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Abstract

According to the concept of strong (non-Archimedean) fuzzy metric, in the sense of George and Veeramani,
H. Efe and E. Yigit have introduced, and studied, the concept of strong intuitionistic fuzzy metric (H. Efe
and E. Yigit, On strong intuitionistic fuzzy metric spaces, Journal of Nonlinear Science and Applications 9
(2016), 4016-4038). In this note we show that all results obtained by the authors are immediate consequences
of known results in fuzzy metric setting and a few simple results that we will introduce.
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1. Introduction and Preliminaries

Several concepts of fuzzy metrics have been given, from different points of view, in fuzzy setting. Here
we deal with the concept of fuzzy metric given by George and Veeramani [3], which is a modification of the
one due to Kramosil and Michalek in [11] where they extended the concept of Menger space to fuzzy setting.

Gregori et al. defined the concept of strong (non-Archimedean) fuzzy metric in [6] where they studied
the completion of this type of fuzzy metrics. Further studies on strong fuzzy metrics can be seen in [13, 7, 5].

Park introduced and discussed in [12] a notion of intuitionistic fuzzy metric which is based both on
the idea of intuitionistic fuzzy set due to Atanassov [1] and the concept of fuzzy metric due to George
and Veeramani. Recently, H. Efe and E. Yigit, [2], have introduced and studied the concept of strong
intuitionistic fuzzy metric based on the concept of strong fuzzy metric.

In [10] the authors advised that many possible constructions in the realm of intuitionistic fuzzy metric
spaces can be directly obtained from the fuzzy case. In this way, we think that the notion of strong
intuitionistic fuzzy metric has little margin in light of Proposition 4.2.

With respect to [2], we notice that the authors have ignored the results in [13], also the results in [7],
which is not cited, and, even, their Remark 1.5 (i) in [2] (due to J.H. Park) which could drastically shorten
their paper.
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In this paper, after preliminaries and reminders on strong fuzzy metrics, we prove in Section 3 and
Section 4 that all results obtained in [2] are immediate consequences of known results in (strong) fuzzy
metrics and a few of simple results which we will introduce. In addition, we also correct some assertions
found in the mentioned paper and we have updated some results related to the topology deduced from an
intuitionistic fuzzy metric space.

In the following N,R and R
+ will denote the sets of positive integers, real numbers and positive real

numbers, respectively.
Recall [14] that a continuous t-norm is a binary operation ∗ : [0, 1] → [0, 1] which satisfies the following

conditions: (i) ∗ is associative and commutative; (ii) ∗ is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1]; (iv)
a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Similarly, a continuous t-conorm is a binary operation: ♦ : [0, 1] → [0, 1] which satisfies the following
conditions: (i) ♦ is associative and commutative; (ii) ♦ is continuous; (iii) a♦0 = a for every a ∈ [0, 1]; (iv)
a♦b ≤ c♦d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Given a t-norm ∗, the t-conorm ♦ given by a♦b = 1− ((1− a) ∗ (1− b)) is the t-conorm associated to ∗.
In this case it is also satisfied that a∗b = 1−((1− a)♦(1− b)). So, it is said that ∗ and ♦ are associated. The
three continuous t-norms mostly used in fuzzy setting are the t-norm minimum (∧) given by a∧b = min{a, b},
the usual product (·) and the Lukasievicz t-norm (L) given by aLb = max{0, a + b − 1}. The t-conorms
♦ associated to the mentioned t-norms are a♦b = max{a, b}, a♦b = a + b − ab and a♦b = min{1, a + b},
respectively.

Recall that x ∧ y ≥ x · y ≥ xLy for all x, y ∈ [0, 1]. We denote it, briefly, by ∧ ≥ · ≥ L. Also it is well
known that min ≤ ∗ for all t-norm ∗.

In order to simplify the presentation of this paper, in the following ∗ will denote a continuous t-norm
and ∗′ its associated continuous t-conorm. Also, ♦ will denote a continuous t-conorm and ♦′ its associated
continuous t-norm. Then, by the above definitions it is easy to obtain the following proposition.

Proposition 1.1. (i) (∗′)′ = ∗ and (♦′)′ = ♦

(ii) a ∗ b ≤ c if and only if (1− a) ∗′ (1− b) ≥ 1− c

(iii) a♦b ≥ c if and only if (1− a)♦′(1− b) ≤ 1− c

(iv) If ∗1 is a t-norm with ∗ ≤ ∗1 then ∗′ ≥ ∗′1

(v) If ♦1 is a t-conorm with ⋄ ≤ ♦1 then ♦′ ≥ ♦′

1

Park introduced in [12] the following notion (in which we use a double terminology for easy the reading
of the paper).

