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Abstract: For many technical systems, stress-strength models are of special importance. Stress-strength models 

can be described as an assessment of the reliability of the component in terms of 𝑋 and 𝑌 random variables where 

𝑋 is the random “stress” experienced by the component and 𝑌 is the random “strength” of the component 

available to overcome the stress. The reliability of the component is the probability that component is strong 

enough to overcome the stress applied on it. Traditionally, both the strength of the component and the applied 

stress are considered to be both time-independent random variables. But in most of real life systems, the status 

of a stress and strength random variables clearly change dynamically with time. Also, in many important systems, 

it is very necessary to estimate the reliability of the component without waiting to observe the component failure. 

In this paper we study multi-state component where component is subjected to two stresses. In particular, inspired 

by the idea of Kullback-Leibler divergence, we aim to propose a new method to compute the dynamic reliability 

of the component under stress-strength model. The advantage of the proposed method is that Kullback-Leibler 

divergence is equal to zero when the component strength is equal to applied stress. In addition, the formed 

function can include both stresses when two stresses exist at the same time. Also, the proposed method provides 

a simple way and good alternative to compute the reliability of the component in case of at least one of the stress 

or strengths quantities depend on time. 

Keywords: Kullback-Leibler divergence; dynamic reliability; stress-strength model; multi-state component; 

gamma distribution. 

1. Introduction 

The reliability of technical systems is one of the most important research subjects in the point reached by 

modern science. In some cases, the performance rate of the system depends variable environmental conditions 

which cause degradation. The system may not fail fully, but can degrade and there may exist several operation 

level of the system. A system that can have a finite number of operation levels is called a multi-state system. 

Generally, multi-state system is consisted of components that they also can be multi-state. The operation levels of 

the components can range from perfect functioning up to complete failure. The quality of the system is completely 

determined by components. Because, components failure can lead to the degradation of the entire multi-state 

system performance. Multi-state systems offer a flexible structure for modeling engineering systems.  

In literature, much attention has been paid to multi-state system modeling. Hudson and Kapur [1] presented 

some models and their applications, in terms of reliability evaluation, to situations where the system and all its 

components have a multiple state. Ebrahimi [2] proposed two types of multi-state system and presented various 

properties related to them. Brunella and Kapur [3] studied a series of reliability measures and expanded their 

definitions to be consisted with binary, multi-state and continuum models. Kuo and Zuo [4] focused on multi-state 

system reliability models and introduced several special multi-state system reliability models. Eryılmaz [5] studied 

mean residual and mean past lifetime concepts for multi-state systems. Gökdere and Gürcan [6] designed a system 

which consists of two components that can be repairable with the aging property. Firstly, the Laplace-Stieltjes 

transform of the system is formed. Later, the mean operating time of the system is calculated by means of Laplace-

Stieltjes transform, Also, for more details about multi-state system model one can see Lisnionski and Levitin [7].         

Stress-strength models are very important for reliability analysis and have a wide application area in 

engineering applications. In the simplest terms, stress-strength model can be described as an assessment of the 

reliability of the component in terms of  𝑋 and 𝑌 random variables where 𝑋 is the random “stress” experience by 

the component and 𝑌 is the random “strength” of the component available to overcome the stress.  



From this simplified explanation, the reliability of the component is the probability that the component is 

strong enough to overcome the stress apply on it. Then the reliability of the system is defined as 

 

𝑅 = 𝑃(𝑋 < 𝑌) = ∫ 𝐹(𝑥)𝑑𝐺(𝑥)

∞

0

,                                                                            (1) 

 

where 𝐹(𝑥) and 𝐺(𝑥) are distribution functions of 𝑋 and 𝑌, respectively. In literature, extensive works have been 

done about stress-strength reliability. Chandra and Owen [8] studied the estimation of the reliability of a 

component where component is subject to several stresses whereas its strength is a single random variable. 

Eryılmaz and İşçioğlu [9], Gökdere and Gürcan [10,11] studied multi-state systems in a stress-strength setup. Also, 

for comprehensive information about all methods and results on the stress-strength model one can see Kotz et al. 

