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Abstract

In this paper. we introduce the degenerate Daehee numbers and study a family ol differential equations
associaled with the generating function of these numbers. From those differential equations, we will be able
to obtain some new and interesting combinatorial identities involving the degenerate Daehee numbers and
generalized harmonic numbers.
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1. Introduction

The Daehee polynomials D
(r)
n (x) of order r are given by the generating function(

log (1 + t)

t

)r
(1 + t)r =

∞∑
n=0

D(r)
n (x)

tn

n!
. (1.1)

For x = 0, D
(r)
n = D

(r)
n (0) are called the Daehee numbers of order r. In particular, if r = 1, then

Dn (x) = D
(1)
n (x) and Dn = D

(1)
n are respectively called Daehee polynomials and Daehee numbers.

As a degenerate version of Daehee numbers Dn, we introduce what we call the degenerate Daehee
numbers Dn,λ defined by

λ log
(
1 + 1

λ log (1 + λt)
)

log (1 + λt)
=
∞∑
n=0

Dn,λ
tn

n!
. (1.2)
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We observe here that Dn,λ → Dn as λ→ 0. Also it is easy to see that

Dn,λ =

n∑
l=0

Sl (n, l)λ
n−lDl =

n∑
l=0

(−1)l l!

l + 1
S1 (n, l)λn−l. (1.3)

Here S1 (n, l) is the Stirling number of the first kind.
Many mathematicians have studied the arithmetic and combinatorial properties of degenerate versions

of special numbers and polynomials, some of which are the degenerate Bernoulli polynomials (also called
Korobov polynomials of the second kind), the degenerate Bernouili polynomials of the second kind (also
called Korobov polynomials of the first kind), the degenerate Euler polynomials, the degenerate poly-
Bernoulli polynomials. the degenerate poly-Bernoulli polynomials of the second, the degenerate falling
factorial polynomials, and the degenerate Changhee polynomials (see [2, 1, 4, 8, 13, 15, 16, 23])

On the other hand, in [9, 10], Kim and Kim, and Kim developed some new methods for obtaining
identities related to Bernoulli numbers of the second kind and Frobenius-Euler polynomials of higher order
arising from certain non-linear differential equations. This idea of obtaining some interesting combinatorial
identities by using differential equations satisfied by the generating function of special numbers or special
polynomials turned out to be very fruitful (see [9, 10, 12, 14]).

The generalized harmonic numbers are defined as follows:

HN,0 = 1, for all N, (1.4)

HN,1 = HN =
1

N
+

1

N − 1
+ · · ·+ 1

1
, (1.5)

HN,j =
HN−1,j−1

N
+
HN−2,j−1
N − 1

+ · · ·+ Hj−1,j−1
j

, (2 ≤ j ≤ N) . (1.6)

These special numbers have appeared previously in the paper [9].
The purpose of this paper is to introduce the degenerate Daehee numbers and study a family of differential

equations associated with the generating function of these numbers. From those differential equations, we
will be able to obtain some new and interesting combinatorial identities involving the degenerate Daehee
numbers and generalized harmonic numbers.

2. Differential equations arising from the generating function of degenerate Daehee numbers

Let

F (t) = F = log

(
1 +

1

λ
log (1 + λt)

)
. (2.1)

Then, by taking the derivative with respect to t of (2.1), we get

F (1) =
d

dt
F (t) (2.2)

=

(
1 +

1

λ
log (1 + λt)

)−1 1

1 + λt

=
1

1 + λt
e− log(1+ 1

λ
log(1+λt))

=
1

1 + λ
e−F .
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From (2.2), we note that

F (2) =
d

dt
F (1) (2.3)

=
(−1)λ

(1 + λt)2
e−F +

1

1 + λt

(
−F (1)

)
e−F

=
(−1)λ

(1 + λt)2
e−F +

(−1)

(1 + λt)2
e−2F .

