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Abstract

In this paper, we investigate the controllability of nonlinear fractional damped dynamical system, which
involved fractional Caputo derivatives of any different orders. In the process of proof, we mainly use the
Schaefer’s fixed-point theorem and Mittag-Leffler matrix function. At last, we give an example to illustrate
our main result.
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1. Introduction

In this article, we study the controllability result for following system:
CDag(t) = ACDPa(t) + Bu(t) + f (t,a(t), u(t), CD (1), D a (1)), W)
z(0) =z9, 2/(0)=z1, -+, 2P)(0)=uz,. ’

wherep—1<a<p q¢g—1<<q,gq<p-—1, Aisann X n matrix and B is an n X m matrix, x € R",
u € L®(J,R™), t € [0,T] and the nonlinear function f being continuous. In order to solve the problem, we
will use Mittag-Leffler matrix function, Gramian matrix and the theorem of Schaefer’s fixed-point.
Fractional differential equation has increasingly attracted the attention of many researchers during the
last three decades, see [1-16]. The various types of fractional differential equation, playing significant roles
and tools, are used for solving some mathematical issues of general physical phenomena in physics and
engineering. Especially, the field of control theory sparked the interest of many scholars which can be seen
from the literatures [17-19]. In recent years, several authors[20-25] have made a detailed research about
controllability results of linear and proposed many new ideas about he low-order fractional equation.
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Kang Yonggang [26] introduce a fractional oscillator satisfied the following differential equation:

2$
T 4 z<oile(v)] = A0()

where the elastic restoring force wi oD§[z(t)] of arbitrary order & with 0 < ¢ < 1. x(t) is an unknown
function that in the equilibrium position, ¢ is a time variable, wg is the proper frequency, A is the strength
of pulses, 4(t) is the Dirac 0 function.

Narahari Achar et al.[27] studied the response of several specific forcing functions and analyzed reso-
nance characteristic of the fractional oscillator model. Ali-Tofighi [28] have been defined and obtained the
expression of the fractional oscillator system. Al-rabth et al.[29] took advantage of the differential transform
technique and efficient algorithm to solve the a fractional oscillator equation.

K.Balachandran [30] studied the controllability result for the type of fractional damped system repre-
sented by the following equation:

{ CDog(t) = ACDPa(t) + Bu(t) + f(t,2(t)),
2(0) =z,  2'(0) = p,

where 0 < f <1< a <2, Aand B are n x n and n X m matrices respectively, and f: J x R" — R" is a
continuous function.

Motivated by the work mentioned above, in this article we study the nonlinear fractional damped dy-
namical system of (1). To the best of our knowledge, the controllability of nonlinear fractional damped
dynamical system of order p — 1 < a < p (p € N) have not been discussed.

This paper is arranged as follows. In Section 1, we illustrate the background and motivation of writing
this article. In Section 2, we make preparation of basic knowledge for the main result, and controllability
of linear system is proved. In Section 3, the main result of this article is obtained. Finally, an example is
provided to illustrate the main result in Section 4.

2. Preliminaries

2.1. Definitions and preliminary facts

In this section, we introduce some necessary definitions which are used throughout this paper.
Definition 2.1[2] The Caputo fractional derivative of order & € R withn—1 < a < n, n € N, for a suitable
function f is defined as

(DGO = ey | =9 )

I'n—«

where f()(s)=%L . In particular, if 1 < o < 2 then

T dsn
o 1 ! —a gl
(CDwf)(’f):r(z_a)/o (¢ =)o f (o).

For the brevity, the Caputo fractional derivative CD8+ is taken as “D".
Definition 2.2[4] The Mittag-leffler matrix function for an arbitrary square matrix A is

Ea A) = 1. 1 A\’ (X,ﬁ > 07
4 kzo T(ak + B) 2.1)
Eo1(A) = Ey(A), with f=1.
Lemma 2.1[31] The Mittag-leffler matrix function derivative of order p(p € N) is defined as
d
()Pt By o (AtP)) = 19 P g 0y (A°F), (p € N). (2:2)

dt
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In order to find the solution of system (1.1), take Laplace transform and inverse Laplace transform on
both sides of the following formula, we get the solution of the system (1.1)

x(t) :/0 (t — 8)* ' Ey_pguo(A(t — 5)*7P)Bu(s)ds
[ =9 Bt - 9 ) (s
a1 (2.3)
3 OB 0 g k(A2

p—1
+ 3 R (0)tF Eap 1k (AtP).
k=0
2.2. Linear system

Consider the liner fractional dynamical system represented by fractional differential equation of the form

{ “Da(t) = A°D"x(t) + Bu(t), t€[0,T] (2.4)

z(0) =z, 2/(0)=wx1, -, xP(0)=uz,.

wherep—1<a<p,g—1<pf<qgand ¢ <p—1, Aisann xn matrix and B is an n X m matrix, x € R",
u € L2(J, R™).

