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1. Introduction

In this article, we consider the existence and uniqueness of positive solutions for a

class of singular fractional differential systems with coupled integral boundary conditions

as follows

Dα
0+u(t) + p1(t)f1(t, u(t), v(t)) + q1(t)g1(t, u(t), v(t)) = 0, t ∈ (0, 1),

Dβ
0+v(t) + p2(t)f2(t, u(t), v(t)) + q2(t)g2(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

a(s)v(s)dA(s),

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =

∫ 1

0

b(s)u(s)dB(s),

(1.1)

where α, β ∈ R, n−1 < α ≤ n,m−1 < β ≤ m, n, m ∈ N, n, m ≥ 2, Dα
0+ and Dβ

0+ denote

the Riemann-Liouville derivatives of orders α and β, respectively. pi, qi ∈ C((0, 1), [0,∞)),

a, b ∈ C([0, 1], [0,∞)), fi ∈ C((0, 1) × [0,∞) × (0,∞), [0,∞)), gi ∈ C((0, 1) × (0,∞) ×
[0,∞), [0,∞)) and fi(t, x, y) may be singular at t = 0, 1 and y = 0, and gi(t, x, y) may

be singular at t = 0, 1 and x = 0 (i = 1, 2).
∫ 1

0
a(s)v(s)dA(s),

∫ 1

0
b(s)u(s)dB(s) denote
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the Riemann-Stieltjes integral with a signed measure, that is, A,B : [0, 1] → [0,∞) are

functions of boundary variation. By a positive solution of BVP(1.1), we mean a pair of

functions (u, v) ∈ C[0, 1]× C[0, 1] satisfying BVP(1.1) with u(t) > 0 and v(t) > 0 for all

t ∈ (0, 1].

In recent years, boundary value problems for a coupled system of nonlinear differen-

tial equations have gained its popularity and importance due to its various applications

in heat conduction, chemical engineering, underground water flow, thermo-elasticity and

plasma physics. There have appeared some results for the existence of solutions or pos-

itive solutions of boundary value problems for a coupled system of nonlinear fractional

differential equations, see [1-11] and the references therein. Most of the results show that

the equations have either single or multiple positive solutions.

In [12], Cui et al. investigated the following singular problem

− x′′(t) = f(t, x(t), y(t)), t ∈ (0, 1),

− y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) =

∫ 1

0

y(t)dα(t), y(0) =

∫ 1

0

x(t)dβ(t),

x(1) = y(1) = 0,

where
∫ 1

0
y(t)dα(t) and

∫ 1

0
x(t)dβ(t) denote the Riemann-Stieltjes integrals of y and x with

respect to α and β, respectively; f ∈ C((0, 1) × [0,∞) × (0,∞), [0,∞)), g ∈ C((0, 1) ×
(0,∞)×[0,∞), [0,∞)) and f(t, x, y) is nondecreasing in x and nonincreasing in y and may

be singular at t = 0, 1 and y = 0, while g(t, x, y) is nonincreasing in x and nondecreasing

in y and may be singular at t = 0, 1 and x = 0.

In [13], Wang et al. considered the following singular fractional differential system

with coupled boundary conditions

Dα1

0+u(t) + f(t, u(t), v(t)) = 0,

Dα2

0+v(t) + g(t, u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2) = 0, u(1) = µ1

∫ 1

0

v(s)dA1(s),

v(0) = v′(0) = · · · = v(n−2) = 0, v(1) = µ2

∫ 1

0

u(s)dA2(s),

where n − 1 < αi ≤ n, n ≥ 2, and Dαi
0+ is the standard Riemann-Liouvill derivative.

f ∈ C((0, 1)× [0,∞)× (0,∞), [0,∞)), g ∈ C((0, 1)× (0,∞)× [0,∞), [0,∞)) and f(t, x, y)

is nondecreasing in x and nonincreasing in y and may be singular at t = 0, 1 and y = 0,

while g(t, x, y) is nonincreasing in x and nondecreasing in y and may be singular at

t = 0, 1 and x = 0. By using the Guo-Krasnoselskii fixed point theorem, they obtained

the existence of a positive solution and the uniqueness of the positive solution under the

condition α1 = α2.
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In [14], Henderson and Luca studied the system of nonlinear fractional differential

equations {
Dα

0+u(t) + f(t, v(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

Dβ
0+v(t) + g(t, u(t)) = 0, 0 < t < 1,m− 1 < β ≤ m,

with the integral boundary conditions
u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)dH(s),

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =

∫ 1

0

v(s)dK(s),

where n,m ∈ N, n, m ≥ 2, Dα
0+ and Dβ

0+ denote the Riemann-Liouville derivatives of

orders α and β respectively and f, g : [0, 1]× [0,∞)→ [0,∞) are continuous and f(t, 0) =

g(t, 0) = 0 for all t ∈ [0, 1]. They obtained the existence and multiplicity of positive

solutions for the above BVP by using the Guo-Krasnosel’skii fixed point theorem and

some theorems from the fixed point index theory, but they did not discuss the uniqueness

of positive solutions.

Motivated by the above mentioned work, the purpose of this article is to investigate the

existence and uniqueness of positive solutions for singular fractional differential systems

with coupled integral boundary conditions under certain conditions on the functions fi

and gi (i = 1, 2). The main new features presented in this paper are as follows. Firstly, we

divided the functions of the BVP into fi and gi so that the boundary value problem has

a more general form. Secondly, Dα
0+ and Dβ

0+ denote the Riemann-Liouville derivatives

of orders α and β in which α ∈ (n− 1, n], β ∈ (m− 1,m], n,m ∈ N. Thirdly, if dA(s) =

dB(s) = ds or h(s)ds, then BVP(1.1) reduces to a multi-point boundary value problem as

a special case. Fourthly, the nonlinearity is allowed to be singular in regard to time and

space variable elements. In particular, for any α, β ∈ (0,+∞), we obtain the existence

and uniqueness of positive solutions for singular fractional differential systems (1.1). The

results obtained herein generalize and improve some known results including singular and

non-singular cases.

The rest of the paper is organized as follows. In Section 2, we present the necessary

definitions and properties to prove our main results, and obtain the corresponding Green

function and some of its properties. In Section 3, we give the existence and uniqueness

theorem for the positive solutions with respect to a cone for the BVP (1.1). In Section

4, as an application, an interesting example is presented to illustrate the main result.

Conclusions are presented in Section 5.

2. Preliminaries and lemmas

For the convenience of the reader, we present some notations and lemmas to be used
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in the proof of our main result. They also can be found in the literature [15-18].

Definition 2.1 The Riemann-Liouville fractional integral of order α > 0 of a function

y : (0,∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 The Riemann-Liouville fractional derivative of order α > 0 of a continu-

ous function y : (0,∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right

hand side is pointwise defined on (0,∞).

Lemma 2.1 [18] Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional

differential equation

Dα
0+u(t) = 0

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CN t
α−N , Ci ∈ R (i = 1, 2, · · · , N) as the unique

solution, where N = [α] + 1.

From the definition of the Riemann-Liouville derivative, we can obtain the statement.

Lemma 2.2 [18] Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order

α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ CN t

α−N ,

for some Ci ∈ R (i = 1, 2, · · · , N), where N = [α] + 1.

In the following, we present the Green function of the fractional differential equation

boundary value problem.