Further, by taking the derivative with respect to t of (2.3), we obtain

F (3) =
d

dt
F (2) (2.4)

=
(−1)2 2λ2

(1 + λt)3
e−F +

(−1)λ

(1 + λt)2

(
−F (1)

)
e−F

+
(−1)2 2λ

(1 + λt)3
e−2F +

(−1)

(1 + λt)2

(
−2F (1)

)
e−2F

=
(−1)2

(1 + λt)3
(
2λ2e−F + 3λe−2F + 2e−3F

)
.

Continuing this process, we are led to put

F (N) =
(−1)N−1

(1 + λt)N

N∑
k=1

ak (N | λ) e−kF , (2.5)

for N = 1, 2, 3, . . . .
On the one hand, from (2.5), we have

F (N+1) =
d

dt
F (N) (2.6)

=
(−1)N Nλ

(1 + λt)N+1

N∑
k=1

ak (N | λ) e−kF

+
(−1)N−1

(1 + λt)N

N∑
k=1

ak (N | λ)
(
−kF (1)

)
e−kF

=
(−1)N Nλ

(1 + λt)N+1

N∑
k=1

ak (N | λ) e−kF

+
(−1)N

(1 + λt)N+1

N∑
k=1

ak (N | λ) ke−(k+1)F

=
(−1)N

(1 + λt)N+1

N∑
k=1

λNak (N | λ) e−kF

+
(−1)N

(1 + λt)N+1

N+1∑
k=2

(k − 1) ak−1 (N | λ) e−kF

=
(−1)N

(1 + λt)N+1

{
λNa1 (N | λ) e−F +

N∑
k=2

(λNak (N | λ) + (k − 1) ak−1 (N | λ)) e−kF

+NaN (N | λ) e−(N+1)F
}
.
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On the other hand, by replacing N by N + 1 in (2.5), we get

F (N+1) =
(−1)N

(1 + λt)N+1

N+1∑
k=1

ak (N + 1 | λ) e−kF . (2.7)

Now, by comparing (2.6) and (2.7), we have

a1 (N + 1 | λ) = λNa1 (N | λ) , (2.8)

aN+1 (N + 1 | λ) = NaN (N | λ) , (2.9)

ak (N + 1 | λ) = λNak (N | λ) + (k − 1) ak−1 (N | λ) , (2.10)

(2 ≤ k ≤ N).
From (2.2) and (2.5), we note

F (1) =
1

1 + λt
e−F = a1 (1 | λ)

1

1 + λt
e−F . (2.11)

Thus, by (2.11), we obtain
a1 (1 | λ) = 1. (2.12)

In addition, from (2.3) and (2.5), we observe

F (2) =
(−1)λ

(1 + λt)2
e−F +

(−1)

(1 + λt)2
e−2F (2.13)

=
(−1)

(1 + λt)2
(
a1 (2 | λ) e−F + a2 (2 | λ) e−2F

)
.

Hence, from (2.13), we have
a1 (2 | λ) = λ, a2 (2 | λ) = 1. (2.14)

Now, we are ready to determine ak (N + 1 | λ)’s appearing in (2.8), (2.9) and (2.10). From (2.8), we get

a1 (N + 1 | λ) = λNa1 (N | λ) (2.15)

= λNλ (N − 1) a1 (N − 1 | λ)

...

= (λN)λ (N − 1) · · ·λ2a1 (2 | λ)

= λNN !.

By (2.9), we have

aN+1 (N + 1 | λ) = NaN (N | λ) (2.16)

= N (N − 1) aN−1 (N − 1 | λ)

...

= N (N − 1) · · · 2a2 (2 | λ)

= N !.

We remark here that the N ×N matrix with the (i, j) entry given by ai (j | λ)(1 ≤ i, j ≤ n) is given by
1 λ λ22! · · · λN−1 (N − 1)!
0 2!
0 0 3!
...

...
. . .

. . .

0 0 · · · 0 (N − 1)!

