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966 Yuhan Lim

1 Introduction

The Seiberg{Witten equations when applied to the study of oriented integral
homology 3{spheres yield an invariant which was shown in [9] to coincide with
Casson’s invariant. In [3], Boden and Herald introduced a generalization of
Casson’s invariant from SU(2) to the higher structure group SU(3) based on
the gauge theory approach of Taubes [12]. This SU(3){Casson invariant uti-
lizes values of the Chern{Simons function which makes it a real valued invariant
rather than an integral one. In the present article we de�ne a non-Abelian ver-
sion of the Seiberg{Witten equations which we call quaternionic and construct
a topological invariant of integral homology 3{spheres in a manner parallel
to the SU(3){Casson invariant. This new invariant has the property that it
is independent of orientation of the 3{manifold and a linear combination with
the SU(3){Casson invariant gives a Z mod 4Z invariant for unoriented integral
homology 3{spheres.

The contents of this article are as follows. In section 2 we introduce the gen-
eralization of the SW{equations we use. The technical issue of admissible per-
turbations is also discussed. We use the novel approach of non-gradient per-
turbations. Section 3 gives the main results which are Theorems 3.7 and 3.8.
The remaining sections take up the proofs. We assume the reader has some
familiarity with [3], [9] and [12].

2 Quaternionic gauge theory in 3{dimensions

Standing Convention Throughout this article Y will denote an oriented
closed integral homology 3{sphere (ZHS). Y will also be assumed to have a
�xed Riemannian metric g .

The aim is to introduce a quaternionic setting in which the Seiberg{Witten
equations will make sense. Since Y is a ZHS it has a unique spin structure, up
to equivalence. With respect to g this is given by a principal spin(3) �= SU(2)
bundle P ! Y . In the (real) Cli�ord bundle CL(T �Y ) �= CL(Y ) the volume
form !Y has the property that !2

Y = 1. The action of !Y on CL(Y ) induces a
splitting into �1 eigenbundles CL+�CL− . Both CL+ and CL− are bundles
of algebras over Y with each �bre isomorphic, as an algebra, to the quaternions
H.

Let S ! Y be the complex spinor bundle on which CL+ acts non-trivially.
This is a rank 2 complex Hermitian vector bundle. Since the �bres of CL+
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A non-abelian Seiberg{Witten invariant 967

are quaternionic vector spaces, S possesses an additional action by H which
commutes with the Cli�ord action (see [8]); we may take this to be a right
action S �H! S .

Suppose now that E ! Y is a given �xed rank one metric quaternionic vector
bundle | we assume the action by H is a left action. E also has a description as
a complex Hermitian rank 2 vector with trivial determinant, i.e. with structure
group SU(2). We can twist the spinor bundle S by tensoring with E over the
quaternions to form the bundle S ⊗H E . This is a real rank 4 Riemannian
vector bundle and does not naturally inherit a complex structure from S or E .

Given an SU(2){connection A on E (henceforth any connection on E men-
tioned will be assumed to be such type) we may construct using the canonical
Riemiannian connection on S , a metric (i.e. SO(4)) connection on S ⊗H E .
This then de�nes in the usual way a Dirac operator

DA =
3X
i=1

ei � rAei :

Here the ei are an orthonormal frame and rA is the connection on S ⊗H

E mentioned above. We emphasize that DA is in general only a real linear
operator on S ⊗H E .

Lemma 2.1 The complexi�cation of S⊗HE is naturally isomorphic as a com-
plex Cli�ord module with S⊗CE . Under this isomorphism the complexi�cation
DA ⊗C corresponds to the complex Dirac operator DC

A .

Proof Introduce the notation ⊗ to denote the tensor product of elements in
S⊗HE and ⊗ the complex tensor product in S⊗CE . De�ne the vector bundle
map h from S ⊗C E to (S ⊗H E)⊗C by

h(e ⊗ f) = e⊗f −
p
−1(ei⊗f):

One checks directly that this map is a complex isomorphism and commutes
with Cli�ord multiplication.

Since the real two forms �2 naturally include in CL(Y ) we have by Cli�ord
mutiplication the action of �2 on S . This representation of �2 on S is well-
known to be injective and with image the adjoint bundle adS , the bundle of
skew-Hermitian transformations of S . The bundle adE acts on E from the
left. De�ne an action of �2 ⊗ adE on S ⊗H E by the rule

(! ⊗ l) � (�⊗ e) := (! � �)⊗ l(e):
This is well-de�ned since the actions of �2 and adE commute with the quater-
nionic structures.
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968 Yuhan Lim

Remark 2.2 The Cli�ord action of � 2 �2 is the same as the action of
− � � 2 �1 on S since the volume form !Y acts by the identity. Thus we may
equivalently work (up to multiplication by −1) with the action of �1⊗ adE on
S ⊗H E .

Lemma 2.3 The representation �2⊗adE ! EndR(S⊗HE) above is injective
and has image the subbundle Sym0

R(S ⊗H E) of trace zero real symmetric
transformations of S ⊗H E .

Proof That the representation of the lemma is injective is easily veri�ed. We
may rewrite the action of �2⊗adE as (!⊗ l) � (�⊗ e) = −(i! ��)⊗ il(e). Since
iadS is exactly the trace zero Hermitian symmetric bundle endomorphisms of
S , and similiarly for iadE , the image of the representation clearly lies in the
trace zero real symmetric endomorphisms of S ⊗H E . That it is onto follows
by a dimension count giving both �2 ⊗ adE and Sym0

R(S ⊗H E) real vector
bundles of rank 9.

The above lemma shows that we may regard the bundle Sym0
R(S ⊗H E) as

identical to �2(Y ) ⊗ adE . Thus whenever convenient we can think of a trace
zero real symmetric endomorphism of S ⊗H E as a twisted 2{form with values
in adE .

Lemma 2.4 There is a unique �brewise symmetric bilinear form f�g0 on S⊗H

E with values in �2 ⊗ adE determined by the rule that

h!; f� �  g0i = h! �  ; �i = h! � �; i

holds for all sections ! of �2 ⊗ adE . As a section of Sym0
R(S ⊗H E), f� � g0

is given by the expression

f� �  g0 =
1
2

�
�⊗  � +  ⊗ �� − 1

2
h�; iI

�
:

Here �⊗  �(�) = �h�;  i and similiarly for  ⊗ �� .

Proof Let f�ig, f!jg be a local orthonormal frames for S ⊗H E , �2 ⊗ adE
respectively. Let f�i � �jg0 = cki;j!k . Then we see that cki;j = h!k �  i;  ji =
h!k �  j ;  ii = ckj;i determines f�g0 . Identify �2 ⊗ adE with Sym0

R(S ⊗H E).
In a local trivialization we may regard sections of Sym0

R(S ⊗H E) as functions
with values in Sym0

R(R4), the 4 � 4 real symmetric matrices, and sections of
S ⊗H E as R4 {valued functions. As such the inner product in Sym0

R(R4) is
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A non-abelian Seiberg{Witten invariant 969

given by hM;Ni = Tr(MN). The right side of the de�ning equation for f�g0
can be expressed locally as

1
2

�
Tr(W�ΨT ) + Tr(WΨ�T )

�
=

1
2

Tr(W (�ΨT + Ψ�T ))

= hW; 1
2

(�ΨT + Ψ�T )i:

The claimed expression for f�g0 is exactly the trace-free component of the
symmetric expression 1

2(�ΨT + Ψ�T ).

The con�guration space C is the space of all pairs (A;�) consisting of an
SU(2){connection A on E and a section � of S ⊗H E . As usual we should
work within the framework of a certain functional space; for us choose A and
� to be of class L2

2 (for A this means A − A0 is L2
2 where A0 is a �xed

C1{connection). C is an a�ne space modelled on the Hilbert space

L2
2(�1 ⊗ adE)� L2

2(S ⊗H E):

The gauge automorphism group G in this case will consist of the L2
3{bundle

automorphisms which preserve the quaternionic structure of E , or equivalently
the L2

3{sections of AdE . Since L2
2 � C0 in dimension 3, C and G consists of

continuous objects. G acts on C by g � (A;�) = (g(A); g−1�). This action is
di�erentiable and the quotient we denote by B . Our convention is that g(A) is
the pull-back of A by g .