Lemma 2.3 Let x, y ∈ C(0, 1) ∩ L1(0, 1) be given functions. Then the boundary value

problem 

Dα
0+u(t) + x(t) = 0, 0 < t < 1, n− 1 < α ≤ n,

Dβ
0+v(t) + y(t) = 0, 0 < t < 1,m− 1 < β ≤ m,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

a(s)v(s)dA(s),

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =

∫ 1

0

b(s)u(s)dB(s),

(2.1)
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where n,m ∈ N, n, m ≥ 2, is equivalent to
u(t) =

∫ 1

0

G1(t, s)x(s)ds+

∫ 1

0

H1(t, s)y(s)ds, t ∈ [0, 1],

v(t) =

∫ 1

0

G2(t, s)y(s)ds+

∫ 1

0

H2(t, s)x(s)ds, t ∈ [0, 1],

(2.2)

where 

G1(t, s) = g1(t, s) +
∆1

∆
tα−1

∫ 1

0

g1(τ, s)b(τ)dB(τ),

H1(t, s) =
tα−1

∆

∫ 1

0

g2(τ, s)a(τ)dA(τ),

G2(t, s) = g2(t, s) +
∆2

∆
tβ−1

∫ 1

0

g2(τ, s)a(τ)dA(τ),

H2(t, s) =
tβ−1

∆

∫ 1

0

g1(τ, s)b(τ)dB(τ),

(2.3)

and

g1(t, s) =
1

Γ(α)

{
[t(1− s)]α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

[t(1− s)]α−1, 0 ≤ t ≤ s ≤ 1,
(2.4)

g2(t, s) =
1

Γ(β)

{
[t(1− s)]β−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,

[t(1− s)]β−1, 0 ≤ t ≤ s ≤ 1,
(2.5)

in which ∆ = 1−∆1∆2 6= 0, and ∆1 =
∫ 1

0
a(s)sβ−1dA(s),∆2 =

∫ 1

0
b(s)sα−1dB(s).

Proof By Lemmas 2.1 and 2.2, the solution of the system (2.1) is
u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds+ c1t
α−1 + · · ·+ cnt

α−n, t ∈ [0, 1],

v(t) = − 1

Γ(β)

∫ t

0

(t− s)β−1y(s)ds+ d1t
β−1 + · · ·+ dmt

β−m, t ∈ [0, 1],

(2.6)

where ci, dj ∈ R (i = 1, 2, 3, · · · , n; j = 1, 2, 3, · · · ,m). By using the conditions u(0) =

u′(0) = · · · = u(n−2)(0) = 0 and v(0) = v′(0) = · · · = v(m−2)(0) = 0, we obtain c2 = c3 =

· · · = cn = 0 and d2 = d3 = · · · = dm = 0. Then, by (2.6) we conclude
u(t) = c1t

α−1 − 1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, t ∈ [0, 1],

v(t) = d1t
β−1 − 1

Γ(β)

∫ t

0

(t− s)β−1y(s)ds, t ∈ [0, 1].

(2.7)

Combining (2.7) with the conditions u(1) =
∫ 1

0
a(s)v(s)dA(s) and v(1) =

∫ 1

0
b(s)u(s)dB(s),

we deduce
c1 −

1

Γ(α)

∫ 1

0

(1− s)α−1x(s)ds =

∫ 1

0

a(s)[d1s
β−1 − 1

Γ(β)

∫ s

0

(s− τ)β−1y(τ)dτ ]dA(s),

d1 −
1

Γ(β)

∫ 1

0

(1− s)β−1y(s)ds =

∫ 1

0

b(s)[c1s
α−1 − 1

Γ(α)

∫ s

0

(s− τ)α−1x(τ)dτ ]dB(s),
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or equivalently
c1 − d1

∫ 1

0

a(s)sβ−1dA(s) =
1

Γ(α)

∫ 1

0

(1− s)α−1x(s)ds− 1

Γ(β)

∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds,

d1 − c1
∫ 1

0

b(s)sα−1dB(s) =
1

Γ(β)

∫ 1

0

(1− s)β−1y(s)ds− 1

Γ(α)

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds.

(2.8)

The above system in the unknowns c1 and d1 has the determinant

∆ =

∣∣∣∣∣ 1 −
∫ 1

0
a(s)sβ−1dA(s)

−
∫ 1

0
b(s)sα−1dB(s) 1

∣∣∣∣∣
=1−

(∫ 1

0

a(s)sβ−1dA(s)

)(∫ 1

0

b(s)sα−1dB(s)

)
=1−∆1∆2.

(2.9)

So by (2.8) and (2.9) we obtain

c1 =
1

∆

[
1

Γ(α)

∫ 1

0

(1− s)α−1x(s)ds− ∆1

Γ(α)

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds

− 1

Γ(β)

∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds+
∆1

Γ(β)

∫ 1

0

(1− s)β−1y(s)ds

]
,

(2.10)

d1 =
1

∆

[
1

Γ(β)

∫ 1

0

(1− s)β−1y(s)ds− ∆2

Γ(β)

∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds

− 1

Γ(α)

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds+
∆2

Γ(α)

∫ 1

0

(1− s)α−1x(s)ds

]
.

(2.11)

Therefore, combining (2.7) with (2.10) and (2.11), we deduce

u(t) =− 1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds+
tα−1

∆

[
1

Γ(α)

∫ 1

0

(1− s)α−1x(s)ds

− ∆1

Γ(α)

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds

− 1

Γ(β)

∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds+
∆1

Γ(β)

∫ 1

0

(1− s)β−1y(s)ds

]
,

(2.12)

v(t) =− 1

Γ(β)

∫ t

0

(t− s)β−1y(s)ds+
tβ−1

∆

[
1

Γ(β)

∫ 1

0

(1− s)β−1y(s)ds

− ∆2

Γ(β)

∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds

− 1

Γ(α)

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds+
∆2

Γ(α)

∫ 1

0

(1− s)α−1x(s)ds

]
.

(2.13)
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We conclude

u(t) =
1

Γ(α)

[∫ t

0

[tα−1(1− s)α−1 − (t− s)α−1]x(s)ds

+

∫ 1

t

tα−1(1− s)α−1x(s)ds−
∫ 1

0

tα−1(1− s)α−1x(s)ds

]

+
tα−1

∆Γ(α)

∫ 1

0

(1− s)α−1x(s)ds− ∆1

∆Γ(α)
tα−1

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds

+
tα−1

∆Γ(β)

[∫ 1

0

∫ 1

0

a(τ)τβ−1(1− s)β−1dA(τ)y(s)ds

−
∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds

]

=
1

Γ(α)

[∫ t

0

[tα−1(1− s)α−1 − (t− s)α−1]x(s)ds

+

∫ 1

t

tα−1(1− s)α−1x(s)ds− 1

∆

∫ 1

0

tα−1(1− s)α−1x(s)ds

+
∆1∆2

∆

∫ 1

0

tα−1(1− s)α−1x(s)ds+
1

∆

∫ 1

0

tα−1(1− s)α−1x(s)ds

− ∆1

∆
tα−1

∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds

]

+
tα−1

∆Γ(β)

[∫ 1

0

∫ 1

0

a(τ)τβ−1(1− s)β−1dA(τ)y(s)ds−
∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds

]

=
1

Γ(α)

{∫ t

0

[tα−1(1− s)α−1 − (t− s)α−1]x(s)ds+

∫ 1

t

tα−1(1− s)α−1x(s)ds+
∆1

∆
tα−1[∫ 1

0

∫ 1

0

b(τ)(τ)α−1(1− s)α−1dB(τ)x(s)ds−
∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds

]}

+
tα−1

∆Γ(β)

[∫ 1

0

∫ 1

0

a(τ)τβ−1(1− s)β−1dA(τ)y(s)ds−
∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds

]
.