Definition 2.3 The system (2.4) are said to be controllable on J if for every zo,z1,...,2,,y € R", if there
exists a control u(t) such that the solution z(t) of such system satisfies the conditions z(0) = xg, 2/(0) =
zy, -, 2®P)(0) =z, 2(T) = y.

Define the controllability Grammian matrix W as

T
W= [ = B o AT = )7 BB

(2.5)

X Eo_p.ol A" (T — )2 P)ds.

Theorem 2.1 The linear system (2.4) is controllable on J iff the n x n Grammian matrix
T
W= / (T — )2 VE, 5,(AT —s)*?)BB*

0 (2.6)

X BopolA (T — 5)*P)ds
is invertible.
proof. Suppose W is invertible, then given xg,x1,...,z, and y. can choose the input function u(t) as

u(t) =(T = t)* ' B*Eq_p o (A (T — s)* A )yW~!

q—1 p—1
(y+ > oD -> (1)),
k=0 k=0
where
q—1 q—1
()Y = Zxk(O)tafmkE(afﬂ),(afﬁ+1+k)(Atafﬁ)v
k=0 k=0
p—1 p—1
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The corresponding solution of the system (2.4) at ¢ = T' can be written as

T
o) = [T =) B o AT = 9 )BT = 5

q—1
B ol A(T = 5)* )Wy + 3 (1)
p—1 qg—1 pﬁjo
= e()]ds = Yo () + Y e(D)}
k=0 k=0 k=0

=Y,

so that the system (2.4) is controllable on J.

On the other hand, suppose that the the system (2.4) is controllable, but for the sake of a contradiction,
assume that the matrix W is not invertible. If W is not invertible, then there exists a vector z # 0 such
that

T
Wz = /0 2X(T — 5)2(a_1)Ea—5,a(A(T - S)Q_B)BB*

X Eo_p.olA(T — ) )2ds
=0,
hence
2T = 5)2 @ VE, 5o (AT —s)*P)B=0, tel

Consider the initial points zg = 21 = --- = x, = 0 and the final point y = z, so the system (2.4) is
controllable there exists a control u(t) on J that steer the response from 0 toy =z at t =T,

T
y— e / (T — $)2@DE,_s (AT — 5)° %) Buf(s)ds,
0

then

T
o= / (T — 2@ VE,_y (AT — 5)° %) Bu(s)ds
0
£0.

Which is a contradiction.Thus the matrix W is invertible.
O

Lemma 2.2 (Schaefer’s Theorem|[32]) Let S be a normed space, T" a continuous mapping of S into S, which
is compact on each bounded subset of X. Then, either (i) the equation x = AT'(z) has a solution for A =1,
or (i7) the set of all such solutions x for 0 < A < 1 is unbounded.

We assume the following hypotheses.
(E1) For each t € J,the function f(t,-,-,-,-) : J X R" x R™ x R™ x R™ — R" is continuous, the function
fCz(),ul-),y(-),2(-)) : J — R™ is strongly measurable for each z,y,z € R", u € R™.
(E2)
£ (& (), u(t), “D"a(t), D ()| < M,
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wheret € J, x € R", ue€ R™, M € R.
(Eg) Let

L= Z‘P Z‘P 25 A =y+L;

ny = sup|(t - s)a 1Ea_@,a<A<t —5)* )
ng =sup|(t — s)* P LE,_ ,3 a—p(A(t — $)*P);
q—1

?’LgZSup||: Dt —}—Z@ ](p)

o= suplt — P,

3. Nonlinear system

Consider the nonlinear fractional dynamical system represented by the fractional differential equation of
the form

CDa(t) = A°D x(t) + Bu(t) + f(t,2(t), u(t), °D"x(t), °D (1)), o
z(0) =xz9, 2'(0)=21, -+, 2P(0)=uz,. :

wherep—1<a<p ¢g—1<<q,¢g<p-—1, Aisan n X n matrix and B is an n X m matrix, x € R",
u € L>®(J,R™), t € [0,T] and the nonlinear function f being continuous, the solution of (3.1) is given by

