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Abstract

Let M and N be smooth manifolds. For an open V � M let emb(V;N)
be the space of embeddings from V to N . By the results of Goodwillie [4],
[5], [6] and Goodwillie{Klein [7], the cofunctor V 7! emb(V;N) is analytic if
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0 Introduction

This is a continuation of [15]. The ideas in this second part are mostly due
to Goodwillie; notes and illustrations mostly by Weiss. For introductions and
notation generally speaking, see [14] and [15]. We �x smooth manifolds Mm

and Nn , without boundary unless otherwise stated, and we assume m � n. As
in [15] we write O for the poset of open subsets of M . Then V 7! emb(V;N)
is a cofunctor from O to Spaces (= �brant simplicial sets), and from [14] and
[15] we have a fairly thorough understanding of its Taylor approximations, the
cofunctors V 7! Tk emb(V;N). Here we show that the Taylor approximations
are good approximations. The main result is Corollary 2.5. Sections 4 and 5
contain illustrations.

Following are some conventions.

Let R be a set with r elements. A functor X from the poset PR of subsets
of R to Spaces is an r{dimensional cube of Spaces [3, section 1]. The cube is
k{Cartesian if the canonical map

X (;) −! holim
fSj;6=S�Rg

X (S)

is k{connected. A Cartesian cube is one which is k{Cartesian for all k . Since
PR as a category is isomorphic to its own opposite, we can use similar termi-
nology for cofunctors from PR to Spaces. Such a cofunctor will also be called
a cube. It is k{Cartesian if the canonical map

X (R) −! holim
fSjS�R;S 6=Rg

X (S)

is k{connected, and Cartesian if it is k{Cartesian for all k .

Let Rn+2
x := [0;1)�[0;1)�Rn . An (n+2){dimensional smooth manifold triad

is a paracompact Hausdor� space Q together with a maximal atlas consisting
of open subsets Vi � Q and open embeddings �i: Vi ! Rn+2

x satisfying the
following conditions:

� The union of the Vi is Q.

� The changes of charts �i(�j)−1 are smooth where de�ned, and take points
in Rn+2

x with vanishing �rst coordinate (vanishing second coordinate) to
points with vanishing �rst coordinate (vanishing second coordinate).

Let @0Q be the set of those x 2 Q which under some chart �i map to a point in
Rn+2
x with vanishing �rst coordinate. Also, let @1Q be the set of those x 2 Q

which under some chart �i map to a point in Rn+2
x with vanishing second

coordinate. Then Q is an (n + 2){dimensional smooth manifold with corners;
its boundary is @0Q [ @1Q and its corner set is @0Q \ @1Q.
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The handle index of the manifold triad Q is the smallest integer a such that
Q can be built from a collar on @0Q by attaching handles of index � a. (It
may happen that Q is a collar on @0Q. When that is the case we say that the
handle index is −1.)

Example Suppose that P is smooth, with boundary, and let f : P ! R be
smooth. If 0 is a regular value both for f and for f j@P , then the inverse image
of [0;1) under f is a manifold triad Q, with @0Q = @P \ Q. (If @P = ;,
then of course @0Q = ;.) Any Q � P which can be obtained in this way will
be called a codimension zero subobject of P .

1 Excision Estimates

Let Y be a smooth n{manifold with boundary. Let Q0; Q1; : : : ; Qr be smooth
compact n{manifold triads with handle index qi where n − qi � 3. Suppose
that smooth embeddings ei: @0Qi ! @Y have been selected for 0 � i � r ,
and that their images are pairwise disjoint. For S � [r] = f0; : : : ; rg let QS
be the disjoint union of the Qi with i 2 S . By emb(QS ; Y ) we mean the
Space of smooth embeddings f : QS ! Y which satisfy f j @0Qi = ei and
f−1(@Y ) = @0QS .

1.1 Theorem ([4], [5], [6], [7]) The (r + 1){cube taking a subset S of [r] to
emb(QS ; Y ) is (3− n+ �ri=0(n−qi−2)){Cartesian, provided r � 1.

Comment Assuming that emb(Q[r]; Y ) is nonempty, �x a base point f in
emb(Q[r]; Y ). Let the image of f in emb(QS ; Y ) serve as base point for
emb(QS ; Y ). Goodwillie shows in [6] that the cube S 7! Ω emb(QS ; Y ) is
(2− n+ �ri=0(n−qi−2)){Cartesian, provided r � 1. The delooped statement,
Theorem 1.1 just above, has been proved by Goodwillie and Klein and will
appear in [7].