(2.14)

Therefore, we obtain

u(t) =
1

Γ(α)

{∫ t

0

[tα−1(1− s)α−1 − (t− s)α−1]x(s)ds+

∫ 1

t

tα−1(1− s)α−1x(s)ds+
∆1

∆
tα−1[∫ 1

0

∫ s

0

b(τ)(τ)α−1(1− s)α−1dB(τ)x(s)ds+

∫ 1

0

∫ 1

s

b(τ)(τ)α−1(1− s)α−1dB(τ)x(s)ds

−
∫ 1

0

∫ 1

s

b(τ)(τ − s)α−1dB(τ)x(s)ds

]}
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+
tα−1

∆Γ(β)

[∫ 1

0

∫ s

0

a(τ)τβ−1(1− s)β−1dA(τ)y(s)ds

+

∫ 1

s

∫ 1

0

a(τ)τβ−1(1− s)β−1dA(τ)y(s)ds−
∫ 1

0

∫ 1

s

a(τ)(τ − s)β−1dA(τ)y(s)ds

]

=
1

Γ(α)

{∫ t

0

[tα−1(1− s)α−1 − (t− s)α−1]x(s)ds+

∫ 1

t

tα−1(1− s)α−1x(s)ds

+
∆1

∆
tα−1

[∫ 1

0

∫ s

0

b(τ)(τ)α−1(1− s)α−1dB(τ)x(s)ds

+

∫ 1

0

∫ 1

s

b(τ)[τα−1(1− s)α−1 − (τ − s)α−1]dB(τ)x(s)ds

]}

+
tα−1

∆Γ(β)

[∫ 1

0

∫ s

0

a(τ)τβ−1(1− s)β−1dA(τ)y(s)ds

+

∫ 1

0

∫ 1

s

a(τ)[τβ−1(1− s)β−1 − (τ − s)β−1]dA(τ)y(s)ds

]

=

∫ 1

0

g1(t, s)x(s)ds+
∆1

∆
tα−1

∫ 1

0

∫ 1

0

g1(τ, s)b(τ)dB(τ)x(s)ds

+
tα−1

∆

∫ 1

0

∫ 1

0

g2(τ, s)a(τ)dA(τ)y(s)ds

=

∫ 1

0

G1(t, s)x(s)ds+

∫ 1

0

H1(t, s)y(s)ds.

(2.15)

In a similar manner, we deduce

v(t) =

∫ 1

0

g2(t, s)y(s)ds+
∆2

∆
tβ−1

∫ 1

0

∫ 1

0

g2(τ, s)a(τ)dA(τ)y(s)ds

+
tβ−1

∆

∫ 1

0

∫ 1

0

g1(τ, s)b(τ)dB(τ)x(s)ds

=

∫ 1

0

G2(t, s)y(s)ds+

∫ 1

0

H2(t, s)x(s)ds.

(2.16)

Therefore, we obtain the expression (2.2) for the solution of problem (2.1). 2

Lemma 2.4([19]) The functions g1 and g2 given by (2.4) and (2.5) have the following

properties:

tα−1(1− t)s(1− s)α−1

Γ(α)
≤ g1(t, s) ≤

s(1− s)α−1

Γ(α− 1)

(
or

tα−1(1− t)α−1

Γ(α)

)
∀t, s ∈ [0, 1],

tβ−1(1− t)s(1− s)β−1

Γ(β)
≤ g2(t, s) ≤

s(1− s)β−1

Γ(β − 1)

(
or

tβ−1(1− t)β−1

Γ(β)

)
∀t, s ∈ [0, 1].
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The following properties of the Green function play an important role in this paper.

Lemma 2.5 The Green functions Gi(t, s), Hi(t, s) (i = 1, 2) defined by (2.3) have the

following properties:

(1) Gi(t, s), Hi(t, s) are continuous functions on [0, 1] × [0, 1] and Gi(t, s), Hi(t, s) ≥
0, s, t ∈ [0, 1] (i = 1, 2);

(2) Gi(t, s) ≤ k1s(1− s)γ1 (or k1t
γ1), Hi(t, s) ≤ k1s(1− s)γ1 (or k1t

γ1), Gi(t, s) ≥
k2t

γ2s(1− s)γ2 , Hi(t, s) ≥ k2t
γ2s(1− s)γ2 (i = 1, 2), where

k1 = max

{
∆1

∆Γ(α− 1)

∫ 1

0

b(τ)dB(τ) +
1

Γ(α− 1)
,

∆2

∆Γ(β − 1)

∫ 1

0

a(τ)dA(τ) +
1

Γ(β − 1)
,

1

∆Γ(α− 1)

∫ 1

0

b(τ)dB(τ),
1

∆Γ(β − 1)

∫ 1

0

a(τ)dA(τ)

}
,

k2 = min

{
∆1

∆Γ(α)

∫ 1

0

τα−1(1− τ)b(τ)dB(τ),
∆2

∆Γ(β)

∫ 1

0

τβ−1(1− τ)a(τ)dA(τ),

1

∆Γ(α)

∫ 1

0

τα−1(1− τ)b(τ)dB(τ),
1

∆Γ(β)

∫ 1

0

τβ−1(1− τ)a(τ)dA(τ)

}

and γ1 = min {α− 1, β − 1} , γ2 = max {α− 1, β − 1}.

Proof For any t, s ∈ [0, 1], by (2.2), (2.4), (2.5) and Lemma 2.4, we get

G1(t, s) =g1(t, s) +
∆1

∆
tα−1

∫ 1

0

g1(τ, s)b(τ)dB(τ)

≤s(1− s)
α−1

Γ(α− 1)
+

∆1

∆
tα−1

∫ 1

0

g1(τ, s)b(τ)dB(τ)

≤s(1− s)
α−1

Γ(α− 1)
+

∆1s(1− s)α−1

∆Γ(α− 1)

∫ 1

0

b(τ)dB(τ)

=

(
∆1

∆Γ(α− 1)

∫ 1

0

b(τ)dB(τ) +
1

Γ(α− 1)

)
s(1− s)α−1,

(2.17)

or

G1(t, s) ≤
tα−1(1− t)α−1

Γ(α)
+

∆1

∆
tα−1

∫ 1

0

tα−1(1− t)α−1

Γ(α)
b(τ)dB(τ)

≤ t
α−1

Γ(α)
+

∆1

∆Γ(α− 1)
tα−1

∫ 1

0

b(τ)dB(τ)

≤k1tα−1.

(2.18)

In a similar way, we can get

G2(t, s) =g2(t, s) +
∆2

∆
tβ−1

∫ 1

0

g2(τ, s)a(τ)dA(τ)

≤
(

∆2

∆Γ(β − 1)

∫ 1

0

a(τ)dA(τ) +
1

Γ(β − 1)

)
s(1− s)β−1,

(2.19)
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or

G2(t, s) ≤ k1t
β−1.

