt − xn+1), xt − xn+1⟩
−LIMn⟨A(xt − xn), xt − xn⟩].

Utilizing the property LIMnan = LIMnan+1 of the Banach limit in (3.16),
we obtain
(3.17)

LIMn⟨(A− I)xt, xt − xn⟩
= LIMn⟨(A− I)xt, xt − xn+1⟩
≤ stγ̄

2 LIMn⟨A(xt − xn), xt − xn⟩+ 1
2st

[LIMn∥xt − xn∥2 − LIMn∥xt − xn+1∥2]
+∥TΛN∆Mxt − xt∥LIMn∥xt − xn∥+ t∥γV xt − µFTΛN∆Mxt∥LIMn∥xt − xn∥
+LIMn⟨A(xt − xn+1), xt − xn+1⟩ − LIMn⟨A(xt − xn), xt − xn⟩
≤ stγ̄

2 LIMn⟨A(xt − xn), xt − xn⟩+ ∥TΛN∆Mxt − xt∥LIMn∥xt − xn∥
+t∥γV xt − µFTΛN∆Mxt∥LIMn∥xt − xn∥.

Since as t → 0,

(3.18) st⟨A(xt − xn), xt − xn⟩ ≤ st∥A∥∥xt − xn∥2 ≤ stK → 0,
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where ∥A∥∥xt − xn∥2 ≤ K,
(3.19)

∥TΛN∆Mxt − xt∥ → 0 and t∥γV xt − µFTΛN∆Mxt∥ → 0 as t → 0,

we conclude from (3.17)-(3.19) that

LIMn⟨(A− I)x̃, x̃− xn⟩
≤ lim sup

t→0
LIMn⟨(A− I)xt, xt − xn⟩

≤ lim sup
t→0

stγ̄
2 LIMn⟨A(xt − xn), xt − xn⟩+ lim sup

t→0
∥TΛN∆Mxt − xt∥LIMn∥xt − xn∥

+lim sup
t→0

t∥γV xt − µFTΛN∆Mxt∥LIMn∥xt − xn∥

= 0.

This completes the proof. �

Now, using Theorem 3.3, we can establish the following strong conver-
gence of the sequence {xn} generated by the multistep relaxed explicit
extragradient-like scheme (3.3) to a point x̃ ∈ Ω , which is also the unique
solution of the VIP (3.2) whose proof is omitted.

Theorem 3.4. Let {xn} be the sequence generated by the explicit scheme
(3.3), where {αn} and {sn} satisfy the following conditions:

(C1) {αn} ⊂ [0, 1], {sn} ⊂ (0, 12) and αn → 0, sn → 0 as n → ∞;
(C2)

∑∞
n=0 sn = ∞.

If {xn} is weakly asymptotically regular (i.e., xn+1 − xn ⇀ 0), then xn
converges strongly to a point x̃ ∈ Ω, which is the unique solution of the VIP
(3.2).
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