We will need a slight generalization of 1.1 where the Qi are allowed to have
dimension m � n. For this and other purposes we need a lemma.

1.2 Lemma Let u: X ! Y be a map of (r + 1){cubes. That is, X and
Y are functors from the poset of subsets of [r] to Spaces, and u is a natural
transformation. Suppose that Y is k{Cartesian and, for every y 2 Y(;), the
(r + 1){cube de�ned by

S 7! ho�ber[X (S) u−! Y(S)]

is k{Cartesian. (The homotopy �ber is taken over the image of y in Y(S).)
Then X is k{Cartesian.
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Proof of 1.2 Combine [3, 1.18] with [3, 1.6].

Now let Y and Qi be as in 1.1, assuming however dim(Qi) = m � n. As
before, embeddings ei: @0Qi ! @Y are speci�ed and n − qi � 3, where qi is
the handle index of Qi . We want to show that the conclusion of 1.1 still holds.
Without loss of generality, Y is a smooth submanifold of some Rt . Then we
can de�ne maps

emb(QS ; Y ) −! map(QS ; Gn−m) ; f 7! �f

where Gn−m is the direct limit of the Grassmannians of (n−m){dimensional
linear subspaces of Ru , for u � 0, and where �f takes x 2 QS to the intersection
of the tangent space of Y at f(x) with the normal space of f(QS) at f(x).
In other words, �f classi�es the normal bundle of the embedding f . We have
therefore a map of (r + 1){cubes:

(�) fS 7! emb(QS ; Y ) g −! fS 7! map(QS ; Gn−m) g :

Since the codomain cube in (�) is Cartesian, the contravariant analog of 1.2
tells us that the domain cube is k{Cartesian provided that, for every � in
map(Q[r]; Gn−m), the cube of homotopy �bers

(��) S 7! ho�ber� [ emb(QS ; Y )g −! map(QS ; Gn−m) ]

is k{Cartesian. Now it is easy to construct a homotopy equivalence from the
homotopy �ber of emb(QS ; Y ) ! map(QS; Gn−m) to emb(Q0S ; Y ) where Q0S
is the total space of the disk bundle on QS determined by � . This construction
is natural in S , so (��) is k{Cartesian if the cube S 7! emb(Q0S ; Y ) is k{
Cartesian, which by 1.1 is the case if k = (3− n+ �ri=0(n−qi−2)). Therefore:

1.3 Observation Theorem 1.1 generalizes to the situation where the Qi have
dimension m � n.

The corollary below is a technical statement about the cofunctor on O given
by V 7! emb(V;N). Suppose that P is a smooth compact codimension zero
subobject of M , and that Q0; : : : ; Qr are pairwise disjoint compact codimension
zero subobjects of M r int(P ). For S � f0; : : : ; rg = [r] let VS be the interior
of P [QS where QS is the union of the Qi for i 2 S . We write V instead of
V; . Suppose that Qi has handle index qi � n− 3.

1.4 Corollary Assume r � 1. The (r + 1){cube taking a subset S of [r] to
emb(VS ;N) is (3− n+ �ri=0(n−qi−2)){Cartesian.
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Proof Let �VS be the closure of VS in M . Let emb( �VS ;N) be the inverse
limit of the Spaces (simplicial sets) emb(U;N) where U ranges over the neigh-
borhoods of VS in M . The restriction from emb( �VS ;N) to emb(VS ;N) is a
homotopy equivalence. Using this fact and 1.2, we see that it is enough to show
that for every embedding f : �V ! N , the (r + 1){cube

S 7! ho�ber [ emb( �VS ;N) res−−! emb( �V ;N) ]

is (3 − n + �ri=0(n−qi−2)){Cartesian. The homotopy �bers are to be taken
over the point f in emb( �V ;N), which we �x for the rest of this proof. By the
isotopy extension theorem, the restriction maps from emb( �VS ;N) to emb( �V ;N)
are Kan �brations. Therefore it is enough to show that