Definition 1.2. An intuitionistic fuzzy metric space is a 5-tuple (X,M,N, ∗,♦) such thatX is a (nonempty)
set, ∗ is a continuous t-norm, ♦ is a continuous t-conorm andM,N are fuzzy sets onX×X×(0,∞) satisfying
the following conditions, for all x, y, z ∈ X, s, t > 0:

(IFM-1) M(x, y, t) +N(x, y, t) ≤ 1;

(GV1) (IFM-2) M(x, y, t) > 0;

(GV2) (IFM-3) M(x, y, t) = 1 if and only if x = y;

(GV3) (IFM-4) M(x, y, t) = M(y, x, t);

(GV4) (IFM-5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);

(GV5) (IFM-6) Mx,y : R+ → (0, 1] is a continuous function where Mxy(t) = M(x, y, t);

(IFM-7) N(x, y, t) < 1;
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(IFM-8) N(x, y, t) = 0 if and only if x = y;

(IFM-9) N(x, y, t) = N(y, x, t);

(IFM-10) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t + s);

(IFM-11) Nx,y : R+ → [0, 1) is a continuous function where Nxy(t) = N(x, y, t);

If (X,M,N, ∗,♦) is an intuitionistic fuzzy metric space (IFMS for shorten) we will say that (M,N, ∗,♦)
is an intuitionistic fuzzy metric on X, or simply (M,N) is an IFM, if confusion is not possible or not further
information is needed. This terminology will be used for the rest of intuitionistic (fuzzy) notions without
explicit mention.

Definition 1.3. [3] A fuzzy metric space is an ordered triple (X,M, ∗) such that X is a (nonempty) set, ∗ is
a continuous t-norm and M is a fuzzy set on X×X×R

+ satisfying the five above conditions (GV1)-(GV5),
for all x, y, z ∈ X, s, t > 0 :

It is clear that if (X,M,N, ∗,♦) is an IFMS then (X,M, ∗) is a fuzzy metric space. Conversely, by (ii)
of Proposition 1.1, we have the following proposition.

Proposition 1.4. ([10, Remark 1 (B)] and [2, Remark 1.5 (i)])
If (X,M, ∗) is a fuzzy metric space then (X,M, 1 −M, ∗, ∗′) is an IFMS.

The following proposition is obvious.

Proposition 1.5. Let ∗ and ⋆ be two continuous t-norms with ⋆ ≤ ∗. If (X,M, ∗) is a fuzzy metric space
then (X,M, ⋆) is a fuzzy metric space.

If (X, d) is a metric space, then (X,Md, ∗) is a fuzzy metric space called standard fuzzy metric space
induced by (X, d) where Md(x, y, t) = t

t+d(x,y) and ∗ is the usual product. Then, by Proposition 1.4

(X,Md, 1−Md, ∗, ∗
′) is an IFMS called standard in [2] (the same is true if ∗ = ∧).

George and Veeramani proved in [3] that every fuzzy metric M on X generates a topology τM on X

which has as a base the family of open sets of the form {BM (x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, where
BM (x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all x ∈ X, ε ∈]0, 1[ and t > 0. It is also said that τM is
the topology induced by M or deduced from M . This topology is metrizable [8, 4]. It is well known that a
sequence {xn} converges to x0 in τM if and only if lim

n
M(xn, x0, t) = 1 for all t > 0.

Park proved in [12] that each IFM (M,N) on X generates a topology τ(M,N) on X. Later, in [10,
Theorem 2], the authors proved the following result.

Proposition 1.6. Let (X,M,N, ∗,♦) be an IFMS. Then τ(M,N) coincides with τM . (Consequently, τ(M,N)

is metrizable).

Definition 1.7. A sequence {xn} in a fuzzy metric space (X,M, ∗) is said to be Cauchy if for each ǫ ∈]0, 1[
and each t > 0 there exists n0 ∈ N such that M(xn, xm, t) > 1 − ǫ for all n,m ≥ n0 or, equivalently,
lim
n,m

M(xn, xm, t) = 1 for all t > 0. X is said to be complete if every Cauchy sequence in X is convergent

with respect to τM . In such a case M is also said to be complete.

The following is a well-known result.

Proposition 1.8. The function Mxy in axiom (GV5) is non-decreasing for all x, y ∈ X.

