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Abstract

We introduce the notions of Levitin-Polyak(LP) well-posedness and LP well-posedness in the generalized
sense for the Lexicographic vector equilibrium problems. Then, we establish some sufficient conditions
for Lexicographic vector equilibrium problems to be LP well-posedness at the reference point. Numerous
examples are provided to explain that all the assumptions we impose are very relaxed and cannot be dropped.
The results in this paper unify, generalize and extend some known results in the literature.
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1. Introduction and Preliminaries

Equilibrium problems first considered by Blum and Oettli [8] have been playing an important role in
optimization theory with many striking applications particularly in transportation, mechanics, economics,
etc. Equilibrium models incorporate many other important problems such as: optimization problems,
variational inequalities, complementarity problems, saddlepoint/minimax problems, and fixed points. Equi-
librium problems with scalar and vector objective functions have been widely studied. The crucial issue of
solvability (the existence of solutions) has attracted the most considerable attention of researchers, see, e.g.,
[14, 18, 21, 40].

On the other hand, well-posedness plays an important role in the stability analysis and numerical meth-
ods for optimization theory and applications. Since any algorithm can generate only an approximating
solution sequence which is meaningful only if the problem is well-posed under consideration. The first and
oldest well-posedness is Hadamard well-posedness [20], which means existence, uniqueness and continuous
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dependence of the optimal solution and optimal value from perturbed data. The second is Tikhonov well-
posedness [41], which means the existence and uniqueness of the solution and convergence of each minimizing
sequence to the solution. Well-posedness properties have been intensively studied and the two classical well-
posedness notions have been extended and blended. For parametric problems, well-posedness is closely
related to stability. Up to now, there have been many works dealing with well-posedness of optimization-
related problems as mathematical programming [39, 22], constrained minimization [12, 44, 43, 17] variational
inequalities [12, 10, 16, 30, 42], Nash equilibria [42, 34], and equilibrium problems [17, 2, 24]. A fundamental
requirement in Tykhonov well-posedness is that every minimizing sequence is from within the feasible re-
gion. However, in several numerical methods such as exterior penalty methods and augmented Lagrangian
methods, the minimizing sequence generated may not be feasible. Taking this into account, Levitin and
Polyak [28] introduced another notion of well-posedness which does not necessarily require the feasibility of
the minimizing sequence. However, it requires the distance of the minimizing sequence from the feasible set
to approach to zero eventually. Since then, many authors investigated the well-posedness and well-posedness
in the gener- alized sense for optimization, variational inequalities and equilibrium problems. The study
of Levitin-Polyak type well-posedness for scalar convex optimization probiems with functional constraints
was initiated by Konsulova and Revalski [26]. In 1981, Lucchetti and Patrone [33] introduced and studied
the well-posedness for variational inequalities, which is a generalization of the Tykhonov well-posedness of
minimization problems. Long et al. [31] introduced and studied four types of Levitin-Polyak well-posedness
of equilibrium problems with abstract set constraints and functional constraints. Li and Li [29] introduced
and researched two types of Levitin-Polyak well-posedness of vector equilibrium problems with abstract set
constraints. Peng et al. [36] introduced and studied four types of Levitin-Polyak well-posedness of vector
equilibrium problems with abstract set constraints and functional constraints. Peng, Wu and Wang [37] in-
troduced several types of Levitin-Polyak well-posedness for a generalized vector quasi-equilibrium problem
with functional constraints and abstract set constraints. Chen, Wan and Cho [11] studied the Levitin-Polyak
well-posedness by perturbations for a class of general systems of set-valued vector quasi-equilibrium problems
in Hausdorff topological vector spaces. Very recently Lalitha and Bhatia [27] studied the LP well-posedness
for a parametric quasivariational inequality problem of the Minty type.

With regard to vector equilibrium problems, most of existing results correspond to the case when the
order is induced by a closed convex cone in a vector space. Thus, they cannot be applied to lexicographic
cones, which are neither closed nor open. These cones have been extensively investigated in the framework of
vector optimization, see, e.g., [3, 6, 7, 9, 15, 19, 25, 23]. For instance, Konnov and Ali [25] studied sequential
problems, especially exploiting its relation with regularization methods. Bianchi et al. in [6] analyzed
lexicographic equilibrium problems on a topological Hausdorff vector space, and their relationship with
some other vector equilibrium problems. They obtained the existence results for the tangled lexicographic
problem via the study of a related sequential problem. However, for equilibrium problems, the main emphasis
has been on the issue of solvability/existence. To the best of the knowledge, very recently, Anh et al. in
[3] studied the Tikhonov well-posedness for lexicographic vector equilibrium problems in metric spaces and
gave the sufficient conditions for a family of such problems to be well-posed and uniquely well-posed at
the considered point. Furthermore, they derived several results on well-posedness for a class of variational
inequalities.

In this paper, we first introduce the new notions of Levitin-Polyak(LP) well-posedness and LP well-
posedness in the generalized sense for the Lexicographic vector equilibrium problems. Then, we establish
some sufficient conditions for this problems to be LP well-posedness at the reference point. Furthermore,
we give numerous examples to explain that all the imposed assumptions are very relaxed and cannot be
dropped.

The layout of the paper is as follows. In Sect. 2, we introduce the notions of LP well-posedness and
LP well-posedness in the generalized sense for the Lexicographic vector equilibrium problems. In Sect. 3,
we establish some sufficient conditions for this problems to be LP well-posedness at the reference point.
Section 4 is devoted to LP well-posedness in the generalized sense for the Lexicographic vector equilibrium
problems. Some concluding remarks are included in the end of this paper.
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We first recall the concept of lexicographic cone in finite dimensional spaces and models of equilibrium
problems with the order induced by such a cone. The lexicographic cone of Rn, denoted Cl , is the collection
of zero and all vectors in Rn with the first nonzero coordinate being positive, i.e.,

Cl := {0} ∪ {x ∈ Rn|∃i ∈ {1, 2, . . . , n} : xi > 0 and xj = 0, ∀j < i}.