() = /0 (t = ) o ga(A(t — 5)*) Bu(s)ds

+ /0 (t —8)* By gal(Alt —s5)*7F)

(3.2)
x f(s,x( ), u(s), CD (s ),CDﬂx(s))ds

St Z
Theorem 3.1 Assume that hypotheses (E1) — (E3) hold and the linear system (2.4) is controllable on J,
then the nonlinear system (3.1) is controllable on J.

proof. We give the space X = {z : a;(p),CDax,CDﬁx € C(J,R") and u(t) € L*°(J, R™)} be a Banach space
endowed with the norm ||z|x = max,cs{|z|, ||*D"z]|, ||CDB:L‘H, lu||}, Using the hypothesis, for an arbitrary
z(+), the control

u(t) = (T —t)* 1 B*Ey_p.o(A*(T — 1) PyWly,

where
q—1 p—1
V=y+Y D) - oT)s
k=0 k=0
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Now we shall show that: the nonlinear operator F': X — X
t
(Pa)(0) = [ (1= )" Eacgal Al =) Bu(s)ds
0

" /O (t — )% Ba_palAlt — 5)°7)

x f(s w(s), u(s), °D"x(s), D’ x(s)) ds

- Z O(1)f + ) ()5
k=0

k=0

—

has a fixed point. This fixed point is a solution of Eq.(3.1). Substituting the control u(¢) in the above, we
can get

(Pa)(t) = [ (= 5)" BapalAlt = 9 (T = 5)°"
X BB*Ey_p.o(A*(T — s)* YW ¢ ds
+ [ = (Al = 92 (33)

x f(s (), u(s), °D x(s), °D’ x(s)) ds

- Z o)) + Z (1)}
k=0

k=0

Clearly, (F'z)(T) =y, thus means that the system (3.1) was steered from the zg to y by the control u, if
we can obtain a fixed point of the nonlinear operator F'. The first step is to obtain a priori bound of the set

((F)={z e X :z=XFz,\€[0,1]}.

Let z € ((F), them « = A\F'z for some 0 < A < 1. So for each t € J, we have

(1) =X /0 (t = 8)°  Ba_ga(A(t — )2~ F)(T — 5)°~1
X BB*Ey_p.o(A*(T — 5)* YW1 7 ds
+>\/ B (At — 5)°F)

x f(s x(s) u(s), °D"x(s),°D x(s))ds
- AZ@(t)’f +>\Z<I>(t)’§,
k=0 k=0

then

t T
II:v(t)IIS/ nlBB*nlwl[v+/ ny Mde€)ds
0 0

t
+/ niMds+ L
0

<aF|BIIIB*[W T |
+mT?Mds 4+ n,TM + L,
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and

lu@ll < (T = )27 B* Eq-p.a(A*(T = )°~F)
q—1 p—1
x Wy > e - Y o)
k=0 k=0

T
/0 (T — s)a_lEa_f;,a(A(T —5)*F)
X f(s,m(s),u(s),CDam(s),CD’Baj(s))ds} I
<mll B[l & + ).

Due to the lemma (2.1),we have

t
2P (1) < / (t—5)* P E, ga p(Alt—s)*P)BB*
0
X Ey_po(A*(T — ) PyW iy
t
4 [ =9 B4 — )
0

x f(s,z(s),u(s), CDaJJ( ) CDBa:(s))ds
-1

[q>+zq>]

Q

k=0
So
12 ® @) < nal| BB [na W11 A || + Try M)T
+ noT'M + ng
- M07
we can get
[0
1D 0)] < Iy m/m%m\

Hence, “Dx(t) is bounded. In the same way, CDﬁx(t) is bounded too. And because ||z||x = maxic{||z],

1Dz, ||CD53:H, lu||}, so C(F') is bounded, Next, we proved that F' is completely continuous operator.