We have the following observation: the stabilizer

stab(A;�) =

8><>: f1g if � 6= 0

stab(A) if � = 0:

The possible choices for stab(A) are f�1g, U(1) or SU(2). Note that in the last
possibility A is necessarily a trivial connection. The pair (A;�) is irreducible
if � 6= 0 and reducible otherwise. Thus G acts freely on C� , the irreducible
portion of C and the quotient C� by G is denoted B� .
G is a Hilbert Lie group with tangent space at the identity TeG = L2

3(adE):
Let G ! C , g 7! (g(A); g−1�) be the map which is the orbit of (A;�) under
the action of G . The derivative at the identity is the map

�0
A;�: L2

3(adE)! L2
2(�1 ⊗ adE)� L2

2(S ⊗H E);

�0
A;�(γ) = (dAγ;−γ(�)):

(2.1)

A slice for the action of G on C at (A;�) is given by (A;�)+XA;� where XA;�

is the slice space which is the L2{orthogonal complement in L2
2(�1 ⊗ adE) �
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970 Yuhan Lim

L2
2(S ⊗H E) of the image of �0

A;� . We may also regard XA;� as the tangent
space to B� at an irreducible orbit [A;�].

De�ne a bilinear product B: (S ⊗H E) ⊗ (S ⊗H E) ! adE by the rule that
hγ(�);  i = hγ;B( ; �)i holds for all γ 2 adE . Then XA;� has the description
as the subspace of L2

2(�1 ⊗ adE)� L2
2(S ⊗H E) de�ned by the equation

�0�
A;�(a;  ) = 0 () d�Aa−B(�; ) = 0: (2.2)

A reducible we will often simply denote by A instead of (A; 0). Corresponding
reducible subspaces of C and B are denoted A and BA . At a reducible A the
slice XA splits into a product Xr

A �L2
2(S ⊗H E) where Xr

A is the slice for the
action of G on A. Then the normal space to BA in B near [A] is modelled on

L2
2(S ⊗ E)=stab(A):

For instance if A is irreducible as a connection then this normal space is a cone
on the quotient of the unit sphere in a separable Hilbert space by the antipodal
map v 7! −v .

On C we have the Chern{Simons{Dirac function csd: C ! R (with respect to
a choice of trivial connection � say) given by

csd(A;�) =
1

8�2

Z
Y

Tr
�
a ^ d�a+

2
3
a ^ a ^ a

�
−
Z
Y
hDA�;�i; a = A−�:

A direct computation gives

dcsdA;�(a; �) =
Z
Y

Tr(FA ^ a) +
Z
Y
h�a � �;�i −

Z
Y
hDA�; �i

=
Z
Y
h− � FA + �f� � �g0; ai −

Z
Y
hDA�; �i:

Thus the negative of the L2{gradient of csd is the ‘L2
1{vector �eld’ on C

X (A;�) def= (�FA − �f� � �g0;DA�) 2 L2
1: (2.3)

By this we mean that X is a section of the L2
1{version of the tangent bundle

to C . The Quaternionic Seiberg{Witten equation is the equation for the zeros
of X , i.e. the critical points of csd.

De�nition 2.5 The Quaternionic Seiberg{Witten equation is the equation
de�ned for a pair (A;�) consisting of a connection on E and a section �
(‘spinor’) of S ⊗H E . The equation reads:8><>: FA − f� � �g0 = 0

DA� = 0
(2.4)
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A non-abelian Seiberg{Witten invariant 971

where FA is the curvature of A, and since A is an SU(2){connection, a section
of �2 ⊗ adE . DA is the Dirac operator on S ⊗H E and f g0 denotes the
quadratic form of Lemma 2.4.

If g is gauge transformation then csd(g(A); g−1�) = csd(g; �) � deg(g), so
csd descends to an R=Z{valued function on B . This implies that X (A;�) 2
XA;�\L2

1 and the portion of X over C� descends to a ‘L2
1{vector �eld’ bX over

B� .

De�nition 2.6 The moduli space of solutions to (2.4) we denote by

M def= f(A;�) solving (2:4)g=G � B:

M� will denote irreducible and Mr will denote the reducible portion of M
respectively.

Thus M� is the zeros of bX and following Taubes, will be the basis for de�ning
a Poincare{Hopf index for B� .

Remark 2.7 In our Quaternionic SW{theory the reducible portion Mr of
M is just the moduli space of flat SU(2){connections on Y . This is the space
dealt with by Taubes [12] in the gauge theory approach to Casson’s invariant.

We need to now address the issue of an admissible class of perturbations which
will make M a �nite number of non-degenerate points (made precise below) to
apply the idea of a Poincare{Hopf index. Unlike the holonomy perturbations
used by Taubes and Boden{Herald which are gradient perturbations we elect
to perturb X directly rather than csd; i.e. at the level of vector �elds, for
this avoids a number of technical problems which the author has presently no
satisfactory solution. This approach will be adequate for de�ning a Poincare{
Hopf index but not a Floer type homology theory where gradient perturbations
are required.

De�nition 2.8 An admissible perturbation � consists of a di�erentiable G{
equivariant map of the form (�k; l): C ! L2

2(�1 ⊗ adE)� L2
2(S ⊗H E) where

(i) �A;� = (�kA;�; lA;�) 2 XA;�

(ii) the linearization of (�k; l) at (A;�) is a bounded linear operator

(L�)A;�: L2
2(�1 ⊗ adE)� L2

2(S ⊗H E)! L2
2(�1 ⊗ adE)� L2

2(S ⊗H E)

Geometry & Topology, Volume 7 (2003)



972 Yuhan Lim

(iii) there is a uniform bound

k�A;�kL2
2;A

def=
2X
i=0

k(rA)i�A;�kL2 � C:

Remark 2.9 In the unperturbed case, M can be easily shown to be com-
pact. The preceding uniform L2

2{type bound requirement on the perturbation
is crucial to retain compactness of the moduli space for the perturbed equation
below. This is a gauge invariant bound.

De�nition 2.10 The perturbed Quaternionic Seiberg{Witten equations are
the equations 8><>: FA − f� � �g0 + kA;� = 0

DA�+ lA;� = 0:

The corresponding moduli space is denoted M� , the irreducible portion M��
and the reducible portion Mr

� where � is the restriction to A or equivalently
the k{component of � . Note that when � = 0, stab(A){invariance forces
lA;0 = 0 and the only e�ective portion of � on A is the k{component.

Let X� = X + � , the perturbation of X . The linearization at a zero (A;�) is
a map

(LX�)A;�: L2
2(�1 ⊗ adE)� L2

2(S ⊗H E)! XA;� \ L2
1 (2.5)

(LX�)A;�(a; �) = (�dAa− �f� � �g0;DA�+ a � �) + (L�)A;�(a; �):

De�nition 2.11 Call (A;�) or [A;�] non-degenerate if LX� is surjective at
(A;�). M� is non-degenerate if it consists entirely of non-degenerate points.
In this instance we also call � non-degenerate. The standard Kuranishi local
model argument shows that a non-degenerate point is isolated in B . (This
includes reducible points.)

Fix a connection r0 and let L2
2 denote the Sobolev norm with respect to r0 .

A metric on B is de�ned by the rule

d([A;�]; [A0; �0]) = inf
g2G

n
k(A− g(A0); � − g−1�0)kL2

2

o
: (2.6)

Proposition 2.12 For any admissible perturbationM� is a compact subspace
of B . Furthermore there is an "0 > 0 such that for any 0 < " < "0 , if
k�A;�kL2

2;A
< " uniformly then given any [A;�] 2 M� there is a [A0; �0] 2 M

such that d([A;�]; [A0; �0]) < ".

Geometry & Topology, Volume 7 (2003)
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Proposition 2.13 There exists non-degenerate admissible perturbations.
Furthermore such a perturbation � may be choosen so that k�A;�kL2

2;A
is arbi-

trarily small (uniformly) and � vanishes on any given closed subset of C which
is disjoint from the subspace of unperturbed SW{solutions.

The proofs are in sections 4 and 5.