This cone is convex and pointed, and induces the total order as follow:

x ≥l y ⇔ x− y ∈ Cl.

We also observe that it is neither closed nor open. Indeed, when comparing with the cone C1 := {x ∈
Rn|x1 ≥ 0}, we see that intC1 ⊊ Cl ⊊ C1, while

intCl = intC1 and clCl = C1.

Throughout this paper, if not other specified, X be a metric space and Λ denote the metric space. Let
X0 ⊂ X be nonempty and closed sets . Let f := (f1, f2, . . . , fn) : X×X×Λ → Rn be vector-valued function
and K : Λ → 2X being a closed valued map. The lexicographic vector quasiequilibrium problem consists of,
for each λ ∈ Λ,

(LEPλ) finding x̄ ∈ K(λ) such that

f(x̄, y, λ) ≥l 0 , ∀y ∈ K(λ).

Instead of writing {(LEPλ)|λ ∈ Λ} for the family of lexicographic vector equilibrium problem, i.e., the
lexicographic parametric problem, we will simply write (LEP) in the sequel. Let S : Λ → 2X be the solution
map of (LEP); that is, for each λ ∈ Λ,

S(λ̄) := {x ∈ K(λ̄)|f(x, y, λ̄) ≥l 0, ∀y ∈ K(λ̄)}. (1.1)

Following the lines of investigating ε-solutions to vector optimization problems initiated by Loridan [32], we
consider, for each λ ∈ Λ and each ε ∈ [0,∞), the following approximate problem:

( LEPλ,ε) find x̄ ∈ K(λ) such that

d(x̄,K(λ)) ≤ ϵ and f(x̄, y, λ) + εe ≥l 0, ∀y ∈ K(λ),

where e := (0, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1) ∈ Rn. The solution set of (LEPλ,ε) is denoted by S̃(λ, ε); that is the set valued-map

S̃ : Λ× R → 2X is defined by

S̃(λ, ε) = {x ∈ X|d(x,K(λ)) ≤ ϵ and f(x, y, λ) + εe ≥l 0, ∀y ∈ K(λ)}, (1.2)

for all (λ, ε) ∈ Λ× R.
Now we introduce the concept of LP well-posedness for LEP. For this purpose, we require the the

following notions of an LP approximating sequence.

Definition 1.1. Let {λn} be a sequence in Λ such that λn → λ̄. A sequence {xn} is said to be an LP
approximating sequence for LEP with respect to {λn} if there is a sequence {ϵn} in (0,∞) satisfying ϵn → 0
as n → ∞, such that

(i) d(xn,K(λn)) ≤ ϵn, for all n ∈ N;
(ii) f(xn, yn, λn) + ϵne ≥l 0, ∀yn ∈ K(λn).

Definition 1.2. The problem (LEP) is LP well-posed at λ̄ if

(i) there exists a unique solution x̄ of LEP;
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(ii) for any sequence {λn} converging to λ̄, every LP approximating sequence {xn} with respect to {λn}
converges to x̄.

Definition 1.3. [4] Let Q : X ⇒ Y be a set-valued mapping between metric spaces

(i) Q is upper semicontinuous (usc) at x̄ if for any open set U ⊇ Q(x̄), there is a neighborhood N of x̄
such that Q(N) ⊆ U .

(ii) Q is lower semicontinuous (lsc) at x̄ if for any open subset U of Y with Q(x̄) ∩ U ̸= ∅, there is a
neighborhood N of x̄ such that Q(x) ∩ U ̸= ∅ for all x ∈ N .

(iii) Q is closed at x̄ if for any sequences xk → x̄ and yk → ȳ with yk ∈ Q(xk), it holds ȳ ∈ Q(x̄).

Lemma 1.4. [4]

(i) If Q is usc at x̄ and Q(x̄) is compact, then for any sequence xn → x̄, every sequence {yn} with
yn ∈ Q(xn) has a subsequence converging to some point in Q(x̄). If, in addition, Q(x̄) = {ȳ} is a
singleton, then such a sequence {yn} must converge to ȳ.

(ii) Q is lsc at x̄ if and only if for any sequence xn → x̄ and any point y ∈ Q(x̄), there is a sequence {yn}
with yn ∈ Q(xn) converging to y.

Definition 1.5. [3, 1] Let g be an extended real-valued function on a metric space X and ε be a real
number.

(i) g is upper ε-level closed at x̄ ∈ X if for any sequence xn → x̄,

[g(xn) ≥ ε, ∀n] ⇒ [g(x̄) ≥ ε].

(ii) g is strongly upper ε-level closed at x̄ ∈ X if for any sequences xn → x̄ and {vn} ⊂ [0,∞)
converging to 0,

[g(xn) + vn ≥ ε, ∀n] ⇒ [g(x̄) ≥ ε].

Let A,B be two subsets of metric space X. The Hausdorff distance between A and B is defined as follows

H(A,B) = max{H∗(A,B),H∗(B,A)},

where H∗(A,B) = supa∈A d(a,B), and d(x,A) = infy∈A d(x, y).