[12]. 

In this paper, we suppose that the component is subject to 𝑋1 and 𝑋2 stresses, which remain fixed over time, 

whereas its strength, 𝑌(𝑡), is a single random variable, which is stochastically decreasing in time. Let, 𝑋2 is 

stochastically larger than 𝑋1, i.e., for real 𝛼, 𝑃(𝑋2 > 𝛼) ≥ 𝑃(𝑋1 > 𝛼). The failure of the component occurs when 

the firstly time-independent 𝑋1 stress process and then 𝑋2 stress process exceed the time-dependent strength. The 

use of multiple stresses rather than single stress is more realistic approach in the reliability of technical systems.   

The rest of the paper is organized as four sections. Section 2 contains some information about Kullback-

Leibler divergence. In section 3, we explain the proposed approach for evaluation of the component’s dynamic 

operational level under stress-strength setup. Section 4 gives a Gamma distributed example to illustrate the 

theoretical results for the proposed approach. In section 5, we summarize what we have done in the paper. 

2. Materials and Methods  

The Kullback-Leibler divergence which introduced by Kullback and Leibler [13], gives an asymmetric 

measure of the similarity between the distributions of two random variables. If the densities 𝑝(𝑥) and 𝑞(𝑥) of 𝑃 

and 𝑄, respectively, exist with respect to Lebesque measure, the Kullback-Leibler divergence 𝐷𝐾𝐿(𝑃 ∥ 𝑄) of 𝑄 

from 𝑃 is defined as 

 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑆

𝑑𝑥,                                                                       (2) 

 

where 𝑆 is the support set of 𝑝(𝑥). Note that, 𝐷𝐾𝐿(𝑃 ∥ 𝑄) is finite only if 𝑃 is absolutely continuous with respect 

to 𝑄, and +∞ otherwise. Also, the Kullback-Leibler divergence remains non-negative and is zero if and only if 

𝑃 = 𝑄. It is important to point that the Kullback-Leibler divergence is not a symmetrical quantity. 

In information theory and machine learning, the Kullback-Leibler divergence plays an important role. In 

literature, much attention has been paid to it. Dahlhaus [14] calculated the asymptotic Kulback-Leibler information 

divergence of two locally stationary sequences and the limit of the Fisher information matrix. Do [15] proposed a 

fast algorithm to approximate the Kullback-Leibler distance between two hidden Markov models. Rached et al. 

[16] provided an explicit computable expression for the Kullback-Leibler divergence rate between two arbitrary 

time-invariant finite-alphabet Markov sources. Lee and Park [17] considered estimation of the Kullback-Leibler 

divergence between the true density and a selected parametric model.  

3. Operation Performance of the Component  

In this section, we use Kullback-Leibler divergence for computing the component operation level where 

component is subject to 𝑋1 and 𝑋2 stresses with continuous cumulative distribution function 𝐹𝑙(𝑥) = 𝑃{𝑋𝑙 ≤ 𝑥} 

(𝑙 = 1, 2), whereas its strength, 𝑌(𝑡), is a single random variable with marginal distribution function 𝐺𝑡(𝑥) =

𝑃{𝑌(𝑡) ≤ 𝑥}. 

In our method, we first set Kullback-Leibler divergence 𝐷𝐾𝐿(𝑙)
(𝑡)

= 𝐷𝐾𝐿(𝑌(𝑡) ∥ 𝑋𝑙) of 𝑋𝑙 from 𝑌(𝑡) by using 

(2) for 𝑙 = 1, 2. After setting Kullback-Leibler divergence, we calculate the 𝐷𝐾𝐿(𝑙)
(𝑡)

 for selected values of the 

parameters of marginal lifetime distributions of the stress and strength random variables. Then using these values, 
the operation level of the component depending on the both stresses can be defined as follows 



The operation level of the component =  {
2,
1,
0,

      