3 Spectral flow and de�nition of the invariant

Fix a perturbation � (not necessarily non-degenerate). Regard the image of
X� as lying in the larger space L2(�1⊗ adE)�L2(S ⊗H E) since XA;� \L2

1 is
a subspace of the former. The analog of the operator used by Taubes to de�ne
relative signs between non-degenerate zeros of cX� is the unbounded operator
on L2(adE)� L2(�1 ⊗ adE)� L2(S ⊗H E) given in block matrix form:

L�A;� =

0B@ 0 �0�
A;�

�0
A;� (LX�)A;�

1CA :
Here �0�

A;� is the formal L2{adjoint of �0
A;� and the splitting used above is the

(�rst) � (2nd and 3rd factors). L�A;� has dense domain the subspace of L2
2{

sections. The ellipticity of L�A;� implies that it is closed and unbounded as
an operator on L2 . In general L�A;� will not have a real spectrum, due to the
non-gradient perturbations we are using.

Remark 3.1 If it were the case that L�A;� is formally self-adjoint (i.e. on
smooth sections) then it is well-known that L�A;� has only a discrete real spec-
trum which is unbounded in both directions in R and is without any accumu-
lation points. It can be shown in general that since L�A;� is a LA;�{compact
perturbation of LA;� on L2 the spectrum continues to be discrete, the real part
of the spectrum is also unbounded in both directions in R and is without any
accumulation points, see [7].

Let us consider the behaviour of L�A;� along the reducible stratum A � C .
Since � = 0 we abbreviate the operator to L�A . This has a natural splitting

L�A = K�
A �D�

A (3.1)

corresponding to the splitting (�0+1 ⊗ adE) � (S ⊗H E). We call K�
A the

tangential operator (the dependence on only the restriction � of � will be clear
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below) and D�
A the normal operator. Explicitly

K�
A =

0B@ 0 d�A

dA �dA + (L�)A

1CA and D�
A = DA + (L��)A:

Here (L��)A denotes (L�)A;0 restricted to the normal space L2
2(S ⊗H E) fol-

lowed by projection onto the normal space again. The normal space is naturally
acted on by stab(A) and D�

A commutes with this action. If A is irreducible
as a connection then stab(A) = f�1g and D�

A remains real linear but when
A = � a trivial connection, stab(A) �= SU(2) and it is quaternionic linear.
(There is a stab(A) �= U(1) case but this will not play a role so we will omit
discussing it.)

A fact established in section 5 is:

Lemma 3.2 The operator (L��)A is multiplication by a real function fA 2
L2

2 . Thus D�
A = DA + fA extends to an unbounded self-adjoint operator on

L2(S ⊗H E) and spectral flow is de�ned for this operator.

To de�ne relative signs between non-degenerate zeros of cX� one usually uses
the mod2 spectral flow of L�A;� when this operator is self-adjoint. In the gen-
eral case we use the determinant line detindL� regarding L�A;� as a family
parameterized by (A;�) 2 C . This is equivalent to the spectral flow de�nition
in the self-adjoint case. detindL� descends to a line bundle over B which we
also denote by the same notation. However we note:

Lemma 3.3 detindL� is non-orientable over B , i.e. there exists closed loops
γ: S1 ! B such that γ�(detindL�) is a non-trivial line bundle over S1 .

Proof It su�ces to consider the determinant index detindL of the unper-
turbed family over BA � B . Then LA = KA � DA where KA is essentially
the boundary of the (twisted) Self-dual operator in dimension 4. Spectral flow
around closed loops for KA is equivalent to the index of the (twisted) Self-dual
operator over Y � S1 . The latter index is well-known to be � 0 mod 8. By
Lemma 2.1 the spectral flow for DA around closed loops is equivalent to the
index of the twisted complex Dirac operator over Y � S1 , where the twisting
bundle E is rank 2 complex. According to the Atiyah{Singer Index Theorem
this index is the negative of 2nd Chern class of E evaluated over the funda-
mental class of Y �S1 . We may choose any closed loop so that this is �1. (See
the proof of Lemma 3.5 for more details on this part of the calculation.)
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In particular if we have two non-degenerate zeros of bX� then the Lemma asserts
that it is impossible in this scheme to de�ne a relative i.e. mod2 sign between
non-degenerate zeros. Thus as far as de�ning an invariant goes we can only
work with the cardinality X

[A]2M��

1 mod 2

for � non-degenerate.

Assume now that � is non-degenerate. We de�ne counter-terms associated
to Mr

� to make
P

[A]2M�� 1 mod 2 a well-de�ned invariant. These counter-
terms will depend on the normal operator D�

A , the Chern{Simons function and
spectral invariants.

Note that in a ZHS the trivial orbit f[�]g is always a point in Mr
� for ev-

ery perturbation. In the unperturbed case this is clear. In the presence of a
perturbation invariance by the stabilizer action at � forces �� = 0.

When A = � , the Dirac operator D� can be identi�ed with the canonical
quaternionic linear Dirac operator on S which we denote as D . The operator
KA (presently take � = 0) is the boundary B of the 4{dimensional signature
operator, after identifying �2 �= �1 by the Hodge �{operator. To these two
operators D and B we can associate the APS{spectral invariants [2]:

�(B); � =
1
2

�
�(D) + dimCkerD

�
:

If X is compact oriented spin 4{manifold with oriented boundary Y then an
application of the APS index theorems to X shows that

� +
1
8
�(B) = −IndexD(4) − 1

8
signX: (3.2)

Here D(4) is the Dirac operator on X and signX the signature. Thus we see
that the left-side of (3.2) is always an integer. As an aside, the mod 2 reduction
of the right-side only involves the signature term (since in four dimensions the
Dirac operator is quaternionic linear and so its index is even) and therefore is
just the Rokhlin invariant �(Y ). Given a perturbation � now set

c(g; �) = � +
1
8
�(B) +

�
C{spectral flow of f(1− t)D� + tD�

�g1t=0

�
2 Z:

In the spectral-flow term D� , D�
� are quaternionic linear and thus c(g; �) �

�(Y ) mod 2 continues to be true. c(g; �) is our counter-term associated to
f[�]g.

Remark 3.4 Our convention for spectral flow is the the number of eigenvalues
(counted algebraically) crossing −" for " > 0 su�ciently small.

Geometry & Topology, Volume 7 (2003)
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In order to de�ne the counter-terms associated with points in Mr�
� we shall

need two preliminaries. Firstly, consider the normal spectral flow of L�A along
a path γ in A i.e.

SF�(γ) = spectral flow of D�
A along γ

which is de�ned because of Lemma 3.2. On the reducible stratum A � C , the
Chern{Simons{Dirac function reduces to the Chern{Simons function which we
denote as cs. We remind the reader that cs depends on a basepoint which we
choose to be a trivial connection � (which we �x once and for all).

Lemma 3.5 Let [x] be a point in BA and [γ(t)], t 2 [0; 1] a closed di�eren-
tiable loop in BA based at [x]. Then

SF�(γ) = cs(γ(1)) − cs(γ(0)) 2 Z:

Proof First we invoke Lemma 2.1 which says we only need to compute the
complex spectral flow for the complex Dirac operator DC

A on S ⊗ E = S ⊗C

E . According to [2] this spectral flow coincides with the index of the four-
dimensional Dirac operator D(4)bA on the pull-back bS⊗ bE ! Y �[0; 1] of S⊗E !
Y with bA interpolating between γ(0) at Y �f0g and γ(1) at Y �f1g. Since the
initial and �nal connections are gauge equivalent, the boundary terms cancel
in the application of the APS index theorem and we are left with

IndexD(4)bA = −
Z
X
c2( bA) (Chern form) = − 1

8�2

Z
Y�[0;1]

Tr(F 2bA)

= − 1
8�2

Z
Y�[0;1]

dTr
�
a ^ d�a+

2
3
a ^ a ^ a

�
; a = bA−�

= −
�
cs(γ(0)) − cs(γ(1))

�
:

The second preliminary: cs descends to a function cs: BA ! R=Z on the
quotient space. Since the value of cs is constant on components of Mr , the
image set cs(Mr) is a �nite number of values c1; : : : ; cm in R=Z. Let "1 > 0 be
the smallest distance between pairwise distinct ci ’s where R=Z has the distance
inherited from R. Let "2 > 0 be the constant which is the smallest distance
between pairwise distinct components of Mr , in the metric (2.6).

De�nition 3.6 Call a perturbation � small if cs(Mr�
� ) is within an "1=3{

neighbourhood of cs(Mr�), andMr�
� is within an "2=3{neighbourhood of Mr� .