2. LP well-posedness for Lexicographic vector Equilibrium Problems

In this section, we shall give some neccessary and/or sufficient conditions for (LEP) to be LP well-posed
at the reference point λ̄ ∈ Λ. To simplify the presentation, in the sequel, the results will be formulated
for the case n = 2. For any two positive numbers α, ϵ, the solution set of approximation solutions for the
problem (LEPλ,ε) is denoted by

Γ(λ̄, α, ϵ) =
∪

λ∈B(λ̄,α)∩Λ

{x ∈ X|d(x,K(λ)) ≤ ϵ and f(x, y, λ) + εe ≥l 0, ∀y ∈ K(λ)}, (2.1)

where B(λ̄, α) denote the closed ball centered at λ̄ with radius α. The set-valued mapping Z : Λ×X → 2X

next defined will play an important role our analysis

Z(λ, x) =

{
{z ∈ K(λ)|f1(x, z, λ) = 0} if (λ, x) ∈ gr Z1;
X otherwise,

where Z1 : Λ → 2X denotes the solution mapping of the scalar equilibrium problem determined by the
real-valued function f1 :

Z1(λ) = {x ∈ K(λ)|f1(x, y, λ) ≥ 0, ∀y ∈ K(λ)}.
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Then (2.1) is equivalent to
Γ(λ̄, α, ϵ)

=
∪

λ∈B(λ̄,α)∩Λ

{x ∈ X|d(x,K(λ)) ≤ ϵ, f1(x, y, λ) ≥ 0, ∀y ∈ K(λ) and f2(x, z, λ) + ϵ ≥ 0, ∀z ∈ Z(λ, x)}

=
∪

λ∈B(λ̄,α)∩Λ

S̃(λ, ε),

where S̃ is the solution map for (LEPλ,ε) defined by (1.2). For the solution map S : Λ → 2X of (LEP), in
general, we observe that

Γ(λ̄, 0, 0) = S(λ̄) and S(λ̄) ⊆ Γ(λ̄, α, ϵ), ∀α, ϵ > 0,

and hence
S(λ̄) ⊆

∩
α,ϵ>0

Γ(λ̄, α, ϵ).

Next, we provide the sufficient conditions for the two sets to coincide.

Proposition 2.1. Suppose that the following conditions are satisfied :

(i) K is closed and lsc on Λ;

(ii) Z is lsc on Λ×X;

(iii) f1 is upper 0-level closed on X ×X × Λ;

(iv) f2 is strongly upper 0-level closed on X ×X × Λ;

then ∩
α,ϵ>0

Γ(λ̄, α, ϵ) = S(λ̄).

Proof. Let x̄ ∈
∩

α,ϵ>0 Γ(λ̄, α, ϵ), then without loss of generality, there exist sequences αn > 0, ϵn > 0 with

αn → 0, ϵn → 0, such that x̄ ∈ Γ(λ̄, αn, ϵn). Hence, it follows that there exists a sequence λn ∈ B(λ̄, αn)∩Λ,
such that, for all n ∈ N,

d(x̄,K(λn)) ≤ ϵn, (2.2)

and
f1(x̄, y, λn) ≥ 0, ∀y ∈ K(λn) and f2(x̄, z, λn) + ϵn ≥ 0, ∀z ∈ Z(λn, x̄). (2.3)

Since K(λ̄) is a closed set in X, it follows from (2.2) that we can choose xn ∈ K(λn), such that

d(x̄, xn) ≤ ϵn, ∀n ∈ N. (2.4)

Thus xn → x̄ as n → ∞. Clearly λn → λ̄ as n → ∞ and also as K is closed at λ̄, it follows that x̄ ∈ K(λ̄).
As K is lsc at λ̄ and λn → λ̄ for any y ∈ K(λ̄) there exists yn ∈ K(λn) such that yn → y. Also Z is lsc at
(λ̄, x̄) and (λn, xn) → (λ̄, x̄), it is clear that for any z ∈ Z(λ̄, x̄) there exists a sequence zn ∈ Z(λn, xn) such
that zn → z. This implies by assumption (iii),(iv), and (2.3) that f1(x̄, y, λ̄) ≥ 0, f2(x̄, z, λ̄) ≥ 0 and hence,
x̄ ∈ S(λ̄). □

Theorem 2.2. Suppose that the conditions (i)-(iv) in Proposition 2.1 are satisfied. Then (LEP) is LP
well-posed at λ̄ ∈ Λ if and only if Γ(λ̄, α, ϵ) ̸= ∅, ∀α, ϵ > 0 and diam Γ(λ̄, α, ϵ) → 0 as (α, ϵ) → (0, 0).
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Proof. Suppose that the problem (LEP) is LP well-posed. Hence, it has a unique solution x̄ ∈ S(λ̄) and
hence Γ(λ̄, α, ϵ) ̸= ∅, ∀α, ϵ > 0 as S(λ̄) ⊆ Γ(λ̄, α, ϵ). Suppose on the contrary that diam Γ(λ̄, α, ϵ) ↛ 0 as
(α, ϵ) → (0, 0). Then there are positive numbers r,m and sequences {αn}, {ϵn} in (0,∞) with (αn, ϵn) →
(0, 0) and xn, x

′
n ∈ Γ(λ̄, αn, ϵn) such that

d(xn, x
′
n) > r, ∀n ≥ m. (2.5)

By xn, x
′
n ∈ Γ(λ̄, αn, ϵn), there exist λn, λ

′
n ∈ B(λ̄, αn) ∩ Λ such that

d(xn,K(λn)) ≤ ϵn,

f1(xn, y, λn) ≥ 0, ∀y ∈ K(λn) and f2(xn, z, λn) + εn ≥ 0, ∀z ∈ Z(λn, xn) (2.6)

and
d(x′n,K(λ′

n)) ≤ ϵn,

f1(x
′
n, y, λ

′
n) ≥ 0, ∀y ∈ K(λ′

n), f2(x
′
n, z, λ

′
n) + εn ≥ 0, ∀z ∈ Z(λ′

n, xn). (2.7)

The sequence {xn} and {x′n} are LP approximating sequences for (LEP) corresponding to sequences λn → λ̄
and λ′

n → λ̄′, respectively. Since (LEP) is LP well-posed, we have that {xn} and {x′n} converse to the unique
solution x̄, which arrives a contradiction to (2.5). Hence, diam Γ(λ̄, α, ϵ) → 0 as (α, ϵ) → (0, 0).