 .
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We now turn our attention to ak (N + 1 | λ), for 2 ≤ k ≤ N . For k = 2 in (2.10), we have

a2 (N + 1 | λ) (2.17)

= λNa2 (N | λ) + a1 (N | λ)

= λNa2 (N | λ) + λN−1 (N − 1)!

= λN
(
λ (N − 1) a2 (N − 1 | λ) + λN−2 (N − 2)!

)
+ λN−1 (N − 1)! (2.18)

= λ2N (N − 1) a2 (N − 1 | λ) + λN−1N !

(
1

N − 1
+

1

N

)
= λ2N (N − 1)

(
λ (N − 2) a2 (N − 2 | λ) + λN−3 (N − 3)!

)
+ λN−1N !

(
1

N − 1
+

1

N

)
= λ3N (N − 1) (N − 2) a2 (N − 2 | λ) + λN−1N !

(
1

N − 2
+

1

N − 1
+

1

N

)
...

= λN−1N (N − 1) · · · 2a2 (2 | λ) + λN−1N !

(
1

2
+

1

3
+ · · ·+ 1

N

)
= λN−1N !HN,1.

Here and in below HN,j(0 ≤ j ≤ N) are as defined in (1.4), (1.5) and (1.6).
For k = 3 in (2.10), we obtain

a3 (N + 1 | λ) (2.19)

= λNa3 (N | λ) + 2a2 (N | λ)

= λNa3 (N | λ) + 2!λN−2 (N − 1)!HN−1,1

= λN
(
λ (N − 1) a3 (N − 1 | λ) + 2!λN−3 (N − 2)!HN−2,1

)
+2!λN−2 (N − 1)!HN−1,1

= λ2N (N − 1) a3 (N − 1 | λ) + 2!λN−2N !

(
HN−2,1
N − 1

+
HN−1,1
N

)
= λ2N (N − 1)

(
λ (N − 2) a3 (N − 2 | λ) + 2!λN−4 (N − 3)!HN−3,1

)
+2!λN−2N !

(
HN−2,1
N − 1

+
HN−1,1
N

)
= λ3N (N − 1) (N − 2) a3 (N − 2 | λ) + 2!λN−2N !

(
HN−3,1
N − 2

+
HN−2,1
N − 1

+
HN−1,1
N

)
...

= λN−2N (N − 1) · · · 3a3 (3 | λ) + 2!λN−2N !

(
H2,1

3
+
H3,1

4
+ · · ·+

HN−1,1
N

)
= 2!λN−2N !

(
H1,1

2
+
H2,1

3
+ · · ·+

HN−1,1
N

)
= 2!λN−2N !HN,2.

Proceeding similarly to k = 2 and k = 3 cases, we can show that

a4 (N + 1 | λ) = 3!λN−3N !HN,3. (2.20)

Continuing in this fashion, we can find that

ak (N + 1 | λ) = (k − 1)!λN−k+1N !HN,k−1, (2 ≤ k ≤ N) . (2.21)
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Here we observe that (2.21) holds also for k = 1 and k = N + 1 (cf. (2.15), (2.16)).
Thus, from (2.21), we obtain the following theorem.

Theorem 2.1. For N = 1, 2, 3, . . . , let us consider the following family of differential equations:

F (N) =
(−1)N−1

(1 + λt)N

N∑
k=1

(k − 1)!λN−k (N − 1)!HN−1,k−1e
−kF , (2.22)

where

HN,0 = 1, for all N,

HN,1 = HN =
1

N
+

1

N − 1
+ · · ·+ 1

1
,

HN,j =
HN−1,j−1

N
+
HN−2,j−1
N − 1

+ · · ·+ Hj−1,j−1
j

, (2 ≤ j ≤ N) .

Then the above family of differential equations in (2.22) have a solution

F = F (t) = log

(
1 +

1

λ
log (1 + λt)

)
.

3. Applications of differential equations

Here we will use Theorem 2.1 in order to derive some new and interesting identity involving the degenerate
Daehee numbers and generalized harmonic numbers.