Geometry & Topology, Volume 7 (2003)



A non-abelian Seiberg{Witten invariant 977

Assume � to be small and non-degenerate in the sense of the preceding. This
can be done by making k�A;�kL2

2;A
su�ciently small, by Proposition 2.12. Write

Mr� = K1 [ : : : [ Kn

as the union of connected components. Then given any [A] 2 Mr�
� there

is a unique component Ki which is within "1=3 of [A]. Denote by N i the
intersection of the "2=3{neighbourhood of Ki and the preimage under cs of the
"1=3{neighbourhood of cs(Mr�) in R=Z. Let [γ] be any path from [�] to [A].
Let [γ] be any other path from [�] to Ki with the property that [γ] and [γ]
are homotopic relative to N i [ f[�]g. Then the expression

�[A] = SF�(γ) + cs(γ(0))− cs(γ(1)) 2 R

is well-de�ned and independent of choice of γ and γ , by Lemma 3.5.

Over BA we have the line bundle detindK� of the family of tangential operators
fK�

Ag. In contrast to detindL� this is an orientable line bundle. This is
basically the Taubes’ orientation of Mr�

� in [12]. We �x the overall orientation
by specifying detindK� at [�] by the following rule. The kernel and cokernel
of K�

� are �= su(2), the constant sections of adE , after adE is trivialized as
Y � su(2) by � . Orient detindK�

� as o(su(2)) ^ o(su(2)�) where o(su(2)) is
a any chosen orientation and o(su(2)�) is the dual orientation. We denote the
induced oriention at [A] 2Mr�

� by "[A] 2 f�1g.

Theorem 3.7 Let Y be an oriented closed integral homology 3{sphere with
Riemannian metric g . Let � be a non-degenerate and small admissible per-
turbation for Mg;� , the perturbed Quaternionic Seiberg{Witten moduli space
with respect to g . The terms c(g; �), "[A] and �[A] as above are well-de�ned
and the sum

�(Y ) =
X

[A]2M��

1 +
1
2
c(g; �) +

X
[A]2Mr�

�

"[A]
�
�[A] +

1
4

�
2 R mod 2Z

is independent of both g and � chosen. Furthermore �(Y ) does not depend
on the orientation of Y and therefore � de�nes an unoriented di�eomorphism
invariant for integral homology 3{spheres.

The extra term 1=4 in the sum is inserted to make the invariant independent
of the orientation of Y .

Let �SU(3)(Y ) be the SU(3){Casson invariant of Boden{Herald. The de�nition
of �(Y ) is modelled on �SU(3)(Y ) and both su�er from the defect that no
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multiple is obviously integral valued. This is due to the usage of the Chern{
Simons function. (Boden{Herald{Kirk [4] have devised an integer version of
SU(3){Casson that gets around the usage of Chern{Simons by an ad-hoc device.
It is not a completely natural de�nition.) However we have the following.

Theorem 3.8 Let Y be an integral homology 3{sphere and �SU(3)(Y ) be the
SU(3){Casson invariant for Y . Then

�SU(3)(Y ) + 2�(Y )

is a Z mod 4Z{valued invariant of the unoriented di�eomorphism type of Y .

The assertion of this theorem is that we have a cancellation of the Chern{Simons
terms, leaving only an integral expression. Our contention is that combining
SU(3){Casson with an SU(2){version of Seiberg{Witten is the natural way of
presenting the topological information contained in the two theories. This will
be worked out in greater detail in a further article where a uni�ed approach
to the two theories and an integer valued Seiberg{Witten/Casson invariant is
de�ned.

The proof of the Theorem 3.7 is in section 6 and Theorem 3.8 in section 7.

4 Compactness

In this section we prove Proposition 2.12. Recall that our 3{manifold Y is
assumed to be Riemannian with metric g . We shall need to vary g at two
points in this article. In the present section we shall utilize rescaling g to
establish compactness of the moduli space. In section 6 we shall analyse the
change in the moduli space as g varies in a 1{parameter family.

We set-up a framework for comparing the SW{equation for di�erent metrics.
Spinors and in particular the Dirac operator are not canonically associated
objects to a Riemannian structure.

The �rst task is to �x a model for the spin structure and spinors. Our metric
g shall be taken as the reference. On a compact 3{manifold we can always �nd
a smooth nowhere vanishing vector �eld, let us denote this as e1 . Additionally
assume it is of unit length with respect to g . By working perpendicular to e1

we can complete this to a global orthonormal frame (e1; e2; e3). Assume the
orientation e1 ^ e2 ^ e3 coincides with the orientation on Y . This global frame
de�nes a trivialization Y �SO(3) of the (positively) oriented orthonormal frame
bundle of Y .
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Let sp(1) = spin(3) � CL(Y ) denote the unit quaternions and �x a group
homomorphism sp(1)! SO(3) which is the 2{fold covering map. Then we �x
the spin structure on Y (with respect to g) by the projection

P = Y � sp(1)! Y � SO(3):

The spinor bundle S is then given by P �% H where % is the fundamental
representation of sp(1) on H. Since [(y; h); q] = [(y; 1); hq], S has a natural
trivialization as Y �H and sections of S are simply the H{valued functions on
Y . Notice that the quaternionic structure on S is exactly right multiplication
on the H factor of Y �H.

The trivialization Y � SO(3) of TY also induces a trivialization Y � CL(R3)
of the Cli�ord bundle CL(Y ) with the constant section be1 = (1; 0; 0) corre-
sponding to the vector �eld e1 , be2 = (0; 1; 0) to e2 etc. Fix the (left) Cli�ord
representation on H of the Cli�ord algebra CL(R3) by mapping

be1 7! i; be2 7! j; be3 7! k:

That is to say, bei � h = ih etc. On S ⊗H E the Dirac operator now takes the
form

DA = (i⊗ 1)rAe1 + (j ⊗ 1)rAe2 + (k ⊗ 1)rAe3 :
Suppose now we want to change the metric from g . This is achieved by pulling
back the metric g by an automorphism h of TY . Using the frame (e1; e2; e3) as
a basis can conveniently think of h as a smooth map h: Y ! GL(3). The global
frame (e1; e2; e3) is pulled back to a global frame (h−1(e1); h−1(e2); h−1(e3))
for the pulled back metric. In the same way as above this global frame de�nes
a trivialization Y � SO(3) of the oriented orthonormal frame bundle in the
pulled back metric and we may proceed with the spin structure, spinors etc. as
constructed before. In particular we notice that the model for the spinor bundle
as H{valued functions on Y remains the same in the pulled back metric but
the Cli�ord mutiplication changes and is now de�ned bydh−1(e1) 7! i; dh−1(e2) 7! j; dh−1(e3) 7! k:

If h is actually an isometry with respect to g then we are merely changing the
trivialization of S .

Let g0 denote the new metric de�ned by h and rg0 the spin connection on S .
Then the Dirac operator coupled to A with respect to g0 is given by

Dg0

A = (i⊗ 1)rg
0;A
h−1(e1) + (j ⊗ 1)rg

0;A
h−1(e2) + (k ⊗ 1)rg

0;A
h−1(e3):

Similiarly one may obtain expressions for the bilinear forms f�g0 and B with
respect to g0 in terms of h.
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Consider now the special case when g is rescaled as g� = �2g where � > 0 is
a constant. Clearly g� is induced by h = �Id so h−1(ei) = ei=�. Under the
above model for the spinors, the Hermitian metric on S is �xed. However, we
may choose to vary this with �. In the present case, for g� we may set

h�; �i� = ��h�; �i (4.1)

where the right-hand inner product is the original one on S . A good choice for
� will be made later. In the next lemma, a ‘�’ superscript means an object
taken with respect to the metric g� . Unmarked objects are taken with respect
to g .

Lemma 4.1 Fix the model for spinor bundle S by g , and use the spinor metric
given by (4.1) in the Riemannian metric g� . Then the following hold.