On the other hand, we have

G1(t, s) =g1(t, s) +
∆1

∆
tα−1

∫ 1

0

g1(τ, s)b(τ)dB(τ)

≥∆1

∆
tα−1

∫ 1

0

τα−1(1− τ)s(1− s)α−1

Γ(α)
b(τ)dB(τ)

=
∆1

∆Γ(α)

∫ 1

0

τα−1(1− τ)b(τ)dB(τ)tα−1s(1− s)α−1.

(2.20)

In a similar way, we get

G2(t, s) ≥
∆2

∆Γ(β)

∫ 1

0

τβ−1(1− τ)a(τ)dA(τ)tβ−1s(1− s)β−1. (2.21)

In the same way, we obtain the other inequalities about Hi(t, s) (i = 1, 2), so we omit it.

The proof is complete. 2

For convenience in presentation, we present the assumptions to be used later in the

following.

(H0) A,B : [0, 1] → R are functions of bounded variation and
∫ 1

0
gi(t, s)b(t)dB(t) >

0,
∫ 1

0
gi(t, s)a(t)dA(t) > 0 (i = 1, 2) for all s ∈ [0, 1];

(H1) fi ∈ C((0, 1) × [0,∞) × (0,∞), [0,∞)) may be singular at t = 0, 1 and y = 0,

fi(t, x, y) is nondecreasing in x and nonincreasing in y, and there exist λi, µi ∈ [0, 1) such

that

cλifi(t, x, y) ≤ fi(t, cx, y), fi(t, x, cy) ≤ c−µifi(t, x, y), ∀x, y > 0, c ∈ (0, 1), i = 1, 2.

(H2) gi ∈ C((0, 1) × (0,∞) × [0,∞), [0,∞)) may be singular at t = 0, 1 and x = 0,

gi(t, x, y) is nonincreasing in x and nondecreasing in y, and there exist ξi, ηi ∈ [0, 1) such

that

cξigi(t, x, y) ≤ gi(t, x, cy), gi(t, cx, y) ≤ c−ηigi(t, x, y), ∀x, y > 0, c ∈ (0, 1), i = 1, 2.

(H3) 0 <
∫ 1

0
pi(t)fi(t, 1, t

γ2)dt <∞, 0 <
∫ 1

0
qi(t)gi(t, t

γ2 , 1)dt <∞, i = 1, 2.

Remark 1 (1) (H1) implies that

fi(t, cx, y) ≤ cλifi(t, x, y), fi(t, x, cy) ≤ cµifi(t, x, y), ∀x, y > 0, c > 1, i = 1, 2;

(2) (H2) implies that

gi(t, x, cy) ≤ cξigi(t, x, y), gi(t, x, y) ≤ cηigi(t, cx, y),∀x, y > 0, c > 1, i = 1, 2.
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Remark 2 By (H1), (H2) and (H3), we can get

0 <

∫ 1

0

pi(t)fi(t, t
γ2 , 1)dt <∞, 0 <

∫ 1

0

qi(t)gi(t, 1, t
γ2)dt <∞, i = 1, 2.

For our constructions, we shall consider the Banach space E = C[0, 1] equipped with

the standard norm ‖u‖ = maxt∈[0,1] |u(t)|. Let Q = {u ∈ E|u(t) ≥ 0, t ∈ [0, 1]}, Q is a

cone of E. Similarly, for each (x, y) ∈ E × E, we write ‖(x, y)‖1 = max{‖x‖, ‖y‖} . It is

easy to see that (E × E, ‖ · ‖1) is a Banach space. We define a cone P of E × E by

P = {(x, y) ∈ E × E : x(t) ≥ ktγ2‖(x, y)‖1, y(t) ≥ ktγ2‖(x, y)‖1, t ∈ [0, 1]}

where k = k1
k2
∈ (0, 1), in which k1 and k2 are defined by Lemma 2.5. For any r > 0, let

Pr = {(x, y) ∈ P : ‖(x, y)‖1 < r}, ∂Pr = {(x, y) ∈ P : ‖(x, y)‖1 = r}.
Define an operator T : P \ {θ} → E × E by

T (x, y) = (T1(x, y), T2(x, y)) ,

where the operators T1, T2 : P \ {θ} → Q are defined by

T1(x, y)(t) =

∫ 1

0

G1(t, s) [p1(s)f1(s, x(s), y(s)) + q1(s)g1(s, x(s), y(s))] ds

+

∫ 1

0

H1(t, s) [p2(s)f2(s, x(s), y(s)) + q2(s)g2(s, x(s), y(s))] ds,

T2(x, y)(t) =

∫ 1

0

G2(t, s) [p2(s)f2(s, x(s), y(s)) + q2(s)g2(s, x(s), y(s))] ds

+

∫ 1

0

H2(t, s) [p1(s)f1(s, x(s), y(s)) + q1(s)g1(s, x(s), y(s))] ds.

Lemma 2.6 Assume that (H1) and (H2) hold. Then, for any 0 < r < R < +∞,

T : (PR \ Pr)→ P is a completely continuous operator.

Proof Firstly, we claim that T (x, y) is well defined for (x, y) ∈ P \ {θ}. In fact, since

(x, y) ∈ P \ {θ}, we can see that

x(t) ≥ ktγ2‖(x, y)‖1 > 0, y(t) ≥ ktγ2‖(x, y)‖1 > 0, t ∈ (0, 1].

Let c be a positive number such that c > 1 and ‖(x, y)‖1/c < 1. From (H1), (H2) and

Remark 1, we have

fi(t, x(t), y(t)) ≤ fi(t, c, kt
γ2‖(x, y)‖1)

≤ cλifi(t, 1,
ktγ2‖(x, y)‖1

c
)

≤ cλi
(
k‖(x, y)‖1

c

)−µi
f(t, 1, tγ2)

= cλi+µi(k‖(x, y)‖1)−µifi(t, 1, tγ2), i = 1, 2,

(2.22)
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gi(t, x(t), y(t)) ≤ cξi+ηi(k‖(x, y)‖1)−ηigi(t, tγ2 , 1), i = 1, 2. (2.23)

Hence, for any t ∈ [0, 1], we get

T1(x, y)(t) ≤k1
∫ 1

0

p1(s)f1(s, x(s), y(s)) + q1(s)g1(s, x(s), y(s))ds

+ k1

∫ 1

0

p2(s)f2(s, x(s), y(s)) + q2(s)g2(s, x(s), y(s))ds

≤k1cλ1+µ1(k‖(x, y)‖1)−µ1
∫ 1

0

p1(s)f1(s, 1, s
γ2)ds

+ k1c
ξ1+η1(k‖(x, y)‖1)−η1

∫ 1

0

q1(s)g1(s, s
γ2 , 1)ds

+ k1c
λ2+µ2(k‖(x, y)‖1)−µ2

∫ 1

0

p2(s)f2(s, 1, s
γ2)ds

+ k1c
ξ2+η2(k‖(x, y)‖1)−η2

∫ 1

0

q2(s)g2(s, s
γ2 , 1)ds

<∞.