Definition 1.9. [9] A fuzzy metric M on X is said to be stationary if M does not depend on t, i.e., if
for each x, y ∈ X, the function Mx,y(t) = M(x, y, t) is constant. In this case we write M(x, y) instead of
M(x, y, t). According to this definition, an IFM (M,N) is called stationary [2] if M and N do not depend
on t.
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The following result will be useful in the next sections.

Proposition 1.10. [12, 10] Let (X,M,N, ∗,♦) be an IFMS. Then the pair (1−N,♦′) is a fuzzy metric on
X where 1−N is defined on X2 × R

+ by (1−N)(x, y, t) = 1−N(x, y, t).

An immediate consequence is the following.

Proposition 1.11. Let (X,M,N, ∗,♦) an IFMS. Then

(i) The function Nxy in axiom (IFM-11) is non-increasing for all x, y ∈ X.

(ii) (X, 1−N,N,♦′,♦) is an IFMS.

2. Strong fuzzy metrics (a brief reminder)

The following notion can be found in [13, 6].

Definition 2.1. Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric M is said to be strong (non-
Archimedean) if it satisfies for each x, y, z ∈ X and each t > 0

(GV 4′) M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t)

As a particular case, if (M,∧) is strong, we obtain the notion of fuzzy ultrametric (M(x, z, t) ≥
M(x, y, t) ∧M(y, z, t)).

Remark 2.2. In general, Axiom (GV4’) cannot replace (GV4) in order to obtain a fuzzy metric. In fact, in
[13, Example 8] it is shown a fuzzy set M on X2 × R

+ satisfying (GV1)-(GV3),(GV4’) and (GV5) but it
does not satisfy (GV4). Nevertheless the authors stated the following result.

Proposition 2.3. If we replace (GV4) by (GV4’) and we demand in (GV5) that Mxy be a non-decreasing
continuous function then M is a strong fuzzy metric.

Strong fuzzy metrics satisfy the following results.

Proposition 2.4. [13] Let (M, ∗) be a non-stationary fuzzy metric on X. Then:

(i) (M, ∗) is strong if and only if (Mt, ∗) is a stationary fuzzy on X for each t > 0 (where Mt is the fuzzy
set on X2 ×R

+ given by Mt(x, y) = M(x, y, t)).

(ii) Further, if (M, ∗) is strong then τM =
∨

{τMt
: t ∈ R

+}.

{Mt : t ∈ R
+} is called the family of stationary fuzzy metrics deduced from M . It is easy to verify that

Mt ≻ Mt′ whenever t < t′.

Proposition 2.5. [13] Let {Mt, ∗) : t ∈ R
+} be a family of stationary fuzzy metrics on X. The function

M on X2 ×R
+ defined by M(x, y, t) = Mt(x, y) is a strong fuzzy metric on X when considering the t-norm

∗, if and only if {Mt, ∗) : t ∈ R
+} is an increasing family (i.e. Mt ≤ Mt′ if t < t′) and the function

Mxy : R+ → R
+ defined by Mxy(t) = M(x, y, t) is a continuous function, for each x, y ∈ X.

Proposition 2.6. [13] Let {Mt : t ∈ R
+} be the family of stationary fuzzy metrics deduced from the strong

fuzzy metric (M, ∗) on X. Then the sequence {xn} in (X,M, ∗) is Cauchy if and only if {xn} is Cauchy in
(X,Mt, ∗) for each t > 0.

Corollary 2.7. [13] Let (X,M, ∗) be a strong fuzzy metric space. Then (X,M, ∗) is complete if and only if
(X,Mt, ∗) is complete.
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3. Intuitionistic fuzzy metric spaces

Observe that the only relationship between M and N in an IFMS is the condition (IFM-1) in Definition
1.2. So, the follwing lemma is immediate.

Lemma 3.1. Let (M, ∗) and (S, ⋆) be two fuzzy metrics on X, with S ≤ M (that is S(x, y, t) ≤ M(x, y, t)
for all x, y ∈ X, t > 0). If (X,M,N, ∗,♦) is an IFMS then (X,S,N, ⋆,♦) is an IFMS.

Lemma 3.2. (X,M,N, ∗,♦) is an IFMS if and only if (M, ∗) and (1−N,♦′) are fuzzy metrics on X and
M +N ≤ 1 (i.e. M(x, y, t) +N(x, y, t) ≤ 1 for all x, y ∈ X, t > 0).