S 7! �ber [ emb( �VS ;N) res−−! emb( �V ;N) ]

is a (3−n+�ri=0(n−qi−2)){Cartesian (r+1){cube. Let D( �V ) be the total space
of a normal disk bundle for �V in N , with corners rounded o�, so that D( �V ) is a
smooth codimension zero subobject of N . Let Y be the closure of NrD( �V ) in
N . Let X (S) � emb(QS ; Y ) be the Space of embeddings g: QS ! Y for which
the map f [ g from �VS = �V [QS to N is smooth. (Here all embeddings from
QS to Y are prescribed on @0QS , as in 1.1 and 1.3.) The inclusions of X (S) in
emb(QS ; Y ) and the �ber of the restriction map emb( �VS ;N) −! emb( �V ;N) are
homotopy equivalences. Therefore it is enough to know that S 7! emb(QS ; Y )
is (3− n+ �ri=0(n−qi−2)){Cartesian, which we know from 1.3.

2 Convergence

We begin with an abstraction. Suppose that G is a good cofunctor from O
to Spaces [14, 2.2]. Fix an integer � > 0. Let P be a smooth compact codi-
mension zero subobject of M , and let Q0; : : : ; Qr be pairwise disjoint compact
codimension zero subobjects of M r int(P ). Suppose that Qi has handle index
qi < �. Let VS = int(P [QS) as in 1.4. Assume also r � 1.

2.1 De�nition The cofunctor G is �{analytic with excess c if, in these cir-
cumstances, the (r + 1){cube S 7! G(VS) is (c+ �ri=0(�− qi)){Cartesian.

2.2 Example According to 1.4, the cofunctor V 7! emb(V;N) is (n − 2){
analytic, with excess 3− n.

2.3 Theorem Suppose that G is �{analytic with excess c, and that W 2 O
has a proper Morse function whose critical points are all of index � q , where
q < �. Then �k−1: G(W ) ! Tk−1G(W ) is (c + k(� − q)){connected, for any
k > 1.
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Proof With a homotopy inverse limit argument we can reduce to the case
where W is tame (ie, is the interior of a compact codimension zero subobject
of M ) and �W has a smooth handle decomposition with handles of index � q
only.

Case 1 : q = 0 Then W is the union of disjoint open m{balls Wi with
1 � i � ‘ for some ‘. For S � f1; : : : ; ‘g we write WS = [i2SWi . If ‘ < k
then �k−1 from G(W ) to Tk−1G(W ) is a homotopy equivalence by de�nition
of Tk−1G. Assume therefore ‘ � k . The diagram

T‘G(W ) r‘−! T‘−1G(W )
r‘−1−−−! � � � rk−! Tk−1G(W )

can be identi�ed up to homotopy equivalences with

J‘ −! J‘−1 −! � � � −! Jk −! Jk−1

where Jt is the homotopy inverse limit of the G(WS) with S � f1; : : : ; ‘g
and jSj � t. (See also the last lines of the proof of [15, 9.1].) The �bration
Jt −! Jt−1 is obtained by pullback from another �bration, namely the product
over all S � f1; : : : ; ‘g with jSj = t of the �bration

pS: holim
fRjR�Sg

G(WR) −! holim
fRjR�S;R 6=Sg

G(WR) :

All this is true without any special assumptions on G except goodness. But
now we use the analyticity hypothesis and �nd that pS is (c + t�){connected
where t = jSj. Therefore the composition

rkrk+1 : : : r‘: T‘G(W )! Tk−1G(W )

is (c+k�){connected. We can identify it with �k−1: G(W )! Tk−1G(W ) since
�‘ from G(W ) to T‘G(W ) is a homotopy equivalence.

Case 2 : q > 0 We induct on q . For every q{handle Qu in the handle
decomposition of �W choose a smooth chart �u: Qu �= Dq �Dm−q and distinct
points xu;i in the interior of Dq for 1 � i � k . Let Au;i � W be the inverse
image of fxu;ig� int(Dm−q) under �u . Each Au;i is a closed smooth codimen-
sion q submanifold of W , meeting the core of handle Qu transversely in one
point. For S � f1; : : : ; kg let AS be the union of all Au;i with i 2 S and u
arbitrary. Our analyticity assumption on G implies that the cube de�ned by
S 7! G(W rAS) is (c+k(�−q)){Cartesian. The cube S 7! Tk−1G(W rAS) is
Cartesian (=1{Cartesian). For each nonempty S , the manifold WrAS has an
isotopy equivalent tame codimension zero submanifold with a handle decompo-
sition where all handles have indices < q . Therefore by inductive assumption,
the map �k−1: G(W rAS)! Tk−1G(W rAS) is (c+ k(�− q+ 1)){connected,
provided S 6= ;. It follows with [3, 1.22] that �k−1 induces a map

holimG(W rAS) −! holim Tk−1G(W rAS)