(2.24)

Similarly, we can prove T2(x, y)(t) <∞. Thus we can say that T is well defined on P \{θ}.
Secondly, we show that T (PR \ Pr) ⊂ P . By Lemma 2.5, for all τ, t, s ∈ [0, 1], we

obtain

G1(t, s) ≥ ktα−1G1(τ, s), G2(t, s) ≥ ktβ−1G2(τ, s),

H1(t, s) ≥ ktα−1H1(τ, s), H2(t, s) ≥ ktβ−1H2(τ, s),

H1(t, s) ≥ ktα−1G2(τ, s), G1(t, s) ≥ ktα−1H2(τ, s),

H2(t, s) ≥ ktβ−1G1(τ, s), G2(t, s) ≥ ktβ−1H1(τ, s).

Hence, for (x, y) ∈ (PR \ Pr), t ∈ [0, 1], we have

T1(x, y)(t) ≥ktα−1
∫ 1

0

G1(τ, s) [p1(s)f1(s, x(s), y(s)) + q1(s)g1(s, x(s), y(s))] ds

+ ktα−1
∫ 1

0

H1(τ, s) [p2(s)f2(s, x(s), y(s)) + q2(s)g2(s, x(s), y(s))] ds

≥ktγ2T1(x, y)(τ), ∀τ ∈ [0, 1],

(2.25)

T1(x, y)(t) ≥ktα−1
∫ 1

0

H2(τ, s) [p1(s)f1(s, x(s), y(s)) + q1(s)g1(s, x(s), y(s))] ds

+ ktα−1
∫ 1

0

G2(τ, s) [p2(s)f2(s, x(s), y(s)) + q2(s)g2(s, x(s), y(s))] ds

≥ktγ2T2(x, y)(τ), ∀τ ∈ [0, 1].

(2.26)

Then, T1(x, y)(t) ≥ ktγ2‖T1(x, y)‖ and T1(x, y)(t) ≥ ktγ2‖T2(x, y)‖, that is

T1(x, y)(t) ≥ ktγ2‖(T1(x, y), T2(x, y))‖1.
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In the same way, we can prove that

T2(x, y)(t) ≥ ktγ2‖(T1(x, y), T2(x, y))‖1.

Therefore, T (PR \ Pr) ⊂ P .

Next, we prove that T is a compact operator. Suppose V ⊂ PR \ Pr is an arbitrary

bounded set in E × E. Then from the above proof, we know that T (V ) is uniformly

bounded. In the following, we shall show that T (V ) is equicontinuous on [0, 1]. For all

(x, y) ∈ V, t ∈ [0, 1], using Lemma 2.3, we have

T1(x, y)(t) =

∫ 1

0

G1(t, s)
[
p1(s)f1(s, x(s), y(s)) + q1(s)g1(s, x(s), y(s))

]
ds

+

∫ 1

0

H1(t, s)
[
p2(s)f2(s, x(s), y(s)) + q2(s)g2(s, x(s), y(s))

]
ds

=
∆1

∆
tα−1

∫ 1

0

(∫ 1

0

g1(τ, s)b(τ)dB(τ)

)[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+

∫ t

0

tα−1(1− s)α−1 − (t− s)α−1

Γ(α)

[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+

∫ 1

t

tα−1(1− s)α−1

Γ(α)

[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+
tα−1

∆

∫ 1

0

(∫ 1

0

g2(τ, s)a(τ)dA(τ)

)[
p2(s)f2(s, x(s), y(s))

+ q2(s)g2(s, x(s), y(s))
]
ds.

(2.27)

Differentiating the above formula with respect to t and combining (H1) and (H2), we

obtain

|T1(x, y)′(t)| =(α− 1)∆1

∆
tα−2

∫ 1

0

(∫ 1

0

g1(τ, s)b(τ)dB(τ)

)[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+

∫ t

0

(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

Γ(α)

[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+

∫ 1

t

(α− 1)tα−2(1− s)α−1

Γ(α)

[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+
(α− 1)tα−2

∆

∫ 1

0

(∫ 1

0

g2(τ, s)a(τ)dA(τ)

)[
p2(s)f2(s, x(s), y(s))

+ q2(s)g2(s, x(s), y(s))
]
ds
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≤(α− 1)∆1

∆

∫ 1

0

(∫ 1

0

g1(τ, s)b(τ)dB(τ)

)
[p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))]ds

+

∫ t

0

(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

Γ(α)

[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+

∫ 1

t

(α− 1)tα−2(1− s)α−1

Γ(α)

[
p1(s)f1(s, x(s), y(s))

+ q1(s)g1(s, x(s), y(s))
]
ds

+
(α− 1)tα−2

∆

∫ 1

0

(∫ 1

0

g2(τ, s)a(τ)dA(τ)

)[
p2(s)f2(s, x(s), y(s))

+ q2(s)g2(s, x(s), y(s))
]
ds

≤(α− 1)k1c
λ1+µ1(k‖(x, y)‖1)−µ1

∫ 1

0

p1(s)f1(s, 1, s
γ2)ds

+ (α− 1)k1c
ξ1+η1(k‖(x, y)‖1)−η1

∫ 1

0

q1(s)g1(s, s
γ2 , 1)ds

+ k1c
λ1+µ1(k‖(x, y)‖1)−µ1

∫ t

0

(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

Γ(α)

p1(s)f1(s, 1, s
γ2)ds

+ k1c
ξ1+η1(k‖(x, y)‖1)−η1

∫ t

0

(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

Γ(α)

q1(s)g1(s, s
γ2 , 1)ds

+ k1c
λ1+µ1(k‖(x, y)‖1)−µ1

∫ 1

t

(α− 1)tα−2(1− s)α−1

Γ(α)
p1(s)f1(s, 1, s

γ2)ds

+ k1c
ξ1+η1(k‖(x, y)‖1)−η1

∫ 1

t

(α− 1)tα−2(1− s)α−1

Γ(α)
q1(s)g1(s, s

γ2 , 1)ds

+ (α− 1)k1c
λ2+µ2(k‖(x, y)‖1)−µ2

∫ 1

0

p2(s)f2(s, 1, s
γ2)ds

+ (α− 1)k1c
ξ2+η2(k‖(x, y)‖1)−η2

∫ 1

0

q2(s)g2(s, s
γ2 , 1)ds

≤cλ1+µ1(kr)−µ1
[
(α− 1)k1

∫ 1

0

p1(s)f1(s, 1, s
γ2)ds

+

∫ t

0

(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

Γ(α)
p1(s)f1(s, 1, s

γ2)ds

+

∫ 1

t

(α− 1)tα−2(1− s)α−1

Γ(α)
p1(s)f1(s, 1, s

γ2)ds

]
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+ cξ1+η1(kr)−η1
[
(α− 1)k1

∫ 1

0

q1(s)g1(s, s
γ2 , 1)ds

+

∫ t

0

(α− 1)tα−2(1− s)α−1 − (α− 1)(t− s)α−2

Γ(α)
q1(s)g1(s, s

γ2 , 1)ds

+

∫ 1

t

(α− 1)tα−2(1− s)α−1

Γ(α)
q1(s)g1(s, s

γ2 , 1)ds

]
+ (α− 1)k1c

λ2+µ2(kr)−µ2
∫ 1

0

p2(s)f2(s, 1, s
γ2)ds

+ (α− 1)k1c
ξ2+η2(kr)−η2

∫ 1

0

q2(s)g2(s, s
γ2 , 1)ds =: K(t).