(i) D�
A = (1=�)DA

(ii) f�g�0 = �2+�f�g0
(iii) d�;�A = (1=�2)d�A on Ω1 ⊗ adE

(iv) B� = ��B

(v) �� = (1=�)� on �2

Proof For (i) recall that the Levi{Civita connection is invariant under rescal-
ing the metric by a constant. This leaves the connection term rg0;A = rg;A .
The formula now follows from h−1(ei) = ei=�. For (ii) establish the rule
! �� � = 1

�2! � � and � �� � = 1
�� � � where ! is a 2{form and � a 1{form. The

new coframe e��i = �e�i and so the action of e�i with respect to g� is 1=� of the
action with respect to g . For (iii) in the de�ning equation

R
hdAγ; ai�dg� =R

hγ; d�;�A ai�dg� , we have hγ; d�;�A ai� = �−2hγ; d�;�A ai. For (iv) the de�ning
equation is hγ(�);  i� = ��hγ(�);  i = ��hγ;B(�; )i = hγ;B�( ; �)i. (v):
�(e�1 ^ e�2) = e�3 and ��(�e�1 ^ �e�2) = �e�3 , etc.

The preceding lemma easily implies the following principle result we need on
rescaling the metric:

Proposition 4.2 Fix the model for the spinor bundle S by g , and let S have
the metric (4.1) with respect to g� where � = −2. Then the perturbed SW{
equation (2.10) with respect to g is equivalent to the following equation with
respect to g� : 8>><>>:

FA − f� � �g�0 + kA;� = 0

D�
A�+

1
�
lA;� = 0:

(4.2)

Geometry & Topology, Volume 7 (2003)



A non-abelian Seiberg{Witten invariant 981

Furthermore the perturbation ��(A;�) = (��kA;�; (1=�)lA;�) is an admissible
perturbation with respect to g� .

The scheme of the proof of the compactness of the moduli space rests on a
Bochner argument to get a L4{bound on the spinors, Uhlenbeck’s Theorem
[13] and as mentioned above, rescaling. In the 4{dimensional context such an
argument is presented in Feehan{Leness [6]. The basic input is contained in
the following two lemmas.

Lemma 4.3 Let (A;�) be a solution of the perturbed SW{equation (4.2),
de�ned on Y with respect to the metric g� = �2g . Let s denote the scalar
curvature of Y with respect to g . ThenZ

Y
j�j4�dg� � 8

�

Z
Y

s2

16
+ jkA;�j2 + jlA;�j2dgZ

Y
jkA;�j2�dg� � 1

�

Z
Y
jkA;�j2dgZ

Y

��� 1
�
lA;�

���2
�
dg� � 1

�

Z
Y
jlA;�j2dg:

The spinor metric (4.1) on the left-side is taken with � = −2.

Proof This is a straightforward manipulation involving the Bochner formula
for the Dirac operator which reads:

(D�
A)�D�

A� = (r�A)�r�A�+
1
4
s��+ FA �� �:

Here and below a ‘�’ subscript or superscript indicates the object taken with
respect to g� . Unscripted objects are taken with respect to g . Taking the inner
product with � and integrating givesZ

Y
jD�

A�j2� dg� =
Z
Y
jr�A�j2� dg� +

Z
Y

1
4
s�j�j2� dg� +

Z
Y
hFA; f� � �g�0i� dg�:

Applying the SW{equation (4.2) and after some manipulation we obtainZ
Y

�
s�

4
− jkA;�j�

�
j�j2� dg� +

1
2

Z
Y
j�j4� dg� �

2
�2

Z
Y
jlA;�j2� dg�:

This in turn impliesZ
Y
j�j4� dg� � 2Γ�

�Z
Y
j�j4� dg�

�1=2

+
4
�2

Z
Y
jlA;�j2� dg�

where Γ� � 0 is given by

Γ2
� =

Z
Y

�
s�

4
− jkA;�j�

�2

dg�:
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Therefore Z
Y
j�j4� dg� � 4Γ2

� +
8
�2

Z
Y
jlA;�j2� dg�: (4.3)

Under rescaling the metric from g to g� = �2g we have dg� = �3dg and the
following relations hold:Z

Y
(s�)2 dg� =

Z
Y

(�−2s)2�3 dgZ
Y
jkA;�j2� dg� =

Z
Y
�−4jkA;�j2�3 dg (4.4)Z

Y
jlA;�j2� dg� =

Z
Y
�−2jlA;�j2�3 dg:

Hence

Γ2
� �

4
�

Z
Y

� s2

16
+ jkA;�j2

�
dg

Together with (4.3) and (4.4) we get the desired bounds.

Introduce the notation Br for the closed Euclidean ball of radius r in R3 . Fix
a model for the spinors S on B1 with respect to the Euclidean metric as in
the preceding and let E0 = B1 � C2 denote the trivial SU(2){bundle. This
trivialization de�nes the canonical trivial connection d on E .

Lemma 4.4 Allow any metric on B1 . Let the pair (A = d + a; �) 2 L2
2 be

de�ned on E0 ! B1 . Assume that (a) d�a = 0 (b) kakL2
1
� C1 , k�kL4 � C2

(c) (A;�) satis�es a perturbed SW{equation of the form (2.10) on E with
�A;� = (�k; l)A;� 2 L2

2 , and (d) k�A;�kL2
2
� C3 . Then kakL2

3(B1=2) , k�kL2
3(B1=2)

are uniformly bounded independent of a and �.

Proof We may rewrite the equations both a and � satisfy as

(d+ d�)a = −a ^ a+ f� � �g0 − kA;�
D� = −a � �− lA;�:

Here D is the canonical Dirac operator associated with B1 tensored with
the trivial factor C2 . kakL4 is uniformly bounded by the Sobolev embed-
ding L2

1 � L4 and condition (a). The terms kA;� , lA;� being uniformly
bounded in L2

2 are uniformly bounded in C0 . Since ka � �kL2 � kakL4k�kL4

we see that D� is uniformly bounded in L2 . The basic elliptic inequality
k�kLp

k+1
(Br0 )

� const.(kD�kLp
k
(Br) + k�kLp(Br)), r0 � r for D forces � to

be uniformly bounded in L2
1 over Br1 , r1 < 1. The embedding L2

1 � L6

now makes both a and � uniformly bounded in L6 over Br1 . The bound
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ka � �kL3(Br1 ) � kakL6(Br1 )k�kL6(Br1 ) now makes D� uniformly bounded in
L3(Br1) and thus � is uniformly bounded in L3

1(Br2), r2 < r1 and therefore
Lp(Br2), 2 � p <1. Now observe ka � �kL4(Br2 ) � kakL6(Br2 )k�kL12(Br2 ) and
by repeating the argument we get � uniformly bounded in L4

1(Br3), r3 < r2 . A
similiar type of argument using the elliptic estimate for d+ d� also establishes
that a is uniformly bounded in L4

1(Br3).

To obtain uniform bounds for a and � in L2
2(Br4), r4 < r3 we need to obtain

uniform bounds for the quadratic terms a ^ a, f� � �g0 and a � � in L2
1(Br3).

However this follows from the continuous multiplication L4
1(Br3) � L4

1(Br3) !
L2

1(Br3). Finally this puts a and � in the continuous range for Sobolev multi-
plication and from this a uniform bound in L2

3(Br5), r5 < r4 is obtained.

Proposition 4.5 M� is a compact subspace of B where � an admissible
perturbation. That is to say, given any sequence (Ai; �i) of L2

2{solutions to
(2.10) there is a subsequence fi0g � fig and L2

3{gauge transformations gi0

such that gi0(Ai0 ; �i0) converges in L2
2 to a solution of the �{perturbed SW{

equations.

Proof By Proposition 4.2 a solution (A;�) of (2.10) is equivalent to a solution
of (4.2), the SW{equation with respect to g� and with perturbation �� . Thus
it su�ces to prove compactness of the moduli space Mg�;��

of solutions of (4.2)
for any � > 0.

Choose � large such that any geodesic ball B of unit radius in Y is su�ciently
close to the Euclidean metric in C3 , so that Uhlenbeck’s Theorem [13] applies
over B . Let "0 > 0 be the constant in Uhlenbeck’s Theorem such that if
any L2

1 connection A on EjB satis�es kFAkL2(B) < "0 then there is a gauge
transformation g 2 L2

2(B) which changes A so that g(A) = d+a is in Coloumb
gauge d�a = 0 and kakL2

1(B) � ckFAkL2(B) . Here we use a �xed trivialization
EjB �= B �C2 with trivial connection r or d.