𝑡 < 𝑡2

𝑡2 ≤ 𝑡 < 𝑡1

𝑡1 ≤ 𝑡
      , 

 

where 𝑡𝑙 (𝑙 = 1, 2) denotes the time when 𝐷𝐾𝐿(𝑙)
(𝑡)

 is equal to zero. Also using 𝐷𝐾𝐿(𝑙)
(𝑡)

 and 𝑡𝑙 values we can define 

the following equations 

 

𝜁𝑡
1 = {

𝐷𝐾𝐿(1)
(𝑡)

 ,

0,
      

𝑡2 ≤ 𝑡 < 𝑡1

𝑡 < 𝑡2
 

 

and 

 

𝜁𝑡
2 = {

𝐷𝐾𝐿(2)
(𝑡)

,

0,
      

𝑡 < 𝑡2

𝑡2 ≤ 𝑡 < 𝑡1
 

 

 

Now with the help of the above equalities, the reliability degree Rd(𝑡) of the component depending on its 

operation level can be expressed as follows:  

 

Rd(𝑡) = (1 − 𝛼𝑡)
𝜁𝑡

1

𝑢1

+ 𝛼𝑡 (1 +
𝜁𝑡

2

𝑢2

),                                                        (3) 

 

where 

 

𝛼𝑡 = {
1,
0,

      
𝜁𝑡

2 > 0

𝜁𝑡
2 = 0

 

 

 

and 𝑢𝑙 = sup𝐷𝐾𝐿(𝑙)
(𝑡)

. The superiority of the Rd(𝑡) which is presented in (3) is that when two stresses exist at the 

same time the formed function can include both stresses at the same time. However, when 𝑅 which is presented in 

(1) is used, this is not possible because of stresses are evaluated separately. In probabilistic design it is common to 

use parametric statistical models to compute the reliability obtained from stress-strength interference theory. In 

the following section we apply our method to a gamma distributional example. 

 

4. Gamma Distributional Example 

A gamma process is frequently used for lifetime analysis and reliability testing. Let us suppose that 𝒀(𝒕) is 

gamma random variables with cumulative distribution function 

  

𝑮𝒕(𝒙; 𝒌, 𝜽(𝒕)) = 𝜸 (𝒌,
𝒙

𝜽(𝒕)
)

𝟏

𝚪(𝒌)
 ,                                                                 (𝟒) 

 

where 𝜸 (𝒌,
𝒙

𝜽(𝒕)
) is the lower incomplete gamma function, 𝒌 > 𝟎 is the shape parameter and 𝜽(𝒕) is the scale 

parameter which decreases over time. 

 Similarly, assume that 𝑿𝟏 and 𝑿𝟐 stresses are gamma random variables with cumulative distribution 

functions  

  

𝑭𝒍(𝒙; 𝒌𝒍, 𝜽𝒍) = 𝜸 (𝒌𝒍,
𝒙

𝜽𝒍

)
𝟏

𝚪(𝒌𝒍)
 ,                                                                    (𝟓) 

 



where 𝜸 (𝒌𝒍,
𝒙

𝜽𝒍
) is the lower incomplete gamma function, 𝚪(𝒌𝒍) is the gamma function, 𝒌𝒍 > 𝟎 is the shape 

parameter, 𝜽𝒍 is the scale parameter and 𝒍 = 𝟏, 𝟐. Also both 𝒌𝒍 and 𝜽𝒍 are constant with aging time.    