Thomas G Goodwillie and Michael Weiss 

Geometry and Topology, Volume 3 (1999)

108



which is (c + k(� − q + 1) − k + 1){connected (both homotopy inverse limits
are over nonempty S � f1; : : : ; kg). Combining this with our \Cartesian{
ness" estimates for the cubes S 7! G(W r AS) and S 7! Tk−1G(W r AS),
where S again denotes an arbitrary subset of f1; : : : ; kg, we can conclude that
G(W )! Tk−1G(W ) is indeed (c+ k(�− q)){connected.

2.4 Corollary Suppose that G is �{analytic. If � > m, then the canonical
map G(W ) −! holimk TkG(W ) is a homotopy equivalence for every W in O .
In general, the map G(W )! holimk TkG(W ) is a homotopy equivalence if W
has a proper Morse function whose critical points are all of index < �.

2.5 Corollary Let G(W ) = emb(W;Nn) for open W � Mm . If m is less
than n − 2, then G(W ) ’ holimk TkG(W ) for all W . If m = n − 2, then
G(W ) ’ holimk TkG(W ) provided W has no compact component. In general:
suppose that W has a proper Morse function whose critical points are all of
index � q , where q < n−2. Then �k: G(W )! TkG(W ) is (k(n−2−q)−q+1){
connected for k � 1. Consequently G(W ) ’ holimk TkG(W ).

Proof This follows from 2.4, 2.3 and 2.2 with � = n− 2 and c = 3− n.

2.6 Corollary Let f : G1 ! G2 be a natural transformation between good
cofunctors on O . Suppose that G1 and G2 are both �{analytic and f from
G1(W ) to G2(W ) is a homotopy equivalence whenever W is a tubular neigh-
borhood of a �nite set (W 2 Oj for some j ). Then f : G1(W ) ! G2(W ) is
a homotopy equivalence for any W which has a proper Morse function with
critical points of index < � only.

Proof The hypothesis on f implies that Tkf : TkG1 ! TkG2 is an equivalence.

3 Taylor Approximations of Analytic Cofunctors

As in the preceding section, G is a good cofunctor from O to Spaces.

3.1 Proposition Suppose that G is homogeneous of degree k where k � 0.
If G(V ) is (c − 1 + k�){connected for every V in Ok , and � � m, then G is
�{analytic with excess c.
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Remark If V in Ok has < k components, then G(V ) is contractible and
therefore automatically (c − 1 + k�){connected. The values G(V ) for V in
Ok with exactly k components can be regarded as the �bers of the classifying
(quasi){�bration for G. See [15, section 8] for the classi�cation of homogeneous
cofunctors on O .

Proof The case k = 0 is trivial, so we assume k � 1. Choose r and VS for
S � [r] as in 2.1. Again write V = V; . We must show that the cube S 7! G(VS)
is a (c+ �ri=0(�− qi)){Cartesian (r+ 1){cube. The case r � k is again trivial,
so we assume that r < k and proceed by downward induction on r . Also the
cases where qi = −1 for some i are trivial, so we assume qi � 0 for all i.

Case 1 : qi = 0;8i We do an induction on the number of handles in a handle
decomposition of �V . If �V is empty and r < k − 1 then G(VS) is contractible
for all S , so there is nothing to prove. If �V is empty and r = k−1, then G(VS)
is contractible except possibly when S = [r], in which case it is (c − 1 + k�){
connected; then the cube S 7! G(VS) is (c + k�){Cartesian, which means,
(c+ �(�− qi)){Cartesian.

For nonempty (but still tame) �V , choose a handle decomposition. If �B is
the cocore of a handle of index p in �V , and B := �B \ V �= Rm−p , then the
(r + 2){cube

fG(VS) j S � [r]g −! fG(VS rB) j S � [r]g
is (c + (� − p) + (r + 1)�)-Cartesian by the downward induction on r . The
(r + 1){subcube fG(VS r B) j S � [r]g is (c + (r + 1)�){Cartesian by the
upward induction on the number of handles of �V . Noting that � � m � p and
using [3, 1.6] we conclude that the cube fG(VS) j S � [r]g is also (c+(r+1)�){
Cartesian.