(2.28)

Exchanging the integration order, we have

∫ 1

0

K(t)dt =cλ1+µ1(kr)−µ1

[
(α− 1)k1

∫ 1

0

p1(s)f1(s, 1, s
γ2)ds

]

+ cξ1+η1(kr)−η1

[
(α− 1)k1

∫ 1

0

q1(s)g1(s, s
γ2 , 1)ds

]

+ (α− 1)k1c
λ2+µ2(kr)−µ2

∫ 1

0

p2(s)f2(s, 1, s
γ2)ds

+ (α− 1)k1c
ξ2+η2(kr)−η2

∫ 1

0

q2(s)g2(s, s
γ2 , 1)ds

< +∞.

(2.29)

From the absolute continuity of the integral, we know that T1(V ) is equicontinuous on

[0,1]. Thus, according to the Ascoli-Arzela theorem, T1(V ) is a relatively compact set. In

the same way, we can prove that T2(V ) is a relatively compact set. Therefore, T (V ) is

relatively compact.

Finally, we prove that T : (PR \ Pr) → Q is continuous. We need to prove only

T1, T2 : (PR \ Pr) → Q are continuous. Suppose that (xn, yn), (x0, y0) ∈ PR \ Pr and

‖(xn, yn)− (x0, y0)‖1 → 0 (n→∞). Let S = sup{‖(xn, yn)‖1|n = 0, 1, 2, · · · }. We choose

a positive constant M such that S/M < 1 and M > 1. From (2.22) and (2.23), for any

t ∈ (0, 1), we know

fi(t, xn(t), yn(t)) ≤Mλi+µi(kr)−µifi(t, 1, t
γ2), n = 0, 1, 2 · · · , i = 1, 2;

gi(t, xn(t), yn(t)) ≤M ξi+ηi(kr)−ηigi(t, t
γ2 , 1), n = 0, 1, 2 · · · , i = 1, 2.

(2.30)
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Then by Lemma 2.5, for any t ∈ [0, 1], we get

|T1(xn, yn)(t)− T1(x0, y0)(t)| ≤k1
∫ 1

0

[
|p1(s)||f1(s, xn(s), yn(s))− f1(s, x0(s), y0(s))|

+ |q1(s)||g1(s, xn(s), yn(s))− g1(s, x0(s), y0(s))|
]
ds

+ k1

∫ 1

0

[
|p2(s)||f2(s, xn(s), yn(s))− f2(s, x0(s), y0(s))|

+ |q2(s)||g2(s, xn(s), yn(s))− g2(s, x0(s), y0(s))|
]
ds.

(2.31)

For any ε > 0, by (H3), there exists a positive number δ ∈ (0, 1
2
) such that∫

H(δ)

k1M
λi+µi(kr)−µipi(s)fi(t, 1, t

γ2)ds <
ε

4
,∫

H(δ)

k1M
ξi+ηi(kr)−ηiqi(s)gi(t, t

γ2 , 1)ds <
ε

4
,

(2.32)

where H(δ) = [0, δ] ∪ [1− δ, 1]. On the other hand, for (x, y) ∈ PR \ Pr and t ∈ [δ, 1− δ],
we have

0 < rkδ ≤ x(t), y(t) ≤ R. (2.33)

Since fi(t, x, y) and gi(t, x, y) (i = 1, 2) are uniformly continuous in [δ, 1− δ]× [rkδ, b]×
[rkδ, b], we have

lim
n→+∞

|fi(s, xn(s), yn(s))− fi(s, x0(s), y0(s))|

= lim
n→+∞

|gi(s, xn(s), yn(s))− gi(s, x0(s), y0(s))|

=0

(2.34)

holds uniformly on [δ, 1 − δ] for s. Then the Lebesgue dominated convergence theorem

yields that∫ 1−δ

δ

|pi(s)| |fi(s, xn(s), yn(s))− fi(s, x0(s), y0(s))| ds→ 0,∫ 1−δ

δ

|qi(s)| |gi(s, xn(s), yn(s))− gi(s, x0(s), y0(s))| ds→ 0, n→∞.
(2.35)

Thus, for above ε > 0, there exists a natural number N such that, for n > N , we have

k1

∫ 1−δ

δ

[
|p1(s)||f1(s, xn(s), yn(s))− f1(s, x0(s), y0(s))|

+ |q1(s)||g1(s, xn(s), yn(s))− g1(s, x0(s), y0(s))|
]
ds

+k1

∫ 1−δ

δ

[
|p2(s)||f2(s, xn(s), yn(s))− f2(s, x0(s), y0(s))|

+ |q2(s)||g2(s, xn(s), yn(s))− g2(s, x0(s), y0(s))
]
| < ε

2
.

(2.36)
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It follows from (2.30)-(2.36) that when n > N

‖T1(xn, yn)− T1(x0, y0)‖

≤ k1

∫ 1

0

[
|p1(s)||f1(s, xn(s), yn(s))− f1(s, x0(s), y0(s))|

+ |q1(s)||g1(s, xn(s), yn(s))− g1(s, x0(s), y0(s))|
]
ds

+k1

∫ 1

0

[
|p2(s)||f2(s, xn(s), yn(s))− f2(s, x0(s), y0(s))|

+ |q2(s)||g2(s, xn(s), yn(s))− g2(s, x0(s), y0(s))|
]
ds

≤ k1

∫
H(δ)

Mλ1+µ1(kr)−µ1p1(s)f1(s, 1, s
γ2) + cξ1+η1(kr)−η1q1(s)g1(s, s

γ2 , 1)ds

+k1

∫
H(δ)

Mλ2+µ2(kr)−µ2p2(s)f2(s, 1, s
γ2) +M ξ2+η2(kr)−η2q2(s)g2(s, s

γ2 , 1)ds

+k1

∫ 1−δ

δ

[
|p1(s)||f1(s, xn(s), yn(s))− f1(s, x0(s), y0(s))|

+ |q1(s)||g1(s, xn(s), yn(s))− g1(s, x0(s), y0(s))|
]
ds

+k1

∫ 1−δ

δ

[
|p2(s)||f2(s, xn(s), yn(s))− f2(s, x0(s), y0(s))|

+ |q2(s)||g2(s, xn(s), yn(s))− g2(s, x0(s), y0(s))|
]
ds < ε.

(2.37)

This implies that T1 : (PR \ Pr) → Q is continuous. Similarly, we can prove that T2 :

(PR \ Pr) → Q is continuous. So, T : (PR \ Pr) → Q is continuous. By summing up, we

get that T : (PR \ Pr)→ P is completely continuous. 2

To prove the main results, we need the following well-known fixed point theorem.

Lemma 2.7 [20] Let Ω1 and Ω2 be two bounded open sets in a Banach space E such that

θ ∈ Ω1 and Ω1 ⊂ Ω2, A : P ∩ (Ω2 \Ω1)→ P be a completely continuous operator, where θ

denotes the zero element of E and P is a cone of E. Suppose that one of the flowing two

conditions holds:

(i)‖Au‖ ≤ ‖u‖,∀u ∈ P ∩ ∂Ω1; ‖Au‖ ≥ ‖u‖,∀u ∈ P ∩ ∂Ω2;

(ii)‖Au‖ ≥ ‖u‖,∀u ∈ P ∩ ∂Ω1; ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2 \ Ω1).

3. Main results

In this section, we shall give sufficient conditions for the existence and uniqueness of a

positive solution for the BVP(1.1).