Let B, = {z € X;|jz| < p}, then we first show that F' maps B, into equicontinuous family. Let

€ B, titaed, 0<t <to<T,



J P.Liu, S L.Liu, H L.Li, J. Nonlinear Sci. Appl. 6 (2013), 152-161 159

[(Fz)(t2) = (Fa)(t)]
<[ - 8)* ! Ea—pa(Altz — 5)* ) (T —5)*~

t1

X BB*Ey_p.o(A*(T — s)* YW= 7 ds||
t1
y / [(t2 — 5)*  Fa_p 0l Alts — 5)°F)
0

— (t1 = )" Ea—pa(Alts — 8)* )]
X (T = 8)* 'BB*E,_po(A (T — s)* YW1 7 ||ds

to
[ (b2 =) EapalAlta —5)*")
t1

X f(s, x(s), u(s), CDax(s), CDﬁx(s))dsH
1 /0 [(t2 = 9" Ba_s.al(Altz — 57

—(tr = 8)* ' EacpalA(t1 — 5)*77)]

X f(s x(s) u(s), °D%x(s), °D x(s) ) ds|
q—1

+IIZ<I> to)¥ o (1)l
k=0
p—1

+IIZ<I> to)} o(t1)5])-

So
|(Fu)(t2) — (Fu)(t1)||
< (T = t2)* ' B*Bap o A*(T — t5)*7)
— (T = t1)* ' B*Eq_p.a( AT — t1)* W' 7 |.
and

D" (F) (t2) — D" (F) 1)
1 b2 a
ey |, =) s)as

L e e ®) (s)ds
e | = s

<ty (1 =m0
[ 12 =97 = (0= ) UF) O (s,

Clearly: when to — 1,
(Fz)(t2) — (F2)(t)]| — 0,
I°D" (Fa)(tz) — “D° (Fa)(t1)]| — 0,
1°D° (Fa)(t2) — D" (Fa) (1) — 0,
(Fu)(t2) — (Fu)(t2)]| — 0.
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So F' maps B, into an equicontinuous family of functions. Then, the family F'B, is uniformly bounded.
Next show that F' is a compact operator. Obviously, the closure of F'B, is compact. Let 0 <t < T', ¢ be
fixed and 7 a real number satisfying 0 < 7 < t. For x € B,, we define

(Fro)(t) _/0 7T(t o S)ailEa*ﬁ,a(A(t - S)Oﬁﬁ)

X (T = 5)* " 'BB*E,_p o(A*(T — 5)*7P)
q—1 p—1

x Wy + Y o)t - Y o)

k=0 =0

ol

T
- /0 (T — 5)* Ea_pal AT — 5)°)

< £ (€:2(©),u(€).“D"2(€), “D w(€))de ] ds

q—1 p—1 t—

S e+ e+ [ w-s
k=0 k=0 0

X Eq_pg oAt — s)o‘_ﬁ)

X f(s,:n(s),u(s),CDax(s),CDBx(s))ds.

Using the previous method, we can get the bounded and equicontinuous property of F:-, Hence,
S-(t) ={(Frz)(t), = € By}
is relatively compact in X for every 0 < 7 < t. And for every x € B,,

I(F)®) - (E2) @)
< [ (= 9 B A — 5T — )

% EE*EQB,Q(A*(T — )WL ds||

Pl [ 8 B palAl - 9))

t—7
x f(s,2(s),u(s),°Dw(s), D w(s)) ds|
< 37| BJ[| B W[ 7 | + nar,
then
|(Fa)P () — (Fra) P (t)]
= / (= 8 B gyl At~ 9°)
t

-7

X BB*Eq_g.o(A*(T — 5)* A )yW~!
T
<[a= [ =0 BapalAT - 0°7)
< F (€ 2(8),ul€), D" (€), “Dw(€)) g ds
+ / t (t = 5)* P By paplAlt — )7
X f(s,:c(s),u(s),CDaw(s),ODﬁx(s))ds
< n37| BB [W | 7 || + nor M.
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So [|(Fx)(t) — (Frz)(t)|| = 0, [(Fa)®(t) — (Fra) P (t)]| = 0, as 7 — 0.
Hence,

19D (Fa)(t) — “D" (Fra) (1)

HF(ll—a)/O (t — s)"[(Fz)P) (s) — (Frz)®)]ds||

t
<l [ €= 9 1P) D (s) = (Fa) Vs > 0. 7 =0,

In the same way, ||°D” (Fz)(t) — °D” (F,2)(t)| — 0, as T — 0.

Hence, relatively compact sets Sr(t) = {(Frx)(t), * € B,} are arbitrary close to the set {(Fz)(t), « €
B,}, so {(Fz)(t), x € B,} is compact in X by the Arzela-Ascoli theorem.