 For obtaining the reliability degree 𝐑𝐝(𝒕) of the component, at first we derive a closed form solution for 

the Kullback-Leibler divergence 𝑫𝑲𝑳(𝒍)
(𝒕)

 for 𝒍 = 𝟏, 𝟐. Using probability density functions of (4) and (5) in (2) and 

referring to Bauckhage [18], the 𝑫𝑲𝑳(𝒍)
(𝒕)

 can be obtained as     

 

𝑫𝑲𝑳(𝒍)
(𝒕)

= ∫
𝒙𝒌−𝟏

(𝜽(𝒕))
𝒌

𝚪(𝒌)
𝐞𝐱𝐩 (−

𝒙

𝜽(𝒕)
) 𝐥𝐧

𝒙𝒌−𝟏

(𝜽(𝒕))
𝒌

𝚪(𝒌)
𝐞𝐱𝐩 (−

𝒙
𝜽(𝒕)

)

𝒙𝒌𝒍−𝟏

(𝜽𝒍)
𝒌𝒍𝚪(𝒌𝒍)

𝐞𝐱𝐩 (−
𝒙
𝜽𝒍

)

∞

𝟎

 

 

= 𝐥𝐧
(𝜽𝒍)

𝒌𝒍𝚪(𝒌𝒍)

(𝜽(𝒕))
𝒌

𝚪(𝒌)
+

𝒌 − 𝒌𝒍

(𝜽(𝒕))
𝒌

𝚪(𝒌)
∫ 𝒙𝒌−𝟏𝐞𝐱𝐩 (−

𝒙

𝜽(𝒕)
) 𝐥𝐧𝒙𝒅𝒙 +

𝟏
𝜽𝒍

−
𝟏

𝜽(𝒕)

(𝜽(𝒕))
𝒌

𝚪(𝒌)
∫ 𝒙𝒌𝐞𝐱𝐩 (−

𝒙

𝜽(𝒕)
) 𝒅𝒙.

∞

𝟎

∞

𝟎

 

 

By making the substitution 𝒕 =
𝒙

𝜽(𝒕)
 in above equation and then using following integrals, 

 

∫ 𝒙𝒗−𝟏𝐞𝐱𝐩(−𝛍𝒙)𝐥𝐧𝒙𝒅𝒙 =
𝟏

𝛍𝒗

∞

𝟎

𝚪(𝒗)[𝝍(𝒗) − 𝐥𝐧𝛍], 

 

where 𝝍(𝒗) =
𝒅

𝒅𝒗
𝐥𝐧𝚪(𝒗) is the psi function (Eq. 4.352.1 in Gradshteyn and Ryzhik, [19]) and 

 

∫ 𝒙𝒗−𝟏𝐞𝐱𝐩(−𝛍𝒙)𝒅𝒙 =
𝟏

𝛍𝒗

∞

𝟎

𝚪(𝒗), 

 

where 𝛍 > 𝟎 and 𝒗 > 𝟎 (Eq. 3.381.4 in Gradshteyn and Ryzhik, [19]) we have  

  

𝑫𝑲𝑳(𝒍)
(𝒕)

= 𝐥𝐧
(𝜽𝒍)

𝒌𝒍𝚪(𝒌𝒍)

(𝜽(𝒕))
𝒌

𝚪(𝒌)
+ (𝒌 − 𝒌𝒍)(𝐥𝐧𝜽(𝒕) + 𝝍(𝒌)) + 𝒌 (

𝜽(𝒕)

𝜽𝒍

− 𝟏).                     (𝟔) 

 

Because of 𝜽(𝒕) decreases over time, in (6), let 𝜽(𝒕) = 𝟏 𝒕⁄  then we finally have 

 

𝑫𝑲𝑳(𝒍)
(𝒕)

= 𝐥𝐧
(𝒕)𝒌(𝜽𝒍)

𝒌𝒍𝚪(𝒌𝒍)

𝚪(𝒌)
+ (𝒌 − 𝒌𝒍) (𝐥𝐧

𝟏

𝐭
+ 𝝍(𝒌)) + 𝒌 (

𝟏

𝒕𝜽𝒍

− 𝟏),                       (𝟕) 

 

where 𝒍 = 𝟏, 𝟐. In order to compare 𝐑𝐝(𝒕) and 𝑹 expediently, let 𝒌 = 𝒌𝟏 = 𝒌𝟐 = 𝟏 in (7) then we can get 

 

𝑫𝑲𝑳(𝒍)
(𝒕)