Conversely, let {λn} be a sequence in Λ converging to λ̄ and {xn} be a LP approximating sequence with
respect to {λn}. Then there exists a sequence {ϵn} in (0,∞) with ϵn → 0 as n → ∞ such that

d(xn,K(λn)) ≤ ϵn,

f1(xn, y, λn) ≥ 0, ∀y ∈ K(λn) and f2(xn, z, λn) + εn ≥ 0, ∀z ∈ Z(λn, xn). (2.8)

If we choose αn = d(λn, λ̄), then αn → 0 and xn ∈ Γ(λ̄, αn, ϵn). Since diam Γ(λ̄, αn, ϵn) → 0 as n → ∞, it
follows that {xn} is a Cauchy sequence in X and hence it converges to x̄ ∈ X. For each positive integer n,
K(λn) is compact. Thus, there exists x′n ∈ K(λn) such that

d(xn, x
′
n) ≤ ϵn, for all n ∈ N,

which implies that x′n → x̄. Since K is closed at λ̄, it follows that x̄ ∈ K(λ̄). Suppose on the contrary
x̄ /∈ S(λ̄), that is, there exist ȳ ∈ K(λ̄) and z̄ ∈ Z(λ̄, x̄) such that

f1(x̄, ȳ, λ̄) < 0 or f2(x̄, z̄, λ̄) + ϵ < 0. (2.9)

Since K is lsc at λ̄ and λn → λ̄, it is clear that for any y ∈ K(λ̄) there exists a sequence yn ∈ K(λn) such
that yn → ȳ. Again, since Z is lsc at (λ̄, x̄) and (λn, xn) → (λ̄, x̄) there exists a sequence zn ∈ Z(λn, xn)
such that zn → z̄. Hence, we obtain by assumption (iv), (v) and (2.8) that,

f1(x̄, ȳ, λ̄) ≥ 0 and f2(x̄, z̄, λ̄) ≥ 0.

This yields a contradiction to (2.9). Hence, we conclude that x̄ ∈ S(λ̄).
Finally, we will show that x̄ is the only solution of (LEP). Let x∗ be another point in S(λ̄) (x∗ ̸= x̄). It

is clear that they both belong to Γ(λ̄, α, ϵ) for any α, ϵ > 0. Then, it follows that

0 ≤ d(x̄, x∗) ≤ diam Γ(λ̄, α, ϵ) ↓ 0 as (α, ϵ) ↓ (0, 0).

This is impossible and, therefore, we are done. The proof is completed. □

The following examples show that none of the assumptions in Theorem 2.2 can be dropped.
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Example 2.3. (Lower semicontinuity of K) Let X = Λ = [0, 2] and K and f be defined by

K(λ) =

{
[0, 1] if λ ̸= 0;
[0, 2] if λ = 0,

f(x, y, λ) = (x− y, λ).

One can check that K is closed but not lsc at λ̄ = 0 and

S(λ) = Z1(λ) =

{
{1} if λ ̸= 0;
{2} if λ = 0,

Z(λ, x) = {x}, ∀(λ, x) ∈ gr Z1.

Thus, assumption (iii)-(v) hold true. However, (LEP) is not LP well-posed at λ̄. Indeed, let λn := 1
n and

xn := 1 + 1
2n for all n ∈ N. Then, {xn} is an LP approximating sequence of (LEPλ̄) corresponding to {λn}

with ϵn := 1
n , while xn → 1 /∈ S(0).

Example 2.4. (Closedness of K) Let X = Λ = [−2, 2], K(λ) = (0, 1] (continuous), and a function
f := (f1, f2) : X ×X × Λ → R2 be defined by, for all x, y ∈ X and λ ∈ Λ,

f(x, y, λ) = (x− y

2
,
1

2
− x).

It can be calculated that

Z(λ, x) =


{1} if x = 1

2 ;
∅ if x ∈ (12 , 1];
X otherwise.

Then, we can conclude that

Γ(λ, α, ϵ) =
[1
2
,
1

2
+ min{ε, 3

2
}
]

and
diam Γ(λ, α, ε) → 0 as (α, ε) → (0, 0).

One can check that,

S(λ) =
{1

2

}
.

We observe that (LEP) is not LP well-posed. Indeed, put λn := 1
n , xn := 1 + εn

n for all n ∈ N. Then, {xn}
is an LP approximating sequence of (LEPλ̄) corresponding to {λn} with ϵn := 1

n , while xn → 1 /∈ S(λ).

Example 2.5. (Lower semicontinuity of Z) Let X = Λ = [0, 1], K(λ) = [0, 1] (continuous and closed),
λ̄ = 0 and f(x, y, λ) = (λx(x− y), y − x). One can check that

Z1(λ) =

{
[0, 1] if λ = 0;
{0, 1} if λ ̸= 0.

and, for each (λ, x) ∈ gr Z1,

Z(λ, x) =

{
[0, 1] if λ = 0 or x = 0;
{1} if λ ̸= 0 and x ̸= 0.