Assume that (A;�) is a solution of (4.2). The proof of Lemma 4.4 gives us an
additional fact. It shows that a is of class L2

2(B1=2) and by a straightforward
bootstrapping argument we see that g is actually in L2

3(B1=2).

In the de�nition of an admissible perturbation k��A;�kL2
2;A

is uniformly bounded
for every � > 0. In order to apply Lemma 4.4 we need to deduce a uniformly
bound for k��A;�kL2

2(B) . The covariant derivatives r and rA upto second order
are related by

r! = rA! − a(!)
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r2! = (rA − a)(rA! − a(!))
= (rA)2! + (ra)(!) + 2a(a(!)):

Utilizing the embedding L2
2(B) � C0(B) and L2

1(B) � L4(B) we obtain

kr!kL2(B) � const.
�
krA!kL2(B) + kakL2(B)k!kL2

2(B)

�
kr2!kL2(B) � const.

�
k(rA)2!kL2(B) + kakL2

1(B)k!kL2
2(B)

+kak2L2
1(B)k!kL2

2(B)

�
:

Choose "1 � "0 so that kFAkL2(B) < "1 forces kakL2
1(B) to be very small; then

the error terms kakL2(B)k!kL2
2(B) , kakL2

1(B)k!kL2
2(B) and kak2

L2
1(B)
k!kL2

2(B) are
� k!kL2

2(B) and we get a uniform estimate k!kL2
2(B) � const.k!kL2

2;A
(B) .

Lemma 4.3 shows that k�kL4 is uniformly bounded with respect to g� and
kFAkL2 ! 0 as �!1. Increase � if necessary so that kFAkL2(B) < "1 for all
B . Suppose now that (Ai; �i) is a sequence of solutions of (4.2). Denote by B1=2

the geodesic ball with the same center as B but half the radius. Uhlenbeck’s
Theorem and the uniform bounds of Lemma 4.4 �nds L2

3 gauge transformations
gi over B1=2 such that after passing to a subsequence, gi(Ai; �i) converges in
L2

2(B1=2) to a SW{solution (4.2) over B . Now the standard covering argument
in [5, section 4.4.2] (also see [6]) shows that after global gauge transformations
and passing to subsequences, (Ai; �i) can be made to converge in L2

2 over all
of Y .

The preceding proof also shows:

Corollary 4.6 Let (A;�) be a perturbed SW{solution (2.10). There is an L2
3

gauge transformation g such that g(A;�) is in L2
3 .

Corollary 4.7 There is an "0 > 0 such that for any 0 < " < "0 , if k�A;�kL2
2;A
<

" uniformly then given any [A;�] 2 M� there is a [A0; �0] 2 M such that
d([A;�]; [A0; �0]) < ", d being the metric (2.6).

Proof Suppose false. Then there exists sequences f�ig and f(Ai; �i)g with
[Ai; �i] 2 M�i such that k(�i)Ai;�ikL2

2;Ai

! 0 but with d([Ai; �i]; [A0; �0])

bounded away from zero over [A0; �0] 2M. The sequence also satis�es

kFAi − f�i � �ig0kL2 + kDAi�ikL2 ! 0: (4.5)

The proof of Proposition 4.5 shows that after gauge transformations and passing
to a subsequence which we shall also denote as (Ai; �i), (Ai; �i) converges in
L2

2 and the limit, by (4.5) is necessarily a unperturbed SW{solution. This is a
contradiction.
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5 Construction of perturbations

In this section we prove Proposition 2.13. Introduce the notation B(") for the
"{ball in the slice space XA;� . (Recall this is a Hilbert space in an L2

2{Sobolev
norm.) Denote by �: XA;� ! [0; 1] a smooth cut-o� function with support in
B(").

Lemma 5.1 Fix (A;�). There is an " > 0 and a di�erentiable function
�: B(") � XA;� ! (ker �0

A;�)? � L2
3(adE) such that given any (a; �; b;  ) 2

B(")�XA;� , the relation

(b;  ) + �0
A;��(a; �; b;  ) 2 XA+a;�+� (5.1)

holds. Here (ker �0
A;�)? denotes the L2{orthogonal complement.

Proof Apply the Implicit Function theorem to the map

H(�; (a; �); (b;  )) = �0�
A+a;�+��

0
A;�(�) + �0�

A+a;�+�(b;  )

from (ker �0
A;�)? � B(") � XA;� ! (ker �0

A;�)? \ L2
1 . The linearization of H

at (0; 0; 0) restricted to (ker �0
A;�)? is an isomorphism. This establishes the

existence of the function � = �(a; �; b;  ) but only for (a; �) and (b;  ) de�ned in
su�ciently small neighbourhoods of zero. However notice that if (b;  ) satis�es
(5.1) then for any real constant c, c(b;  ) satis�es the same equation but with
� replaced by c� . That is we can allow the (b;  ) to be de�ned in � for all XA;�

by extending � linearly in that factor.

Let us now assume � 6= 0. Set " > 0 to be less than the constant in Lemma 5.1
and also such that B(") injects into B . Assume supp� � B("). Fix (b;  ) 2
XA;� . De�ne a function (A;�) +XA;� ! L2

2(�1 ⊗ adE)� L2
2(S ⊗H E) by the

rule
�A+a;�+� = �(a; �)(b;  ) + �0

A;��(a; �;�(a; �)(b;  )) (5.2)

for (a; �) 2 B("). By construction � has support in B("). Extend � to C by
G{equivariance. Clearly �A+a;�+� 2 XA+a;�+� and �A;� = (b;  ).

Lemma 5.2 For " > 0 su�ciently small, the perturbation � in (5.2) satis�es
a uniform bound k�A;�kL2

2;A
� C .

Proof � satis�es H(�; (a; �); �:(b;  )) = 0. Thus

�A;�� +N1(a; �)� +N2(a; �)(b;  ) + �0�
A;�(�:(b;  )) = 0 (5.3)
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where �A;� is a second order elliptic operator with coe�cients depending on
(A;�) and N1 and N2 are lower order terms. N1 is a bilinear expression in
(a; �) and �0

A;�(�). N2 is a bilinear expression in (a; �) and (b;  ). After some
calculation it is seen that N1 , N2 satisfy, by Sobolev theorems

kN1(a; �)�kL2
1
� const.k(a; �)kL2

2
k�kL2

3
(5.4)

kN2(a; �)(b;  )kL2
1
� const.k(a; �)kL2

2
k(b;  )kL2

2
:

On the other hand since �A;� is invertible on (ker �0
A;�)? ,

k�kL2
3
� const.k�A;��kL2

1
: (5.5)

Now make " > 0 su�ciently small so that k(a; �)kL2
2

is correspondingly small.
Then (5.3), (5.4) and (5.5) give k�kL2

3
� const.k(b;  )kL2

2
. Thus by (5.2) we

have a uniform bound

k�A+a;�+�kL2
2
� const.k(b;  )kL2

2
� C:

In the above the Sobolev norms were taken with respect to some �xed connec-
tion A0 , which is commensurate to the Sobolev norm taken to say A. If kakL2

2

is su�ciently small then

krA+a�A+a;�+�kL2 � const.krA�A+a;�+�kL2 ;

krA+arA+a�A+a;�+�kL2 � const.krArA�A+a;�+�kL2

uniformly. By reducing " again if necessary, the bound k�A;�kL2
2;A
� C is

established.

This lemma directly shows

Proposition 5.3 Assume � 6= 0. Given any (b;  ) 2 XA;� there is an admissi-
ble perturbation � such that �A;� = (b;  ). Furthermore the support of � may
be chosen to be contained in an arbitarily small G{invariant neighbourhood of
the orbit G � (A;�).

The slice at a reducible (A; 0) has a natural splitting XA;0 = Xr
A�L2

2(S⊗HE).
The stabilizer of (A; 0) (which is f�1g, U(1) or SU(2)) acts diagonally on both
of the factors Xr

A and L2
2(S ⊗H E). If � is a perturbation then the stabilizer

action forces the normal or spinor component of �A;0 to be zero, since � is
required to be G{equivariant.