= 𝐥𝐧(𝒕𝜽𝒍) +
𝟏

𝒕𝜽𝒍

− 𝟏,                                                                           (𝟖) 

 

 Also, taking into account that 𝒌 = 𝒌𝟏 = 𝒌𝟐 = 𝟏 and 𝜽(𝒕) = 𝟏 𝒕⁄ , using (4) and (5) in (1) the reliability 

function can be easily derived as 

𝑹𝒍(𝒕) = 𝑷(𝑿𝒍 < 𝒀(𝒕)) =
𝟏

𝟏 + 𝒕𝜽𝒍

 .                                                                   (𝟗) 

 

For more details, see Chiodo et al. [20], Chiodo and Mazzanti [21] and Eryılmaz [22].  

 

 Clearly, using (7) and (9) for 𝒕 = 𝟎. 𝟏, 𝟎. 𝟐, … , 𝟐 and selected values of the parameters 𝜽𝟏 and 𝜽𝟐 we can 

obtain 𝑫𝑲𝑳(𝒍)
(𝒕)

  and 𝑹𝒍(𝒕) values presented in Table 1.  

 



Table 1. Numerical values obtained from Equation (7) and (9) for 𝜽𝟏 = 𝟎. 𝟔 and 𝜽𝟐 = 𝟎. 𝟖 

  

𝒕 𝑫𝑲𝑳(𝟏)
(𝒕)

 𝑫𝑲𝑳(𝟐)
(𝒕)

 𝑹𝟏(𝒕) 𝑹𝟐(𝒕) 

0.1 12.8533 8.9742 0.9433 0.9259 

0.2 5.2130 3.4174 0.8928 0.8620 

0.3 2.8407 1.7395 0.8474 0.8064 

0.4 1.7395 0.9855 0.8064 0.7575 

0.5 1.1293 0.5837 0.7692 0.7142 

0.6 0.7561 0.3493 0.7352 0.6756 

0.7 0.5134 0.2058 0.7042 0.6410 

0.8 0.3493 0.1162 0.6756 0.6097 

0.9 0.2356 0.0603 0.6493 0.5813 

1.0 0.1558 0.0268 0.6250 0.5555 

1.1 0.0996 0.0085 0.6024 0.5319 

1.2 0.0603 0.0008 0.5813 0.5102 

𝒕𝟐 0.0456 0. 0.5714 0.5 

1.3 0.0335 0.0007 0.5617 0.4901 

1.4 0.0161 0.0061 0.5434 0.4716 

1.5 0.0057 0.0156 0.5263 0.4545 

1.6 0.0008 0.0281 0.5102 0.4385 

𝒕𝟏 0. 0.0366 0.5 0.4295 

1.7 0.0001 0.0427 0.4950 0.4237 

1.8 0.0028 0.0590 0.4807 0.4098 

1.9 0.0082 0.0766 0.4672 0.3968 

2.0 0.0156 0.0950 0.4545 0.3846 

 

 In Table1, 𝒕𝟏 = 𝟏. 𝟔𝟔 and 𝒕𝟐 = 𝟏. 𝟐𝟓. Also, it can be observed from numerical values in  

𝑫𝑲𝑳(𝟏)
(𝒕)

 and 𝑫𝑲𝑳(𝟐)
(𝒕)

 columns how stresses affect the performance of the component that operates under different 

parameters. When the component starts working, its strength is greater than either stresses. However, because the 

component’s strength is decreasing depending on the selected time, as the uptime increases at first the Kullback-

Leibler divergence 𝑫𝑲𝑳(𝟐)
(𝒕)

 decreases to near zero. In this period, the strength of the component will begin to move 

to the average position declined from a good position. From the moment that 𝑫𝑲𝑳(𝟐)
(𝒕)

= 𝟎, the component will pass 

to the average working period from a good working period, the Kullback-Leibler divergence 𝑫𝑲𝑳(𝟐)
(𝒕)

 is not 

considered and instead of the Kullback-Leibler divergence 𝑫𝑲𝑳(𝟏)
(𝒕)

 is taken into account. The Kullback-Leibler 

divergence 𝑫𝑲𝑳(𝟏)
(𝒕)

 will be reduced again depending on the time. From the moment it is equal to zero, the operation 

of the machine will end and because the machine's durability remains weak in both stresses the machine will be 

impaired. In the table, there are also separately calculated 𝑹𝟏(𝒕) and 𝑹𝟐(𝒕) reliabilities of the machine according 

to either stresses.  