Z is not lsc at (0, 1). Indeed, taking λn := 1
2n and xn := 1 + 1

n for all n ∈ N, we have (λn, xn) → (0, 1)
and Z(λn, xn) = {1} for all n, while Z(0, 1) = [0, 1]. Assumption (iv) and (v) are obviously satisfied. By
calculating the solution mapping S explicitly as follows:

S(λ) =

{
{0} if λ = 0;
{0, 1} if λ ̸= 0.

We observe that (LEP) is not LP well-posed at λ̄. Indeed, let λn := 1
2n and xn := 1+ 1

n for all n ∈ N. Then,
{xn} is an approximating sequence of (LEPλ̄) corresponding to {λn} with ϵn := 1

n , while xn → 1 /∈ S(0).
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Example 2.6. (Upper 0-level closedness of f1) Let X = Λ = [0, 1], K(λ) = [0, 1] (continuous and
closed), λ̄ = 0 and

f(x, y, λ) =

{
(x− y, λ) if λ = 0;
(y − x, λ) if λ ̸= 0.

One can check that

S(λ) = Z1(λ) =

{
{1} if λ = 0;
{0} if λ ̸= 0.

Z(λ, x) = {x}, ∀(λ, x) ∈ gr Z1.

Hence, all the assumption except number (iv) hold true. However, (LEP) is not LP well-posed at λ̄. Indeed,
take sequences λn := 1

n+1 and xn := 0 for all n ∈ N. Then, {xn} is an LP approximating sequence of (LEPλ̄)

corresponding to {λn} with ϵn := 1
n , while xn → 0 /∈ S(0).

Finally, we show that assumption 4 is not satisfied. Indeed, take {xn} and {λn} as above and {yn := 1},
we have (xn, yn, λn) → (0, 1, 0) and f1(xn, yn, λn) = 1 > 0 for all n, while f1(0, 1, 0) = −1 < 0.

Example 2.7. (Strongly upper 0-level closedness of f2) Let X,Λ,K be as in Example 2.6 and

f(x, y, λ) =

{
(0, x− y) if λ = 0;
(0, x(x− y)) if λ ̸= 0.

One can check that
Z1(λ) = Z(λ, x) = [0, 1], ∀x, λ ∈ [0, 1],

S(λ) =

{
{1} if λ = 0;
{0, 1} if λ ̸= 0.

Thus, all the assumptions of Theorem 2.2 except (v) are satisfied. However, (LEP) is not LP well-posed
at λ̄. Indeed, take sequences λn := 1

n+1 and xn := 0 for all n ∈ N. Then, {xn} is an LP approximating
sequence of (LEPλ̄) corresponding to {λn}, while xn → 0 /∈ S(0). Finally, we show that assumption (iv)
is not satisfied. Indeed, take sequences xn := 0, yn := 1, λn := 1

n+1 and ϵn := 1
n for all n ∈ N, we have

(xn, yn, λn, ϵn) → (0, 1, 0, 0) and f2(xn, yn, λn) + ϵn > 0 for all n, while f2(0, 1, 0).

Corollary 2.8. If the conditions of the previous theorem hold then (LEP) is LP well-posed if and only if
S(λ̄) ̸= ∅ and

diam Γ(λ̄, α, ϵ) → 0 as (α, ϵ) → (0, 0).

Then (LEP) is LP well-posed if and only if Γ(λ̄, α, ϵ) ̸= ∅, ∀α, ϵ > 0 and diam Γ(λ̄, α, ϵ) → 0 as (α, ϵ) →
(0, 0).

Theorem 2.9. Suppose that the conditions (i)-(iv) in Proposition 2.1 are satisfied. Then (LEP) is LP
well-posed if and only if it has a unique solution.

Proof. By the definition, we know that LP well-posedness for (LEP) implies it has a unique solution. For the
converse, suppose that the problem (LEP) has a unique solution x′. Let {λn} be a sequence in Λ converging
to λ̄ and {xn} an LP approximating sequence with respect to {λn}. Then, there exists a sequence {ϵn} in
(0,∞) with ϵn → 0, as n → ∞, such that

d(xn,K(λn)) ≤ ϵn, for all n ∈ N, (2.10)

and
f1(xn, y, λn) ≥ 0, ∀y ∈ K(λn), f2(xn, z, λn) + ϵn ≥ 0, ∀z ∈ Z(λn, xn). (2.11)

By (2.10) and the closedness of K(λn) in X, for each positive integer n, we can choose x′n ∈ K(λn) such
that

d(xn, x
′
n) ≤ ϵn. (2.12)
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Since X is a compact set, the sequence {x′n} has a subsequence {x′nk
} which converges to a point x̄ ∈ X.

Using (2.12), we conclude that the corresponding subsequence {xnk
} of {xn} converges to x̄. Again as K is

closed at λ̄, it follows that x̄ ∈ K(λ̄). Proceeding along the lines of converse part in the proof of Theorem
2.2, we can show that x̄ ∈ S(λ̄). Consequently, x̄ coincides with x′(x̄ = x′). Again, by the uniqueness of
the solution, it is obvious that every possible subsequence converges to the unique solution x′ and hence the
whole sequence {xn} converges to x′, thus yielding the LP well-posedness of (LEP). □

To weaken the assumption of LP well-posednes in Theorem 2.2, we are going to use the notions of
measures of noncompactness in a metric space X.

Definition 2.10. Let M be a nonempty subset of a metric space X.
(i) The Kuratowski measure of M is

µ(M) = inf
{
ε > 0|M ⊆

n∪
k=1

Mk and diam Mk ≤ ε, k = 1, . . . , n, ∃n ∈ N
}
.