Proof. The direct is obvious from Proposition 1.10. We will see the converse. If (1−N,♦′) is a fuzzy metric
then by Proposition 1.4 (X, 1 −N,N,♦′,♦) is an IFMS. Then, by Lemma 3.1 (X,M,N, ∗,♦) is an IFMS,
since M ≤ 1−N .

The reader can easily construct many IFMS by means of an IFM (M,N, ∗,♦) or by means of a fuzzy
metric (M, ∗), combining Proposition 1.4, Proposition 1.10, Lemma 3.1 and Lemma 3.2.

Remark 3.3. (Compare with [2, Example 1.6])
Let (X, d) be a metric space and let m,k1, k2 ∈ R

+ and let ∗ be the usual product. From Example 4 of

[7], (Mi, ∗) is a fuzzy metric on X where Mi(x, y, t) =
ki · t

n

ki · tn +m · d(x, y)
, i = 1, 2. Then, by Proposition

1.4 and Lemma 3.2, (M1, 1−M2, ∗, ∗
′) is an IFMS on X if and only if M1 ≤ M2 if and only if k1 ≥ k2.

Remark 3.4. (See [2, Example 1.8])

It is well known that (R+,M, ∗) is a stationary fuzzy metric space where M(x, y) =
min{x, y}

max{x, y}
and ∗

is the usual product. Then, by Propositions 1.4 and 1.5 and Lemma 3.1, (R+,M, 1 −M,L, ∗′) is an IFMS
since L ≤ ∗.

Remark 3.5. [2, Proposition 2.8] is a consequence of Proposition 1.4 applied on the fuzzy metric space given
in [7, Example 3].

Remark 3.6. (Compare with [2, Proposition 2.10])
Let (X,K,P, ∗, ∗′) be a stationary IFMS where ∗ is the usual product. Let ϕ : R+ → R

+ be a continuous
increasing function and let M,N be two fuzzy sets on X2 × R

+ defined by

M(x, y, t) =
ϕ(t)

ϕ(t) + 1−K(x, y)
, N(x, y, t) =

P (x, y)

ϕ(t) + P (x, y)

By Proposition 1.10 and (i) of Proposition 1.1, (X, 1 − P, ∗) is a stationary fuzzy metric space. By [7,
Example 17],

ϕ(t)

ϕ(t) + 1− (1− P (x, y))
=

ϕ(t)

ϕ(t) + P (x, y)
= 1−N(x, y, t)

is a fuzzy metric for ∗. Then, by Proposition 1.4, (X, 1−N,N, ∗, ∗′) is an IFMS. By hypothesis, K +P ≤ 1
and then P ≤ 1−K and hence M ≤ 1−N , and consequently, by Lemma 3.1 (X,M,N, ∗, ∗′) is an IFMS.

4. Strong intuitionistic fuzzy metric spaces

Definition 4.1. [2] Let (X,M,N, ∗,♦) be an IFMS. The IFM (M,N) is said to be strong if it satisfies for
each x, y, z ∈ X and each t > 0

M(x, z, t) ≥ M(x, y, t) ∗M(y, z, t) (IFM-5’)

N(x, z, t) ≤ N(x, y, t)♦N(y, z, t) (IFM-10’)

By this definition, Proposition 1.10 and (ii)-(iii) of Proposition 1.1 we obtain the following proposition.
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Proposition 4.2. (X,M,N, ∗,♦) is a strong IFMS if and only if (M, ∗) and (1 − N,♦′) are strong fuzzy
metrics on X and M +N ≤ 1.

By (ii)-(iii) of Proposition 1.1 we obtain the following proposition.

Proposition 4.3. An IFMS (X,M, 1 −M, ∗, ∗′) is strong if and only if (X,M, ∗) is a strong fuzzy metric
space.

Remark 4.4. (Compare with [2, Example 2.2 and Remark 2.3])
The extension of Remark 2.2 and Proposition 2.3 to an IFMS (X,M,N, ∗,♦) is obvious since (X,M, ∗)

and (X, 1 −N,♦′) are fuzzy metric spaces.

Remark 4.5. (Compare with [2, Example 2.9])
In [13, Example 9 (c)] the authors stated that (M1, ∗) is a strong fuzzy metric on R

+ where ∗ is the

usual product and M1(x, y, t) =
min{x, y} + t

max{x, y} + t
.