Assume the case that A is irreducible as a connection. Then the stabilizer of
(A; 0) is f�1g and this acts on the L2

2(S ⊗H E) factor only, by multiplication.
Let b 2 Xr

A and set

�0A+a;�+� = �(a; �)(b; 0) + �0
A;��(a; �;�(a; �)(b; 0)):
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Then in the same manner as Lemma 5.2 �0 is admissible provided the support
of � is small, and by construction �0A;0 = (b; 0). This de�nes perturbations in
the connection irreducible portion A� of the reducible strata A � C .

Let us now consider the normal direction linearization (L��)A of any pertur-
bation � at A 2 A. In preparation for this we need a little technical result:

Lemma 5.4 Let V ! Y be a trivial real vector bundle of rank � 2 and let
L: L2

2(V ) ! L2
2(V ) be a bounded linear operator. Regard L2

2(V ) � C0(V ).
Suppose that L(�)(x) 2 h�(x)i wherever �(x) 6= 0. Then there exists a real
function f 2 L2

2(Y ) such that L(�) = f� for all � .

Proof Let � be a nowhere zero section. Then L(�) = f� for some f 2 C0(Y ).
Let �1 be a section which is pointwise linearly independent to � wherever it is
non-zero. Then L(�1)(x) = f1(x)�1(x) for some f1 at such points. However it
must also be the case that

L(� + �1)(x) = h(x)(� + �1)(x)

for some h. If �1(x) 6= 0 this leads to the relation

(f(x)− h(x))�(x) = (h(x)− f1(x))�1(x)

which forces f(x) = h(x) = f1(x). On the other hand if �1(x) = 0 then we
obtain

L(�1)(x) = (h(x) − f(x))�(x):

Since we have the freedom to make other choices for � the only possibility is
that h(x) = f(x) and so L(�1)(x) = 0 wherever �1(x) = 0. Thus L(�1) = f�1

i.e., L(�1)(x) = f(x)�1(x) for all x.

Choose �1 to be nowhere vanishing and reverse the roles of � and �1 above.
Then we obtain L(k�) = f(k�) for any function k 2 L2

2(Y ). Finally, given any
section �0 we may write this as a sum �0 = k� + �1 where � and �1 are as in
the preceding paragraph. Then

L(�0) = L(k� + �1) = f(k�) + f�1 = f�0:

If L(�) = f� 2 L2
2 for all � 2 L2

2 then it must be the case that f 2 L2
2 as

well.

The next results limits the possibilities for the normal linearization of a pertur-
bation which in turn forces it to be self-adjoint:
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Lemma 5.5 Given any admissible perturbation � and A 2 A there is a real
function fA 2 L2

2 on Y such that (L��)A(��) = fA�� for all �� 2 L2
2(S⊗HE).

It follows that (L��)A is L2{self-adjoint on L2
2 � L2(S ⊗H E).

Proof Assume an admissible perturbation � is given. Then

h(dAγ;−γ(�)); �A;�iL2 = 0 for all γ 2 L2
3(adE):

Performing a variation � 7! � + �� at � = 0 gives hγ(��); (L��)A(��)iL2 = 0
for all γ . Write (L��)A(��) = � . By assumption ��; � 2 L2

2 � C0 so we can
consider them as continuous sections. Then pointwise we have hγ(��); � ix = 0.
A local model for the �bre of S ⊗H E is just H and with the action of γ as
multiplication by Im H. Thus we see that � (x) = (L��)A(��)(x) 2 h��(x)i
at all points x where ��(x) 6= 0. The proof is completed by Lemma 5.4.

Let us now construct perturbations normal to A � C . Assume the cuto� � on
XA;0 is invariant under the stabilizer action. Let fA be a real L2

2 function on
Y . Set

�00A+a;�+� = �(a; �)(0; fA�) + �0
A;��(a; �;�(a; �)(0; fA�))

= �(a; �)fA� 2 XA+a;�+�:

This is again an admissible perturbation for supp� small and the linearization
of �00 in a normal direction �� at (A; 0) is (L��00)A(��) = fA��.

Thus we have:

Proposition 5.6 If A is irreducible then given any b 2 Xr
A there is an ad-

missible perturbation �0 such that �0A;0 = (b; 0) 2 XA;0 = Xr
A � L2

2(S ⊗H E).
On the other hand for any A there exists an admissible perturbation �00 such
that �00 = 0 and (L��00)A(��) = fA�� given any real function fA 2 L2

2(Y ).
Furthermore the support of �0 and �00 may be chosen to be contained in an
arbitarily small G{invariant neighbourhood of the orbit G � (A; 0) in C .

Proof of Proposition 2.13
Let X r�(A) = �FA + ��A 2 Xr

A . Then (X r�)−1(0)=GE = Mr
� . Let H�

A denote
the cokernel of (LX r�)A: L2

2(�1 ⊗ adE) ! Xr
A \ L2

1 . Then at the reducible
A = (A; 0) the cokernel H2

A of (LX�)A;0 splits as H�
A�H�

A . H�
A is the cokernel

of the normal operator D�
A . (Recall the map X� = X + � of (2.3) and its

linearization (2.5).)

Step 1 For a ZHS the orbit of the trivial connection [�] 2 Mr is already
isolated in BA since H�

�
�= H1(Y ) = f0g. By Proposition 5.6 and the com-

pactness of Mr� , we can �nd a �nite set of perturbations f�(i)g with support
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away from f[�]g such that if v 2 H�
A , A 2 (X r)−1(0) \ A� , is L2{orthogonal

to each �
(i)
A then v = 0. Thus by Sard{Smale there is a perturbation, call it �1

so that (X r�1
)−1(0) is cut out equivariantly transversely over A� , i.e. H�

A = f0g
for every A 2 (X r�1

)−1(0) \ A� . Hence Mr
�1

is, by the local Kuranishi model,
a �nite set of points which are non-degenerate within BA .

Step 2 Let [A] 2 Mr
�1

. The normal operator D�1
A at A is of the form

DA + fA , by Lemma 5.5. This operator is self-adjoint Fredholm and therefore
has discrete spectrum. Let �2 be a perturbation with the property that �2 = 0
and (L��2)A�� = �A��, �A 2 R where j�Aj is less than the distance of the
closest non-zero eigenvalue of D�1

A from zero. Then D�1+�2
A has trivial kernel

and [A] is a non-degenerate point in M�1+�2 . �2 can be chosen to have support
in an arbitarily small G{invariant neighbourhood of the orbit of A. Repeating
this procedure for every [A] we can �nd a perturbation �0 such that Mr

�0

consists entirely of non-degenerate points within B .

Step 3 After the preceding steps, Mr
�0 is isolated in M�0 . By Proposition 5.3

and the compactness of M��0 we can �nd a �nite set of perturbations f�(j)g
supported away from Mr

�0 such that if v 2 H2
x , x 2 X−1

�0 (0) \ C� , is L2{
orthogonal to every �(j) , then v = 0. Thus by Sard{Smale there exists a
�01 which is an arbitarily small linear combination of these �(j) ’s, such that
X−1
�1+�01

(0) is cutout equivariantly transversely over C� , i.e. H2
x = f0g for every

x 2 X−1
�1+�01

(0) \ C� . Note that �01 is supported away from Mr
�0 . Choosing our

�nal perturbation � to be �0 + �01 we get M� non-degenerate.

At every stage in Steps 1, 2 and 3 we can make the chosen perturbation as
small as we like in the uniform norm

k�0kB = sup
A;�

n
k�0A;�kL2

2;A

o
:

This completes the proof of Proposition 2.13.

6 Proof of Theorem 3.7

Let (g0; �0) and (g1; �1) be given. Assume that �i is non-degenerate with
respect to gi . In order to compare the moduli spaces for di�erent metrics we
may assume, as in section 4 a �xed model for the spinor bundle with respect
to g0 . Then we have a SW{equation depending smoothly on the parameter t
corresponding to the metric gt = (1 − t)g0 + tg1 and with perturbation �t =
(1 − t)�0 + t�1 . In this section we shall assume objects sub- or superscripted
with ‘t’ are with respect to gt .
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To the family f(gt; �t)g we have a parameterized moduli space

Z =
[
t

Mgt;�t � ftg � C � [0; 1]:

As in [3] and [9] to prove invariance of �(Y ) we need to show that Z is, after
suitable perturbation, a compact 1{dimensional cobordism with the appropriate
singularities. The counter-terms in the de�nition of �(Y ) are due to these
singularities.