(ii) The Hausdorff measure of M is

η(M) = inf
{
ε > 0|M ⊆

n∪
k=1

B(xk, ε), xk ∈ X, for some n ∈ N
}
.

(iii) The Istrǎtescu measure of M is

ι(M) = inf
{
ε > 0|M have no infinite ε− discrete subset

}
.

Daneš [13] obtained the following inequalities:

η(M) ≤ ι(M) ≤ µ(M) ≤ 2η(M). (2.13)

The measures µ, η and ι share many common properties and we will use γ in the sequel to denote either one
of them. γ is a regular measure (see [5, 38]), i.e., it enjoys the following properties.

Lemma 2.11. Let M be a nonempty subset of a metric space X.

(i) γ(M) = +∞ if and only if the set M is unbounded;

(ii) γ(M) = γ(clM);

(iii) from γ(M) = 0 it follows that M is totally bounded set;

(iv) if X is a complete space and if {An} is a sequence of closed subsets of X such that An+1 ⊆ An

for each n ∈ N and limn→+∞ γ(An) = 0, then K :=
∩

n∈NAn is a nonempty compact set and
limn→+∞H(An,K) = 0, where H is the Hausdorff metric;

(v) from M ⊆ N it follows that γ(M) ≤ γ(N).

In terms of a measure γ ∈ {µ, η, ι} of noncompactness, we have the following result.

Theorem 2.12. Let X and Λ be metric spaces.

(i) If LEP is LP well-posed at λ̄, then γ(Γ(λ̄, α, ε)) ↓ 0 as (α, ε) ↓ (0, 0) .

(ii) Conversely, suppose that S(λ̄) has a unique point and γ(Γ(λ̄, α, ε)) ↓ 0 as (α, ε) ↓ (0, 0), and the
following conditions hold

(a) X is complete and Λ is compact or a finite dimensional normed space;
(b) K is continuous, closed and compact-valued on Λ;
(c) Z is lsc on Λ×X;
(d) f1 is upper 0-level closed on X ×X × Λ;
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(e) f2 is upper b-level closed on X ×X × Λ for every negative b close to zero.

Then LEP is LP well-posed at λ̄.

Proof. By the relationship (2.13) the proof is similar for the three mentioned measures of noncompactness.
We discuss only the case γ = µ, the Kuratowski measure.

(i) Suppose that (LEP) be LP-well posed at λ̄.
Applying Proposition 3.2, we can conclude that S(λ̄) is compact, and hence µ(S(λ̄)) = 0. Let ϵ > 0 and

assume that

S(λ̄) ⊆
n∪

k=1

Mk with diamMk ≤ ϵ for all k = 1, . . . , n.

We set
Nk = {y ∈ X|d(y,Mk) ≤ H(Γ(λ̄, α, ϵ), S(λ̄))}

and want to show that Γ(λ̄, α, ϵ) ⊆
∪n

k=1Nk. For any x ∈ Γ(λ̄, α, ϵ), we have

d(x, S(λ̄)) ≤ H(Γ(λ̄, α, ϵ), S(λ̄)).

Due to S(λ̄) ⊆
∪n

k=1Mk, one has

d(x,

n∪
k=1

Mk) ≤ H(Γ(λ̄, α, ϵ), S(λ̄)).

Then, there exists k̄ ∈ {1, 2, . . . , n} such that

d(x,Mk̄) ≤ H(Γ(λ̄, α, ϵ), S(λ̄)),

i.e., x ∈ Nk̄. Thus, Γ(λ̄, α, ϵ) ⊆
∪n

k=1Nk. Because µ(S(λ̄)) = 0 and

diamNk = diamMk + 2H(Γ(λ̄, α, ϵ), S(λ̄)) ≤ ϵ+ 2H(Γ(λ̄, α, ϵ), S(λ̄)),

it holds
µ(Γ(λ̄, α, ϵ)) ≤ 2H(Γ(λ̄, α, ϵ), S(λ̄)).

Note that H(Γ(λ̄, α, ϵ), S(λ̄)) = H∗(Γ(λ̄, α, ϵ), S(λ̄)) since S(λ̄) ⊆ Γ(λ̄, α, ϵ) for all α, ϵ > 0. Now, we claim
that H(Γ(λ̄, α, ϵ), S(λ̄)) ↓ 0 as α, ϵ ↓ 0 and . Indeed, if otherwise, we can assume that there exist r > 0 and
sequences αn, ϵn ↓ 0, and {xn} with xn ∈ Γ(λ̄, αn, ϵn) such that

d(xn, S(x̄)) ≥ r, ∀n. (2.14)

Since {xn} is an approximating sequence of (LEPλ̄) corresponding to some {λn} with λn ∈ B(λ̄, αn)∩Λ, it
has a subsequence {xnk

} converging to some x ∈ S(λ̄), which gives a contradiction with (2.14). Therefore,
we conclude that µ(Γ(λ̄, α, ϵ)) as ξ ↓ 0 and ε ↓ 0.

(ii) Suppose that µ(Γ(λ̄, α, ϵ)) → 0 as (α, ϵ) → (0, 0) First, we show that Γ(λ̄, α, ϵ) is closed for any
α, ϵ > 0. Let {xn} ⊆ Γ(λ̄, α, ϵ), with xn → x̄. Then for each n ∈ N, there exists λn ∈ B(λ̄, α) ∩ Λ such that

d(xn,K(λn)) ≤ ϵ

and
f1(xn, y, λn) ≥ 0, ∀y ∈ K(λn) and f2(xn, z, λn) + ϵ ≥ 0, ∀z ∈ Z(λn, xn), for all n ∈ N.