Theorem 3.1 Assume that conditions (H0) − (H3) hold. Then the BVP (1.1) has at

least one positive solution (x∗, y∗) and there exists a real number 0 < m < 1 such that

mtγ1 ≤ x∗(t) ≤ 1

m
tγ1 , mtγ1 ≤ y∗(t) ≤ 1

m
tγ1 , t ∈ [0, 1] (3.1)
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where γ1 = min{α− 1, β − 1}.

Proof We first prove that the differential system (1.1) has at least one positive solution

(x∗, y∗). Choose d and D such that

0 < d ≤min
i=1,2

{((
1

4

)γ2
k2k

max{λi,µi}
∫ 1

0

s(1− s)γ2(pi(s)fi(s, sγ2 , 1)

+ qi(s)gi(s, 1, s
γ2))ds

) 1
1−max{λi,µi}}

,
1

2

}

D ≥max

{[
k1

(∫ 1

0

(p1(s)f1(s, 1, s
γ2) + q1(s)g1(s, s

γ2 , 1))ds+

∫ 1

0

(p2(s)f2(s, 1, s
γ2)

+ q2(s)g2(s, s
γ2 , 1))ds

)] 1
1−max{λ1,λ2,ξ1,ξ2}

,
1

k
, 2

}
.

(3.2)

Clearly 0 < d < 1 < D. By Lemma 2.6, T : PD \ Pd → P is completely continuous.

Extend T (denote T yet) to T : PD → P which is completely continuous. Then, for

(x, y) ∈ ∂Pd, we have

dktγ2 ≤ x(t), y(t) ≤ d, t ∈ [0, 1]. (3.3)

By Remark 1 and (H1)-(H3), we get

Ti(x, y)(t) ≥
(

1

4

)γ2
k2

∫ 1

0

s(1− s)γ2(pi(s)fi(s, dksγ2 , d) + qi(s)gi(s, d, dks
γ2))ds

≥
(

1

4

)γ2
k2

∫ 1

0

s(1− s)γ2(pi(s)fi(s, dksγ2 , 1) + qi(s)gi(s, 1, dks
γ2))ds

≥
(

1

4

)γ2
k2

∫ 1

0

s(1− s)γ2(dλikλipi(s)fi(s, sγ2 , 1) + dξikηiqi(s)gi(s, 1, s
γ2))ds

≥
(

1

4

)γ2
k2d

max{λi,ξi}kmax{λi,ξi}
∫ 1

0

s(1− s)γ2(pi(s)fi(s, sγ2 , 1) + qi(s)gi(s, 1, s
γ2))ds

≥d = ‖(x, y)‖1 i = 1, 2, t ∈
[

1

4
,
3

4

]
.

(3.4)

This guarantees that

‖T (x, y)‖1 ≥ ‖(x, y)‖1, ∀(x, y) ∈ ∂Pd. (3.5)

On the other hand, for any (x, y) ∈ ∂PD, we have

Dktγ2 ≤ x(t), y(t) ≤ D, t ∈ [0, 1]. (3.6)
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Therefore, by Lemma 2.5, for any (x, y) ∈ ∂PD and t ∈ [0, 1], we have

Ti(x, y)(t) ≤k1
∫ 1

0

p1(s)f1(s,D,Dks
γ2) + q1(s)g1(s,Dks

γ2 , D)ds

+ k1

∫ 1

0

p2(s)f2(s,D,Dks
γ2) + q2(s)g2(s,Dks

γ2 , D)ds

≤k1
∫ 1

0

p1(s)f1(s,D, s
γ2) + q1(s)g1(s, s

γ2 , D)ds

+ k1

∫ 1

0

p2(s)f2(s,D, s
γ2) + q2(s)g2(s, s

γ2 , D)ds

≤k1
∫ 1

0

Dλ1p1(s)f1(s, 1, s
γ2) +Dξ1q1(s)g1(s, s

γ2 , 1)ds

+ k1

∫ 1

0

Dλ2p2(s)f2(s, 1, s
γ2) +Dξ2q2(s)g2(s, s

γ2 , 1)ds

≤k1Dmax{λ1,λ2,ξ1,ξ2}

(∫ 1

0

p1(s)f1(s, 1, s
γ2) + q1(s)g1(s, s

γ2 , 1)ds

+

∫ 1

0

p2(s)f2(s, 1, s
γ2) + q2(s)g2(s, s

γ2 , 1)ds

)
≤D = ‖(x, y)‖1.

(3.7)

This guarantees that

‖T (x, y)‖1 ≤ ‖(x, y)‖1,∀(x, y) ∈ ∂PD. (3.8)

By the complete continuity of T , (3.5) and (3.8), and Lemma 2.7, we obtain that T has

a fixed point (x∗, y∗) in PD \ Pd. Consequently, BVP(1.1) has a positive solution (x∗, y∗)

in PD \ Pd.

Next we will prove that there exists a real number 0 < m < 1 satisfying (3.1). Firstly,

we show that for any θ ∈ (0, 1
2
) we have

mtγ1 ≤ x∗(t) ≤ 1

m
tγ1 , mtγ1 ≤ y∗(t) ≤ 1

m
tγ1 , t ∈ [θ, 1]. (3.9)

From Lemma 2.6, we know that (x∗, y∗) ∈ P \ {θ}. So we obtain that

0 < k‖(x∗, y∗)‖1tγ2 ≤ x∗(t), y∗(t) ≤ ‖(x∗, y∗)‖1.



20 L. Liu, H. Li and Y. Wu

Let h be a constant such that ‖(x
∗,y∗)‖1
h

< 1 and h > 1
d
> 1. By Lemma 2.3, we get

x∗(t) ≤k1tγ1
[∫ 1

0

p1(s)f1

(
s, h,

k‖(x∗, y∗)‖1
h

sγ2
)

+ q1(s)g1

(
s,
k‖(x∗, y∗)‖1

h
sγ2 , h

)
ds

+

∫ 1

0

p2(s)f2

(
s, h,

k‖(x∗, y∗)‖1
h

sγ2
)

+ q2(s)g2

(
s,
k‖(x∗, y∗)‖1

h
sγ2 , h

)
ds

]

≤k1tγ1
[∫ 1

0

hλ1+µ1(k‖(x∗, y∗)‖1)−µ1p1(s)f1(s, 1, sγ2)

+ hξ1+η1(k‖(x∗, y∗)‖1)−η1q1(s)g1(s, sγ2 , 1)ds

+

∫ 1

0

hλ2+µ2(k‖(x∗, y∗)‖1)−µ2p2(s)f2(s, 1, sγ2)

+ hξ2+η2(k‖(x∗, y∗)‖1)−η2q2(s)g2(s, sγ2 , 1)ds

]
=:Ctγ1 , t ∈ [θ, 1].

(3.10)

On the other hand, it is obvious to see that γ2−γ1 ≥ 0, where γ1 = min {α− 1, β − 1} , γ2 =

max {α− 1, β − 1}. So we get

x∗(t) ≥k‖(x∗, y∗)‖1tγ2

=k‖(x∗, y∗)‖1tγ2−γ1tγ1

≥k‖(x∗, y∗)‖1θγ2−γ1tγ1 , t ∈ [θ, 1].