Case 2 : q0 > 0 Let �A and �B be two parallel but disjoint cocores for the
handle Q0 � �V[r] and let �C be a strip between �A and �B . Let A = �A \ V ,
B = �B \ V , C = �C \ V so that the triad (C;A;B) is homeomorphic to the
triad ([0; 1] � Rm−q0 ; f0g � Rm−q0 ; f1g � Rm−q0). Consider the diagram of
r{cubes

fG(VS r C)g f −−−− fG(VS r (A [B))g g −−−− fG(VS rB)gx?? x??
fG(VS rA)g h −−−− fG(VS)g

where now S runs through subsets of [r] containing the element 0. (Each arrow
in the diagram is a natural transformation of r{cubes, induced by appropriate
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inclusions.) We have to show that the arrow h (which is a map of r{cubes) is a
(c+ �(�− qi)){Cartesian (r+ 1){cube. It is enough [3, 1.6] to show that g is a
(c+ �(�− qi)){Cartesian (r+ 1){cube and the square with horizontal arrows g
and h is a (c+ �(�− qi)){Cartesian (r+ 2){cube. But the composition fg is a
Cartesian cube, because for each S containing 0 the inclusion VSrC ! VSrB
is an isotopy equivalence. And f is a (c+1+�(�−qi)){Cartesian (r+1){cube by
induction on q0 (see comments below if this raises doubts). Using [3, 1.8] now,
we see that g is indeed a (c+ �(�− qi)){Cartesian (r+ 1){cube. What about
the square? By the downward induction on r it is a (c+ (�− q0) + �(�− qi)){
Cartesian (r + 2){cube. This is good enough since � � m � q0 .

Comment Let �U be the complement of a nice tubular neighborhood of �A[ �B
in �V[r] , and U = int( �U ) so that U is tame. Then �U can be obtained from
�V by attaching r + 1 handles whose indices are q0 − 1; q1; : : : ; qr . In fact the
intersection of �U with �C is the cocore of the �rst handle in the list, with index
q0 − 1.

The (r+1){cube determined as in 2.1 by the handle decomposition of �U relative
to �V can be identi�ed with the cube f above. More precisely, the two cubes
are \identi�ed" by a natural transformation from one to the other which is a
termwise homotopy equivalence.

3.2 Corollary If G is �{analytic with excess c, then so is TkG.

Proof We proceed by induction on k . Fix V and VS for S � [r] as in 2.1, with
r � 0. We must prove that the (r+1){cube S 7! TkG(VS) is (c+�ri=0(�−qi)){
Cartesian. For k = 0 this is correct.

Suppose k � 1 and let z 2 Tk−1G(V[r]). For open U � V[r] let LzkG(U) be
the homotopy �ber of the forgetful map TkG(U) ! Tk−1G(U) over the point
obtained from z by restriction. The cofunctor U 7! LzkG(U) on open subsets
U � V[r] is homogeneous of degree k . If U � V[r] is a disjoint union of open
m{balls, then LzkG(U) is homotopy equivalent to the total homotopy �ber of
the cube Y 7! G(UY ) where Y runs over subsets of �0(U); see [15, 9.1]. By
the assumption on G, this implies that LzkG(U) is (c+ k�− 1){connected. We
are now in a position to use 3.1, and conclude that LzkG is �{analytic with
excess c, just like G. Now the induction step is easy: we can make a �bration
sequence up to homotopy of (r + 1){cubes

fLzkG(VS)g −! fTkG(VS)g −! fTk−1G(VS)g :
By induction, the right{hand cube is (c + �(� − qi)){Cartesian; the left-hand
one also is, for arbitrary z , because we just proved it; and therefore the one in
the middle is (c+ �(�− qi)){Cartesian, by lemma 1.3.
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3.3 Corollary Let G be �{analytic with excess c. Suppose that V 2 O has
a proper Morse function with critical points of index � q only, where q < �.
Then rk from TkG(V ) to Tk−1G(V ) is (c+ k(�− q)){connected, for k � 0.

Remark Note that 3.3 is suggested but not implied by 2.3, since �k−1 = rk�k .
Also 3.3 does not imply 2.3 since it only depends on the behavior of G on

S
Ok .