Then it is easy to conclude that this assertion is also true for (M, ∗) where M(x, y, t) =
min{x, y} + ϕ(t)

max{x, y}+ ϕ(t)
and ϕ(t) : R+ → R

+ is a non-decreasing continuous function.
Indeed,

M(x, z, t) =
min{x, z} + ϕ(t)

max{x, z} + ϕ(t)
= M1 (x, z, ϕ(t)) ≥ M1 (x, y, ϕ(t)) ·M1 (y, z, ϕ(t)) =

=
min{x, y} + ϕ(t)

max{x, y}+ ϕ(t)
·
min{y, z} + ϕ(t)

max{y, z} + ϕ(t)
= M(x, y, t) ·M(y, z, t)

Consequently, by Proposition 1.4 (R+,M, 1−M, ∗, ∗′) is a strong IFMS.

Remark 4.6. (Compare with [2, Example 2.12])
Let (X,K,P, ∗, ∗′) be a stationary IFMS, where ∗ is the usual product. Let M,N be the fuzzy sets on

X2 × R
+ defined by M(x, y, t) =

t+K(x, y)

t+ 1
and N(x, y, ) =

P (x, y)

t+ 1
. By [13, Example 9 (e)], (M, ∗) is a

strong fuzzy metric. By Proposition 1.10, (1−P, ∗) is a (strong) fuzzy metric. Then, again by [13, Example

9 (e)],
(

t+1−P (x,y)
t+1 , ∗

)

is a strong fuzzy metric.

Then, by Proposition 1.4,
(

t+1−P (x,y)
t+1 , 1− t+(1−P (x,y))

t+1 , ∗, ∗′
)

is a strong IFM. Finally, by Lemma 3.1 and

Proposition 4.2, (M,N, ∗, ∗′) is a strong IFM, since K ≤ 1− P .

Remark 4.7. From [13, Example 9 (f),(g),(h),(i)], and Proposition 1.4, we obtain that Examples 2.13, 2.14
and 2.15 in [2] are obvious.

Remark 4.8. The extension of Proposition 2.5 to the intuitionistic setting has been made in [2, Proposition
2.20]. Now, it is an immediate consequence of Proposition 1.10 and Proposition 1.11 (i).

Remark 4.9. Examples 2.21 and 2.22 of [2] are immediate extensions of [13, Example 14 (a) and (b)], to the
intuitionistic setting.

The following definition is due to Park [12].

Definition 4.10. Let (X,M,N, ∗,♦) be an IFMS. Then:

(i) A sequence {xn} is said to be Cauchy if for each ε > 0 and each t > 0, there exists n0 ∈ N such that
M(xm, xn, t) > 1− ε and N(xm, xn, t) < ε for all m,n ≥ n0.

(ii) (X,M,N, ∗,♦) is called complete if every Cauchy sequence in X is convergent with respect to τ(M,N).
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Now, due to the axiom (IFM-1) it is obvious that a sequence {xn} is Cauchy in (X,M,N, ∗,♦) if and
only if {xn} is Cauchy in the fuzzy metric space (X,M, ∗). Then, recalling that τ(M,N) = τM , we have
that (X,M,N, ∗,♦) is complete if and only if (X,M, ∗) is complete. In consequence, the formulation in
the intuitionistic setting of Proposition 2.23 and Corollary 2.24 of [2] as extensions of Proposition 2.6 and
Corollary 2.7, respectively, have, really, no sense. Further, the converse of [2, Corollary 2.24] is not a
consequence of the fact that τM

(

= τ(M,N)

)

=
∨

{τMt
: t > 0}. Here we write a proof:

Suppose that {xn} is a Cauchy sequence in the strong fuzzy metric space (X,M, ∗) and that (X,Mt, ∗) is
complete for each t > 0. Then, by Proposition 2.6, {xn} is Cauchy in (X,Mt, ∗) for all t > 0. Then, for each
t > 0 there exists xt ∈ X such that {xn} converges to xt in (X,Mt, ∗). We will see that xt = x0 for all t > 0.
Indeed, if t1 < t2 then lim

n
Mt1(xn, xt1) = 1 implies, by Proposition 2.5, that lim

n
Mt2(xn, xt1) = 1 and so {xn}

converges also to xt1 in (X,Mt2 , ∗), that is xt1 = xt2(= x0), since the limit is unique. Then {xn} converges
in τMt

to x0 for all t > 0. Hence, lim
n

Mt(xn, x0) = 1 for all t > 0 and, consequently, lim
n

M(xn, x0, t) = 1 for

all t > 0 that is {xn} converges to x0 in (X,M, ∗) and then (X,M, ∗) is complete.
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