By the assumption of Λ, this implies that B(λ̄, α) is compact. We can assume {λn} converges to some
λ ∈ B(λ̄, α)∩Λ. First, we claim that d(x̄,K(λ)) ≤ ϵ. Since K(λn) is compact, there exists x′n ∈ K(λn) such
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that d(xn, x
′
n) ≤ ϵ for all n ∈ N. By the upper continuity and compactness of K, there exists a subsequence

{x′nj
} of {x′n} such that x′nj

→ x′ ∈ K(λ). Consequently,

d(x̄,K(λ)) ≤ d(x̄, x′) = lim
n→∞

d(xn, x
′
n) ≤ ϵ. (2.15)

For each y ∈ K(λ), the lower semicontinuity of K at λ, there exists a sequence {yn} ⊆ K(λn) such that
yn → y. It follows from the upper 0-level closedness of f1 that

f1(x̄, y, λ) ≥ 0;

that is
f1(x̄, y, λ) ≥ 0, ∀y ∈ K(λ). (2.16)

Next, we show that
f2(x̄, z, λ) + ϵ ≥ 0, ∀z ∈ Z(λ, x̄). (2.17)

Suppose to the contrary that there exists z̄ ∈ Z(λ, x̄) such that

f2(x̄, z̄, λ) + ϵ < 0.

Since Z is lower semicontinuous at (λ, x̄), we have for all n, there is zn ∈ Z(λn, xn) such that zn → z̄ as
n → ∞. It follows from the upper (−ϵ)-level closedness f2 at (x̄, z̄, λ) that

f2(xn, zn, λn) < −ϵ

when n is sufficiently large which leads to a contradiction. By (2.15), (2.16) and (2.17), we can conclude
that x̄ ∈ S̃(λ, ϵ), and so x̄ ∈ Γ(λ̄, α, ϵ). Therefore Γ(λ̄, α, ϵ) is closed for any α, ϵ > 0. Now we show that

S(λ̄) =
∩

α,ϵ>0

Γ(λ̄, α, ϵ).

It is clear that, S(λ̄) ⊆
∩

α,ϵ>0 Γ(λ̄, α, ϵ). Next, we first check that, for each ε > 0,∩
α>0

Γ(λ̄, α, ϵ) ⊆ S̃(λ̄, ϵ).

For any x ∈
∩

α>0 Γ(λ̄, α, ϵ). Then for each {αn} ↓ 0, there exists a sequence {λn} with λn ∈ B(λ̄, αn) ∩ Λ

such that x ∈ S̃(λn, ϵ) for all n ∈ N, which gives that

d(x,K(λn)) ≤ ϵ,

f1(x, y, λn) ≥ 0, ∀y ∈ K(λn), and f2(x, z, λn) + ϵ ≥ 0, ∀z ∈ Z(λn, x).

Since K(λn) is compact , we can choose xn ∈ K(λn) such that

d(x, xn) ≤ ϵ, ∀n ∈ N.

By the upper continuity and compactness of K, there exists a subsequence {xnj} of {xn} such that xnj →
x′ ∈ K(λ), which arrives that

d(x,K(λ̄)) ≤ d(x, x′) = lim
n→∞

d(x, xn) ≤ ϵ. (2.18)

By assumptions on K and f1 again, we have x ∈ Z1(λ̄); that is

f1(x, y, λ̄) ≥ 0. (2.19)
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Next, for each z ∈ Z(λ̄, x), there exists zn ∈ Z(λn, x) such that zn → z since Z is lsc at (λ̄, x). As
x ∈ S̃(λn, ϵ), it holds

f2(x, zn, λn) + ϵ ≥ 0, ∀n ∈ N.

Since f2 is upper -ϵ-level closed at (x, z, λ̄), we have

f2(x, z, λ̄) + ϵ ≥ 0. (2.20)

From (2.18)-(2.20), we get that x ∈ S̃(λ̄, ϵ). We obtain that
∩

α>0 Γ(λ̄, α, ϵ) ⊆ S̃(λ̄, ϵ) for every ε > 0.
Consequently, ∩

α,ϵ>0

Γ(λ̄, α, ϵ) ⊆
∩
ϵ>0

S̃(λ̄, ϵ) = S(λ̄).

Therefore, we obtain that S(λ̄) =
∩

α,ϵ>0 Γ(λ̄, α, ϵ). Further, since µ(Γ(λ̄, α, ϵ)) → 0 as (α, ϵ) → (0, 0).

Applying Lemma 2.11 (iv), we get that S(λ̄) is compact and H(Γ(λ̄, α, ϵ), S(λ̄)) −→ 0 as (α, ϵ) → (0, 0).
Finally, we prove that LEP is LP well-posedness. Indeed, let {xn} be an LP-approximating sequence

of (LEPλ̄) corresponding to some λn −→ λ̄. Then there exists a sequence {ϵn} in (0,∞) with ϵn → 0 as
n → ∞ such that

d(xn,K(λn)) ≤ ϵn,

f1(xn, y, λn) ≥ 0, ∀y ∈ K(λn) and f2(xn, z, λn) + εn ≥ 0, ∀z ∈ Z(λn, xn). (2.21)

If we choose αn = d(λn, λ̄), then αn → 0 and xn ∈ Γ(λ̄, αn, ϵn). We see that

d(xn, S(λ̄)) ≤ H(Γ(λ̄, αn, ϵn), S(λ̄)) −→ 0 as n → ∞.