Proof of 3.3 We identify rk: TkG ! Tk−1G with �k−1: TkG 7! Tk−1(TkG)
(using [15, 6.1]). Now 2.3 can be applied, with TkG in place of G, because TkG
is �{analytic with excess c according to 3.2.

4 Haefliger’s Theory

Here we explain how the calculus of embeddings contains the Haefliger theory
of smooth embeddings in the metastable range (which Haefliger unfortunately
calls the stable range). First we recall Haefliger’s theory. With M and N as
before, we can make a commutative diagram

(�)

emb(M;N) �−−−−! map(M;N)??y ??yf 7!f�f
ivmapZ=2(M�M;N�N) �−−−−! mapZ=2(M�M;N�N)

where all mapping Spaces in sight consist of smooth maps. Speci�cally, the
expression ivmapZ=2(: : : ) stands for a Space of strictly isovariant smooth maps,
ie, equivariant smooth maps g with the properties

g−1(�N ) = �M

(Txg)−1(Tg(x)�N ) =Tx�M for any x 2 �M :

(The second of these properties can be reformulated as follows: the vector
bundle morphism induced by g , from the normal bundle of �M in M�M to
the normal bundle of �N in N�N , is a �berwise monomorphism.)

4.1 Theorem [8] If 2n > 3(m + 1) and n � 3, square (�) is 1{Cartesian.

Remark In Haefliger’s set{up, the space corresponding to ivmapZ=2(: : : ) con-
sists of the (smooth or continuous) equivariant maps g: M�M ! N�N for
which g−1(�N ) = �M . The extra condition on in�nitesimal behavior that we
have added does a�ect the homotopy type. However, the comparison map is
1{connected (proved in [8] and especially [9]), so that 4.1 is correct with either
de�nition.

Thomas G Goodwillie and Michael Weiss 

Geometry and Topology, Volume 3 (1999)

112



4.2 Lemma If m � n, the cofunctor E taking V 2 O to the homotopy
pullback of

ivmapZ=2(V �V;N�N) �−! mapZ=2(V �V;N�N) − map(V;N)

is polynomial of degree � 2.

Proof By [15, 2.5] it su�ces to verify that each of the three terms from which
the homotopy pullback is made is polynomial of degree � 2, as a cofunctor in
V . Clearly V 7! map(V;N) is polynomial of degree � 1. The remaining two
terms can be handled as in [15, 2.4]. We omit the details.

4.3 Corollary Let F (V ) = emb(V;N). The canonical morphism F ! E is a
second order Taylor approximation (induces an equivalence T2F ! T2E ).

Proof By [15, 5.1] and 4.2 above it su�ces to verify that F (V )! E(V ) is a
homotopy equivalence whenever V is di�eomorphic to a disjoint union of � 2
copies of Rm . But this is rather obvious.

We see that Haefliger’s theorem, 4.1, can also be deduced from 4.3 and 2.5. In
fact, 2.5 tells us that F (M)! E(M) ’ T2F (M) is s{connected with

s = 2(n − 2−m)−m+ 1 = 2n − 3(m + 1) :

Again, this is not a new result. It is a reformulation of the main result of Dax’s
thesis [2].

5 An Application

The convergence statements 2.5 and 4.4 can be generalized mildly so that certain
cases \with boundary" are included. What we have in mind is example 10.1 of
[15]. Suppose therefore that Mm and Nn are smooth manifolds with boundary,
m � n, and that a smooth embedding g: @M ! @N has been selected. Let O
be the poset of open subsets of M containing @M . For V 2 O let emb(V;N)
be the Space of (neat and smooth) embeddings V ! N which agree with g
near V \ @M . The cofunctor V 7! emb(V;N) on O is good. A calculus of
good cofunctors from O to Spaces is outlined in section 10 of [15].

5.1 Fact Let F (V ) = emb(V;N) for V 2 O . If m < n − 2, then F (V ) ’
holimk TkF (V ) for all V . In general, F (V ) ’ holimk TkF (V ) provided V has a
handle decomposition relative to a collar on @V , with possibly in�nitely many
handles, all of index � q , where q < n − 2. In this case �k: F (V ) ! TkF (V )
is (k(n − 2− q)− q + 1){connected.
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The proof is essentially identical with that of 2.5. We omit it and turn to some
examples. Suppose that M is the unit interval I , and suppose for simplicity
that it comes with a preferred smooth and neat embedding I ! N (which we
treat as an inclusion). Conditions on Nn will be added later; for now, the only
condition is n � 4. Then V 7! emb(V;N) is a functor from O to based Spaces.
Notation: �X = X r @X for a manifold with boundary X .