When attention is paid to their numerical values, for the stress and strength have the same parameters the reliability 

values becomes 0.5. This numeric value does not provide clear information about the component's operating 

performance. Considering two stresses, a joint reliability is not calculated but instead the reliability is calculated 

separately according to the stresses.   

 In Figure 1 and 2, we plot the reliability score 𝑹𝟏(𝒕) and 𝑹𝟐(𝒕) at time 𝒕 for  𝜽𝟏 = 𝟎. 𝟔 and 𝜽𝟐 = 𝟎. 𝟖, 

respectively. In Figure 3, we plot the reliability degree 𝐑𝐝(𝒕) of the component at time 𝒕 for  𝜽𝟏 = 𝟎. 𝟔 and 𝜽𝟐 =

𝟎. 𝟖.  
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Figure 1. Reliability for 𝑹𝟏(𝒕) at time 𝒕 
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Figure 2. Reliability for 𝑹𝟐(𝒕) at time 𝒕 
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Figure 3. Reliability degree 𝐑𝐝(𝒕) at time 𝒕 

 

 Finally, using (3) for 𝜻𝒕
𝟏 and 𝜻𝒕

𝟐 values in Table 1, 𝒖𝟏 = 𝟏𝟐. 𝟖𝟓𝟑𝟑 and 𝒖𝟐 = 𝟖. 𝟗𝟕𝟒𝟐, we can obtain 

dynamic reliability degree presented Table 2 for the component under stress-strength setup. 

 

 

 

 

 



Table 2. Dynamic reliability degree for the component when 𝜽𝟏 = 𝟎. 𝟔 and 𝜽𝟐 = 𝟎. 𝟖 

 

𝒕 𝐑𝐝(𝐭) 𝒕 𝐑𝐝(𝒕) 

0.1 2. 1.2 1.00008 

0.2 1.3808 1.25 1. 

0.3 1.1938 1.3 0.0026 

0.4 1.1098 1.4 0.0012 

0.5 1.0650 1.5 0.0004 

0.6 1.0389 1.6 0.000006 

0.7 1.0229 1.66 0. 

0.8 1.0129 1.7 0. 

0.9 1.0067 1.8 0. 

1.0 1.0029 1.9 0. 

1.1 1.0009 2.0 0. 

5. Conclusions  

In this study, we aimed to measure the damage caused by stresses which applied to the component. In the 

method that we have offered, it is preferred to use Kullback-Leibler divergence to obtain this measurement. 

Because Kullback-Leibler divergence plays an important role in information theory and statistics. The Kullback-

Leibler divergence is not a metric. But this feature does not adversely affect the use of our method. Also it is 

assumed that the Kullback-Leibler divergence is known. In our method, it is theoretically assumed that a 

component operates under two different stresses and when the component’s strength remains weak in both stresses 

the component fails. Let us consider two stresses by using (1), a joint reliability is not calculated. However, instead 

the reliability can be calculated separately according to the stresses. Here, for reliability evaluation we provide a 

new approach for obtaining the component operation performance. The proposed method can clearly show the 

change of component operation performance depending on time while under both stresses. The reliability degree 

Rd(𝑡) can denote the change of component operation performance under two stresses depending on time. When 

the related parameters of the component in Table 2 are selected as 𝜃1 = 0.6 and 𝜃2 = 0.8, the values of reliability 

score are calculated in the interval 0 < 𝑡 ≤ 1.6. The method used in the study does not depend on probability 

distribution. When different effect functions are used instead of probability functions of stress and strength, the 

recommended method can be easily used. 
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