Hence, there exist a sequence {x̄n} in S(λ̄) such that d(xn, x̄n) → 0 as n → ∞. By the compactness of S(λ̄),
there is a subsequence {x̄nj} of {x̄n} converging to a point x̄ in S(λ̄). Consequently, the corresponding
subsequence {xnj} of {xn} converses to x̄. Hence, LEP is LP well-posedness. The proof is completed.

3. LP well-posedness in the generalized sense

In many practical situations, the problem (LEP) may not always possess a unique solution. Hence, in
this section, we introduce a generalization of LP well-posedness for (LEP).

Definition 3.1. The problem (LEP) is said to be LP well-posed in the generalized sense at λ̄ if

(i) the solution set S(λ̄) is nonempty;

(ii) for any sequence {λn} converging to λ̄, every LP approximating sequence {xn} with respect to {λn}
has a subsequence converging to some point of S(λ̄).

Proposition 3.2. If (LEP) is LP well-posed in the generalized sense at λ̄, then its solution set S(λ̄) is a
nonempty compact set.

Proof. Let {xn} be any sequence in S(λ̄). Then, of course, it is an LP approximating sequence with respect
to sequences λn := λ̄ and ϵn := 1

n , for every n ∈ N. The generalized LP well-posedness of (LEP) ensures
the existence of a subsequence {xnk

} of {xn} converging to a point of in S(λ̄). Therefore, we conclude that
S(λ̄) is a nonempty compact set. The proof is completed. □

Next, we present a metric characterization for the generalized LP well-posedness of (LEP) in terms of
the upper semicontinuity of the approximate solution set.

Theorem 3.3. (LEP) is LP well-posed in the generalized sense if and only if S(λ̄) is a nonempty, compact
set and Γ(λ̄, ·, ·) is usc at (α, ϵ) := (0, 0).
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Proof. Suppose that (LEP) is LP well-posed in the generalized sense. Therefore, S(λ̄) ̸= ∅ and further on
using Proposition 3.2, we have S(λ̄) is compact. Next, we assume, on the contrary, that Γ(λ̄, α, ϵ) is not usc
at (0, 0). Consequently, there exist an open set U containing Γ(λ̄, 0, 0) = S(λ̄) and positive sequences {αn}
and {ϵn} satisfying αn → 0 and ϵn → 0 such that

Γ(λ̄, αn, ϵn) ⊊ U, for all n ∈ N.

Thus, there exists a sequence {xn} in Γ(λ̄, αn, ϵn)\S(λ̄). Therefore, of course, {xn} is an LP approximating
sequence for (LEP), such that none of its subsequence converges to a point of S(λ̄), which is a contradiction.

Conversely, let {λn} be a sequence in Λ converging to λ̄ and {xn} be an LP approximating sequence
with respect to {λn}. If we choose a sequence αn = d(λn, λ̄) then αn → 0 and xn ∈ Γ(λ̄, αn, ϵn). As
Γ(λ̄, α, ϵ) is usc at (α, ϵ) = (0, 0) and S(λ̄) ̸= ∅, it follows that for every δ > 0,Γ(λ̄, δn, ϵn) ⊂ S(λ̄) + B(0, δ)
for n sufficiently large. Thus xn ∈ S(λ̄) +B(0, δ), for n sufficiently large and hence there exists a sequence
x̄n ∈ S(λ̄), such that

d(xn, x̄n) ≤ δ. (3.1)

Since S(λ̄) is compact, there exists a subsequence {x̄nk
} of {x̄n} converging to x̄ ∈ S(λ̄). Using (3.1), we

conclude that the corresponding subsequence {xnk
} of {xn} converges to x̄ ∈ S(λ̄). □

The following result illustrates the fact that LP well-posedness in the generalized sense of LEP ensures
the stability, in terms of the upper semi-continuity of the solution set S.

Theorem 3.4. If (LEP) is LP well-posed in the generalized sense, then the solution mapping S is usc at λ̄.

Proof. Suppose on the contrary, S is not usc at λ̄. Then there exists an open set U containning S(λ̄) such
that for every sequence λn → λ̄, there exists xn ∈ S(λn) such that xn /∈ U , for every n. Since λn → λ̄, {xn}
is an LP approximating sequence for (LEP) and none of its subsequnces converge to a point of S(λ̄), hence
we have a contradiction to the fact that (LEP) is LP well-posed in the generalized sence. □
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[5] J. Banas, K Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Math-

ematics, vol 60 Marcel Dekker, New York-Basel (1980) 2
[6] M. Bianchi, I.V. Konnov, R. Pini, Lexicographic variational inequalities with applications, Optimization 56

(2007), 355-367. 1
[7] M. Bianchi, I.V. Konnov, R. Pini, Lexicographic and sequential equilibrium problems, J. Global Optim 46 (2010),

551-560. 1
[8] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student

63 (1994), 123-145. 1
[9] E. Carlson, Generalized extensive measurement for lexicographic orders, J. Math. Psych. 54 (2010), 345-351. 1

[10] L.C. Ceng, N. Hadjisavvas, S. Schaible, J.C. Yao, Well-posedness for mixed quasivariational-like inequalities J.
Optim. Theory Appl 139 (2008), 109-225. 1



W. Rabian, B. Thanatporn, J. Nonlinear Sci. Appl. 6 (2016), ........ 165

[11] J.W. Chen, Z. Wan, Y.J. Cho, Levitin-Polyak well-posedness by perturbations for systems of set-valued vector
quasi-equilibrium problems, Math Meth Oper Res 77 (2013), 33-64. 1

[12] G.P. Crespi, A. Guerraggio, M. Rocca, Well-posedness in vector optimization problems and vector variational
inequalities, J. Optim. Theory Appl 132 (2007), 213-226. 1
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