De�ne F (V ) as in 5.1, for open V � I containing the boundary. Our �rst
and most important task is to understand the classifying �bration pk for LkF ,
assuming k � 2. Its base space is�

�I

k

�
�= Rk :

Its �ber over some S (subset of �I with k elements) is the total homotopy �ber
of the k{cube of pointed spaces

(�) R 7! emb(R; �N) (R � S) :

Let x 2 S be the minimal element. In 5.2 and 5.3 below, x 2 S � I � N serves
as base point of �N .

5.2 Lemma The total homotopy �ber of the k{cube (�) is homotopy equiv-
alent to the total homotopy �ber of the (k − 1){cube of pointed spaces

R 7! �N rR (R � S; x =2 R) :

Proof The idea is to use a Fubini principle: The total homotopy �ber of the
k{cube (�) is homotopy equivalent to the total homotopy �ber of the (k − 1){
cube

R 7! ho�ber[emb(R [ x; �N)! emb(R; �N)] (R � S; x =2 R) :

The restriction map emb(R [ x; �N) ! emb(R; �N) is a �bration, so that its
homotopy �ber can be replaced by its �ber (over the base point), which is
�N rR . Note that R � S � �I � �N .

5.3 Corollary The total homotopy �ber of the cube (�) is homotopy equiva-
lent to the total homotopy �ber of a cube of the form

R 7! �N _ (R+ ^ Sn−1) (R � S r x) :

Remark The cube in 5.3 is contravariant like (�), ie, the maps in it are
collapsing maps, not inclusion maps. The base point of �N is still x.
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Proof Choose a smooth embedding e: �N ! �N , isotopic to the identity, such
that e(�N) and S r x are disjoint and e(x) = x. For each y 2 S r x choose a
smooth embedding fy: Dn ! �N which maps the base point (1; 0; : : : ; 0) to x
and the center (0; : : : ; 0) to y , and avoids all other points of S . Then for each
R � S r x, the map

�N _ (R+ ^ Sn−1) _ ((S rRr x)+ ^ Dn) −! �N rR

which is e on �N and fy on fyg+ ^Sn−1 and on fyg+ ^Dn (where applicable)
is a homotopy equivalence. It is also contravariantly natural in the variable R .
Further, for each R � S r x, the collapse map

�N _ (R+ ^ Sn−1) _ ((S rRr x)+ ^ Dn) −! �N _ (R+ ^ Sn−1)

is a homotopy equivalence, again contravariantly natural in the variable R . We
have now reduced 5.3 to 5.2.

In certain cases the Hilton{Milnor theorem [11] can be used to simplify 5.3
further. See [16] for the meaning of basic words, which we use in 5.4 below.
For a basic word w in the letters z1; : : : ; zk we let �(w) be the number of
letters distinct from z1 , and �(w) the number of letters equal to z1 . For a
pointed CW{space Y the smash product Y ^ Y � � � ^ Y with j factors will be
abbreviated Y (j) ; the convention for j = 0 is Y (0) = S0 .

5.4 Corollary Suppose that N ’ �Y , where Y is a connected pointed CW{
space. Then the loop space of the total homotopy �ber of (�) is homotopy
equivalent to a weak product (union of �nite products)Y

w

0
Ω�1+�(w)(n−2)Y (�(w))

taken over all basic words w in the letters z1; : : : ; zk which involve all the letters
except possibly z1 .

Before giving the proof, we must restate the Hilton{Milnor theorem. Let
X1; : : : ;Xk be connected pointed CW{spaces. For a basic word w in the letters
z1; : : : ; zk denote by w(X1; : : : ;Xk) the space obtained by substituting Xi for
zi and ^ for multiplication; for example, if k = 3 and w = (z2z1)z1 , then
w(X1;X2;X3) is (X2 ^X1) ^X1 .