Next we show that F' is continuous. Let {x,} be a sequence in X, |z, —z| — 0, as n — oo. then for all
n and t € J, there is an integer kg such that ||z,|| < ko, ||un]| < ko, [|D%z,| < ko, HCDBaan < ko. Hence
la(t)] < ko, (@) < Ko, I°D°2(t)]| < Ko, |I°D a(t)]| < ko. 2,u,°D"x,°D’x € X. By (Fy)

£t n(®), un(t), CD 2 (1), ED 2 (1)) — £ (£, 2(2), u(t), °D x(t), °D (1)),
for each t € J and since

£ (£, 20 (), n (), CD 2 (£), ED 20 (£)) — £ (£, 2(t), u(t), °D (1), D x(t)) |
< 2M.

By the fatou-lebesque theorem that

[(Fan)(t) — (Fz)(t)]
< / n{BB*W™! / (€ 2n€), un(€), D 0 (€), CDP 2 (6)
0 0
— [ (& 2(&), u(€),°D (), °D" w(€))d€] ds
+/0 nl[f(s,svn(s),un(s),CDa

- f(s,x(s),u(s),CDax(s),CDﬁx(s))]dsH

Zn($), CDﬁxn(s))

Clearly ||(Fzy)(t) — (Fz)(t))|| — 0, as n — 0.
By z and corresponding relationship of u, we get ||(Fuy)(t) — (Fu)(t))|| = 0, as n — oo, then
[(F) (1) = (Fz) P (1))
T - N 5
< [ n3BB W 16200, un(6). D" (6). D ©)
~ F(& 2(©),u(&), D (¢), °D x(€)) de] ds
T N 5
+/ ny [f(s,mn(s),un(s),CD zn(s),“D Zn(s))
0
— f(s,:c(s),u(s),CDaz(s),CDﬁaz(s))]dsH.

So |[(Fzn)®)(t) — (Fz)®) ()| — 0, as n — oco.
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This implies that
1°D" (Fan)(t) = “D" (Fa)(t)]

1 /t o
< — t—s)" Y (Fa,)P(s) — (Fz)P(s))||(s)ds — 0, n — co.
< Tp—a) 0( ) [(Fzn)?(s) — (Fx)(s))l|(s)
Hence F' is continuous. Finally, the set ((F') = {z € X;z = AFz, X € [0,1]} is bounded as shown in
front part. By Schaefer’s theorem, the operator F' has a fixed point in X. This fixed point is the solution
of (3.1). In summary, the system (3.1) is controllable on [0, 7.

O
4. An example
Consider the problem of nonlinear fractional dynamical system
CDx(t) = A°D x(t) + Bu(t) + f(t, (), u(t), °D*x(t), °D x(1)), (41)
‘T(O):x()? x’(O):xl, M) xp)( ): Lp- '
wherep—1<a<p,qg—1<p8<q,p,ge N,te J, and
4 3 7 0 1 x1(t)
|3 6 2 5 | o | xa(t)
A=l 7 92— o | B o | *W=] we |
0 5 9 10 0 x4(t)
and the non-linear function is defined by
£ (. 2(t), u(t), °D 2 (1), °D (1))
0
0
= 0
@ - w2
sin(CD 1 (1)) + cos(OD wa (1)) + YT

First, let us consider the Mittag-Leffler matrix function for the given system,

s Akk(a—B)
Eo- a At ﬁ =
b ;::0 I((a =Bk +a)

Do some matrix calculations, we can get the following matrices:

I
EapalAT —s)> B =1 | 2
9 e l3 )
l4
g 1
B*Eqy_g.o(A(T — s) ):g(ll lo ls 1),
where

1 4B 74¢2(2—F)

L(t) = + + +oe

I'a) TR2a-p) T'Ba-—2p)
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(s 3te—h 44¢2(a=F) 790t3(@—6)

2= T0a=5 TTGa—25) " Taa—35
Tt h 43¢2(a=P) 1781¢3(@=5)

I3(t) = + 4+

T T(2a—-fB) TI[(Ba-—28) T(4a-306)

z 78t2(=B8)  613t3(@=F)  26109t4@h)
1) = T(3a—23) T(@da—33)  TGa—48) =

Iy = (T — s).

So

Eop,a(A(T = 5)*"")BB"Eq—p o A*(T = 5)*7"

B Ly Lz lLily
L[ Ll BB iz Il
2| hils bl 12 Il
Liy loly l3ly 12

= [*
Hence,the controllability matrix W for the system is found by

W= [ 9B AT - )
BB*E,_p oA (T — 5)*Pds
= /T(T — )2 N gs
> 0? for T > 0.
From the above, we have shown that W is an invertible matrix. Moreover, the nonlinear function f
satisfies the hypothesis. Hence the system (4.1) is controllable on .J.
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