From (2.1), we get

F (t) =
λ log

(
1 + 1

λ log (1 + λt)
)

log (1 + λt)

1

λ
log (1 + λt) (3.1)

=

( ∞∑
l=0

Dl,λ
tl

l!

)( ∞∑
m=1

(−1)m−1

m
λm−1tm

)

=

∞∑
n=1

(
n−1∑
l=0

Dl,λ

l!

(−λ)n−l−1

n− l

)
tn.

On the one hand, from (3.1) we obtain

F (N) (3.2)

=

(
d

dt

)N
F (t)

=

∞∑
n=N

(n)N

(
n−1∑
l=0

Dl,λ

l!

(−λ)n−l−1

n− l

)
tn−N

=
∞∑
n=0

(n+N)N

(
n+N−1∑
l=0

Dl,λ

l!

(−λ)n+N−l−1

n+N − l

)
tn

=

∞∑
n=0

(n+N)!

(
n+N−1∑
l=0

Dl,λ

l!

(−λ)n+N−l−1

n+N − l

)
tn

n!
,

where (x)N = x (x− 1) · · · (x−N + 1), for N ≥ 1, and (x)0 = 1.
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Now, we observe that

e−kF (3.3)

=
∞∑

m1=0

(−k)m1

m1!
Fm1

=

∞∑
m1=0

(−k)m1
1

m1!

(
log

(
1 +

1

λ
log (1 + λt)

))m1

(3.4)

=
∞∑

m1=0

(−k)m1

∞∑
m2=m1

S1 (m2,m1)

(
1

λ

)m2 (log (1 + λt))m2

m2!

=

∞∑
m2=0

(
m2∑
m1=0

(−k)m1 S1 (m2,m1)λ
−m2

)

×
∞∑

m3=m2

S1 (m3,m2)λ
m3
tm3

m3!

=
∞∑

m3=0

(
m3∑
m2=0

m2∑
m1=0

(−k)m1 S1 (m2,m1)S1 (m3,m2)λ
m3−m2

)
tm3

m3!
.

In turn, (3.3) gives us

1

(1 + λt)N
e−kF (3.5)

=

( ∞∑
l=0

(
N + l − 1

l

)
(−1)l λltl

)

×
∞∑

m3=0

(
m3∑
m2=0

m2∑
m1=0

(−k)m1 S1 (m2,m1)S1 (m3,m2)λ
m3−m2

)
tm3

m3!

=

∞∑
n=0

(
n∑

m3=0

m3∑
m2=0

m2∑
m1=0

(−1)n+m1+m3

(
n

m3

)
(N + n−m3 − 1)n−m3

×km1λn−m2S1 (m2,m1)S1 (m3,m2)
) tn
n!
.

On the other hand, from (1.2) and (3.5) we have

F (N) = (−1)N−1 (N − 1)!

∞∑
n=0

(
N∑
k=1

n∑
m3=0

m3∑
m2=0

m2∑
m1=0

(3.6)

× (−1)n+m1+m3

(
n

m3

)
(N + n−m3 − 1)n−m3

(k − 1)!km1

×λN+n−k−m2S1 (m2,m1)S1 (m3,m2)Hn−1,k−1

) tn
n!
.

By equating (3.2) and (3.6), we finally get the following theorem.
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Theorem 3.1. For N = 1, 2, 3, . . . , and n = 0, 1, 2, . . . , we have

(−1)N+n+1 (n+N)!

(N − 1)!

N+n−1∑
l=0

Dl,λ

l!

(−λ)n+N−l−1

n+N − l

=
N∑
k=1

n∑
m3=0

m3∑
m2=0

m2∑
m1=0

(−1)m1+m3

(
n

m3

)
(N + n−m3 − 1)n−m3

× (k − 1)!km1λN+n−k−m2S1 (m2,m1)S1 (m3,m2)HN−1,k−1,

where HN,j’s are as in (1.4), (1.5) and (1.6).
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