5.5 Hilton{Milnor Theorem Ω�(X1_� � �_Xk) ’
Q0
w Ω�(w(X1; : : : ;Xk)),

a weak product taken over the basic words w in the letters z1; : : : ; zk .
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Proof of 5.4 We identify S in 5.3 and 5.4 with f1; 2; : : : ; kg, noting that S
has a preferred ordering since it is a subset of I . Fix X1 = Y as in 5.4, and
for i > 1 regard Xi as a variable with only two possible values, Sn−2 and �.
Letting the Xi vary with these constraints, we �nd that

Ω�(X1 _ � � � _Xk)

runs through the loop spaces of the vertices of the cube in 5.3. Each of these
loop spaces can therefore be decomposed according to Hilton{Milnor. Moreover,
the decomposition given by Hilton{Milnor is natural, a point which is stressed
in [16], and we conclude that Ω of the cube in 5.3 splits into many separate
factors indexed by the basic words w in the letters z1 : : : ; zk . Each factor is a
(k − 1){cube in its own right, of the form

(��) R 7! Ω�(w(Y;X2(R); : : : ;Xk(R)) (R � f2; : : : ; kg)

where Xi(R) = Sn−2 if i 2 R and Xi(R) = � otherwise. If w omits one of
the letters z2; : : : ; zk , then the total homotopy �ber of (��) is contractible (by
the Fubini priciple, also used in the proof of 5.2). Otherwise, the cube (��)
has only one nontrivial vertex (the initial one) and its total homotopy �ber is
therefore that vertex.

5.6 Corollary Suppose again that N ’ �Y as in 5.4. The terms of the Taylor
tower of emb(I;N) are as follows, for k � 2:

Lk emb(I;N) ’
Y
w

0
Ωk�1+�(w)(n−2)Y (�(w))

where the weak product is over all basic words w in the letters z1; : : : ; zk which
involve all the letters except possibly z1 .

Proof The k{th term of the Taylor tower can be described as the space of
sections with compact support of a �bration pk . See [15, section 10]. We found
that the base space of pk is homeomorphic to Rk , so that the section space in
question is the k{fold loop space of any of the �bers. The �bers are described
in 5.3, and their loop spaces in 5.4. Add a pre�x Ωk−1 to both sides of the
formula in 5.4.

5.7 Summary Suppose that Nn ’ �Y for a connected pointed CW{space
Y , and n � 4, and I is neatly embedded in N . Then emb(I;N) is homotopy
equivalent to the homotopy inverse limit of a certain diagram

� � � ! Tk emb(I;N)! Tk−1 emb(I;N)! : : : T1 emb(I;N) :
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Here T1 emb(I;N) is imm(I;N), the Space of smooth immersions which agree
with the inclusion near @I . For k � 2, the homotopy �ber of the forgetful map
Tk emb(I;N)! Tk−1 emb(I;N) is homotopy equivalent to a weak productY

w

0
Ωk�1+�(w)(n−2)Y (�(w))

taken over all basic words w in the letters z1; : : : ; zk which involve all the letters
except possibly z1 .

5.8 Remarks In 5.7, let N = Rn−1�I . There is a distinguished neat em-
bedding I ! Rn−1�I which identi�es I with 0 � I . There is also a �bration
sequence up to homotopy

emb(I;Rn−1�I) −! emb(S1;Sn)
f−! O(n+1)=O(n−1) :

The arrow f takes a smooth embedding e: S1 ! Sn to the orthonormal 2{
frame in Rn+1 consisting of e(�) and the unit tangent vector to e(S1) at e(�).
Consequently 5.7 calculates emb(S1;Sn) if n � 4, up to extension problems in
the homotopy category. We do not know what the extensions are, but we do
hope that homotopy theorists will be intrigued.

Unfortunately our convergence result does not cover the approximation map
from emb(I;R2�I) to holimk Tk emb(I;R2�I). With or without convergence,
we get a map of component sets

�0 emb(I;R2 � I)! lim
k
�0Tk emb(I;R2 � I) :

It is generally believed [1] that this is closely related to Vassiliev’s theory of
knot invariants [12], [13]. Conversely, Kontsevich [10] used ideas related to
Vassiliev’s theory to prove results similar to 5.7, more speci�cally, to set up
a spectral sequence converging to the rational cohomology of emb(S1;Rn) for
n � 4. He was able to show that the spectral sequence collapses at the E2 term.
One hopes that this result can be reformulated and perhaps even re{proved in
calculus language.
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