(3.11)

In the same way, we can prove that y∗(t) ≤ Ctγ1 and y∗(t) ≥ k‖(x∗, y∗)‖1θγ2−γ1tγ1 , t ∈
[θ, 1]. Then, we pick out m such that

m = min

{
kθ(γ2−γ1)‖(x∗, y∗)‖1,

1

C
,
1

2

}
,

which implies that (3.9) holds. Moreover, from the arbitrariness of θ, we get that for any

t ∈ (0, 1], (3.9) is satisfied. Specially, when t = 0, by the boundary value conditions of

(1.1), we have x∗(0) = y∗(0) = 0. So that we get that for any t ∈ [0, 1], (3.1) holds. This

completes the proof of Theorem 3.1. 2

Theorem 3.2 Assume that conditions (H0) − (H3) hold. If λi + µi < 1 and ξi + ηi <

1 (i = 1, 2), then the BVP(1.1) has a unique positive solution (x∗, y∗) and it satisfies

(3.1).
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Proof Assuming the contrary, we find that the BVP(1.1) has a positive solution (x∗, y∗)

different from (x∗, y∗). By (3.1), there exist ρ1, ρ2 > 0 such that

ρ1t
γ1 ≤ x∗(t), y∗(t) ≤ 1

ρ1
tγ1 , ∀t ∈ [0, 1],

ρ2t
γ1 ≤ x∗(t), y∗(t) ≤

1

ρ2
tγ1 , ∀t ∈ [0, 1].

(3.12)

Hence, we have

ρ1ρ2x∗(t) ≤ x∗(t) ≤ 1

ρ1ρ2
x∗(t),

ρ1ρ2y∗(t) ≤ y∗(t) ≤ 1

ρ1ρ2
y∗(t), ∀t ∈ [0, 1].

(3.13)

Clearly, ρ1ρ2 6= 1. Put

ρ∗ = sup

{
ρ > 0 | ρx∗(t) ≤ x∗(t) ≤ 1

ρ
x∗(t), ρy∗(t) ≤ y∗(t) ≤ 1

ρ
y∗(t), ∀t ∈ [0, 1]

}
.

It is easy to see that 1 > ρ∗ ≥ ρ1ρ2 > 0 and

ρ∗x∗(t) ≤ x∗(t) ≤ 1

ρ∗
x∗(t), ρ

∗y∗(t) ≤ y∗(t) ≤ 1

ρ∗
y∗(t), ∀t ∈ [0, 1]. (3.14)

By (H1) and (H2), we have

fi(t, x
∗(t), y∗(t)) ≥fi(t, ρ∗x∗(t),

1

ρ∗
y∗(t))

≥(ρ∗)λi+µifi(t, x∗(t), y∗(t))

≥(ρ∗)σfi(t, x∗(t), y∗(t)),

gi(t, x
∗(t), y∗(t)) ≥gi(t, ρ∗x∗(t),

1

ρ∗
y∗(t))

≥(ρ∗)ξi+ηigi(t, x∗(t), y∗(t))

≥(ρ∗)σgi(t, x∗(t), y∗(t)), i = 1, 2,

(3.15)

where σ = max

{
λi + µi, ξi + ηi, i = 1, 2

}
such that σ < 1. Therefore, we have

x∗(t) =T1(x
∗, y∗)(t) =

∫ 1

0

G1(t, s)
[
p1(s)f1(s, x

∗(s), y∗(s)) + q1(s)g1(s, x
∗(s), y∗(s))

]
ds

+

∫ 1

0

H1(t, s)
[
p2(s)f2(s, x

∗(s), y∗(s)) + q2(s)g2(s, x
∗(s), y∗(s))

]
ds

≥(ρ∗)σ

[∫ 1

0

G1(t, s) [p1(s)f1(s, x
∗(s), y∗(s)) + q1(s)g1(s, x

∗(s), y∗(s))] ds

+

∫ 1

0

H1(t, s) [p2(s)f2(s, x
∗(s), y∗(s)) + q2(s)g2(s, x

∗(s), y∗(s))] ds

]
=(ρ∗)σT1(x∗, y∗)(t) = (ρ∗)σx∗(t).

(3.16)
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Similarly, we can get

y∗(t) ≥ (ρ∗)σy∗(t), x∗(t) ≥ (ρ∗)σx∗(t), y∗(t) ≥ (ρ∗)σy∗(t).

Noticing that (ρ∗)σ > ρ∗ (0 < ρ∗, σ < 1), we get to a contradiction with the maximality of

ρ∗. Thus, the BVP(1.1) has a unique positive solution (x∗, y∗). This completes the proof

of Theorem 3.2. 2

Remark 3 Compared with the result in [12], we can see that for any α ∈ (n− 1, n], β ∈
(m − 1,m], n,m ∈ N, we can get the uniqueness of positive solutions of the BVP (1.1).

That is, we do not need the condition of α = β. So our result is better than that in [12]

4. An example

We give an explicit example to illustrate our main result in Section 3. Let us consider the

singular differential system with couple boundary conditions

D
5
2

0+x(t) +

√
x

3
√
y(1− t)t

+
3
√
y
√
x

= 0, t ∈ (0, 1),

D
7
2

0+y(t) +
3
√
x
√
y

+

√
y

3
√
x(1− t)t

= 0, t ∈ (0, 1),

x(0) = x′(0) = 0, x(1) = y

(
1

3

)
+ y

(
1

2

)
,

y(0) = y′(0) = y′′(0) = 0, y(1) =

∫ 1

0

x(s)ds2.

(4.1)

Let α = 5
2
, β = 7

2
,

f1(t, x, y) =

√
x

3
√
y(1− t)t

, g1(t, x, y) =
3
√
y
√
x

;

f2(t, x, y) =
3
√
x
√
y
, g2(t, x, y) =

√
y

3
√
x(1− t)t

;

a(t) = b(t) = 1;

A(t) =



0, t ∈
[
0,

1

3

)
,

1, t ∈
[

1

3
,
1

2

)
,

2, t ∈
[

1

2
, 1

]
;

B(t) = t2.
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λ1 = µ2 =
1

2
, λ2 = µ1 =

1

3
; ξ1 = η2 =

1

2
, ξ2 = η1 =

1

3
,

then ∫ 1

0

p1f1(s, 1, 1− s)ds = B

(
2

3
,
1

6

)
,

∫ 1

0

q1g1(s, 1− s, 1)ds = B

(
1,

1

2

)
,

∫ 1

0

p2f2(s, 1, 1− s)ds = B

(
1,

1

2

)
,

∫ 1

0

q2g2(s, 1− s, 1)ds = B

(
2

3
,
1

3

)
.

So all conditions of Theorems 3.1 and 3.2 are satisfied for (4.1), and our conclusion follows

from Theorems 3.1 and 3.2, namely the BVP(4.1) has a unique positive solution (x∗, y∗)

and there exists an real number 0 < m < 1 such that

mtγ1 ≤ x∗(t) ≤ 1

m
tγ1 , mtγ1 ≤ y∗(t) ≤ 1

m
tγ1 , t ∈ [0, 1] (3.1)

where γ1 = min{α− 1, β − 1} = 3
2
.

5. Conclusions

In this paper, by using the mixed monotone operators and the Guo-Krasnoselskii fixed

point theorems, we have established the existence and uniqueness of positive solutions for

a class of singular fractional differential systems with coupled integral boundary conditions

for any real number α, β ∈ (0,+∞). It is worth noting that in this paper we divide the

functions into the former of fi + gi (i = 1, 2) and add different conditions to fi and gi.

From this point, our result is more general than that in [12, 13].
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