In our analysis of Z we work �rst with the reducible strata Zr . In the following
the notation Zr� denotes the connection irreducible portion of Zr . In the pa-
rameterized context an admissible time-dependent perturbation � is one which
is a �nite sum

P
i %i(t)�

(i) where �(i) is admissible and %i has support in [0; 1].
Z� , Zr� etc. shall denote perturbed parameterized moduli spaces. Recall the
uniform norm, for non-time-dependent perturbations,

k�kB = sup
A;�

n
k�A;�kL2

2;A

o
:

Lemma 6.1 There exists an admissible time-dependent perturbation � such
that the perturbed parameterized reducible moduli space Zr� is non-degenerate
as a subspace of BA � [0; 1]. Furthermore if k�0;1kB < �0 then we can assume
k�t + �(t)kB < 2�0 .

Zr� can be regarded as the G{quotient of the zeros of the map X r� (A; t) =
�tFA + �(t)A 2 Xr

A . The proof of the Lemma follows easily from constructing
and applying time-dependent perturbations to X r� supported away from f[�]g
in the manner of section 5. In this way the strata corresponding to the trivial
connection is isolated in Zr� and is the product f[�]g � [0; 1]. The irreducible
portion of Zr� with the choice of � in Lemma 6.1 is a compact corbordism
between Mr�

g0;�0
and Mr�

g1;�1
.

Assume now Zr� as in Lemma 6.1. The normal operator at A with respect to
(gt; �t + �(t)) will be denoted by Dt;�

A (Eq. (3.1)). The kernel of this operator
(= cokernel by Lemma 5.5) is the normal cohomology H�

A;t .

Let u 7! ([A(u)]; t(u)), juj < " be a 1{1 parameterization of an open subset J
of Zr� . Let K = R if J is in the connection-irreducible strata and K = H if
J is in the connection-trivial strata.

De�nition 6.2 Call Zr� normally transverse along J if the family fDt(u);�
A(u) g

has transverse spectral flow as K{linear operators. (Recall that transverse
spectral flow is the situation of simple eigenvalues, with respect to K, crossing
zero transversely.) Call Zr� normally tranverse if it is normally transverse in a
neighbourhood of every point.
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In terms of local models, let A = A(0), t0 = t(0) and U be a su�ciently
small stab(A0){invariant neighbourhood of (A0; t0) in the slice (A0; t0)+Xr

A�
[0; 1]. U can be identi�ed with a neighbourhood of ([A0]; t0) in BA� [0; 1]. To
simplify notation henceforth denote H�

A0;t0
by H�

0 . Assume H�
0 is non-trivial,

otherwise U can be chosen such that Dt;�
A is invertible in U . Consider the

restriction of Dt;�
A to the normal cohomology H�

0 followed by L2{projectionQ
back onto H�

0 . This determines, for each (A; t) 2 U a symmetric operator
T (A; t) acting on H�

0 . The latter space is endowed with the natural L2{inner
product. Then the kernel (cokernel) of Dt;�

A is exactly modelled by the kernel
(cokernel) of T (A; t). Denote the symmetric operators which commute with
K by SymK(H�

0 ). Let u 7! (A(u); t(u)) 2 Xr
A � (0; 1), juj < " be a 1{

1 parameterization of an open subset J = U \ (X r� )−1(0) of Zr� . Then the
condition of being normally transverse along J translates as (i) H�

0
�= K and

(ii) the path u 7! T (A(u); t(u)) 2 SymK(H�
0 ) �= R is transverse to f0g.

Lemma 6.3 Assume � as in Lemma 6.1. There exist an admissible time-
dependent perturbation �0 such that Zr�+�0 ’ Zr� and Zr�+�0 is normally trans-
verse. Furthermore if k�0;1kB < �0 we can assume k�t + �(t) + �0(t)kB < 3�0 .

Proof We divide the argument into the separate cases of the irreducible and
trivial strata of Zr� . No matter what perturbation � is chosen the trivial strata
is always f[�]g � [0; 1]. However changing � can change Zr�� . The space S of
admissible perturbations is a normed linear space, with the norm k � kB . Since
Zr�� is already non-degenerate as a subspace of B�A� [0; 1] i.e. (X r� )−1(0)\A��
[0; 1] is cutout equivariantly transversely, it follows that for any su�ciently
uniformly small �0 2 S , Zr�� and Zr��+�0 are related by a cobordism which is
a product and thus are di�eomorphic spaces. In fact the transverse condition
means that the normal bundle to Zr�� in BA � [0; 1] at any point is isomorphic
to S=S0 where S0 is the subspace of those � such that � = 0.

Case 1: Irreducible strata Fix ([A0]; t0) 2 Zr�� , t 6= 0; 1 and let U be a
su�ciently small G{invariant neighbourhood of (A0; t0) in (A0; t0)+Xr

A� [0; 1]
such that a local model for Dt;�

A as above exists in U . Assume H�
0 is non-trivial.

We examine the e�ect of a perturbation on the family Dt;�
A along Zr�� .

Consider the parameterized local model map P : U �S ! SymR(H�
0 ) based at

(A0; t0; 0) given by
P (A; t; �) =

Q �Dt;�+�(t)�
A

where � = �(t) is a cuto� function on R with support close to t0 . Note that
Dt;�+�
A = Dt

A + (L��(t) + L��)A . By Lemma 5.5, (L��(t))A� = fA;t� and
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(L��)A� = hA� for some functions fA;t and hA on Y . Since S is a linear
space, we may identify tangent vectors �� with elements � in S . We then
have, for the derivative of P at (A0; t0; 0),

dP (��)� =
Q�

hA0�
�
; dP (�a)� =

Q�
�a � �+ (Lf)A0;t0(�a)�

�
:

By choosing h = hA0 = 1 we see that the image of dP includes at least the
span of the identity operator in SymR(H�

0 ); thus rank(dP ) � 1.

Claim If dimR(H�
0 ) > 1 then rank(dP ) � 2.

In order to establish the claim we invoke the unique continuation principle for
H�

0 i.e. if � 2 H�
0 then � cannot vanish on an open set unless � = 0. Writing

A0 = � + a where � is smooth, then � 2 H�
0 is a solution of the perturbed

smooth Dirac operator D�� + a � � + f� = 0 where a and f are continuous.
Unique continuation holds for such solutions.

Let f�1; : : : ; �ng, n > 1 be a R{orthonormal basis for H�
0 . The matrix of

dP (��) with respect to this basis is (hh�i; �jiL2). Assume the rank of dP is
unity. This implies that hh�i; �jiL2 = 0 for all h and i 6= j . This in turn
implies the pointwise orthogonal condition h�i; �jiy = 0, i 6= j for all y 2 Y . It
then follows that hdP (�a)�i; �jiL2 = h�a ��i; �jiL2 , i 6= j . However the Cli�ord
action of �1 ⊗ adE on S ⊗H E is �brewise transitive. Thus we can �nd a �a
such that h�a � �i; �jiL2 6= 0, i 6= j . This proves that the image of dP is not
contained in the span of the identity in SymR(H�

0 ). Therefore dP is at least
rank two and the claim is proven.

Let u 7! (A(u); t(u)) 2 Xr
A � (0; 1), juj < " be a 1{1 parameterization of

U \ (X r� )−1(0) with A(0) = A0 and t(0) = t0 . Let T�(u) = P (A(u); t(u); 0) be
the local model for Dt(u);�

A(u) on SymR(H�
0 ). By construction, P (A0; t0; 0) is the

zero operator on SymR(H�
0 ). In SymR(H�

0 ) the space of invertible operators
is a codimension one real variety V . Any point which is not the zero operator
in this variety represents an operator of non-trivial rank.

Let Xr be the vector bundle over A� whose �ber at A is the slice space Xr
A

and let Q: U � S ! Xr � SymR(H�
0 ) be given by

Q(A; t; �) = (X r�+�(t)�(A); P (A; t; �)):

Since this is a submersion onto the �rst factor along (X r� )−1(0) \ A� � [0; 1]
(the transversality condition) and rank(dP ) � 2 if dimR(H�

0 ) > 1 and is onto
if dimR(H�

0 ) = 1, then there is a time-dependent perturbation �0(t): = �(t)�
such that the deformation of the family fT�+s�0g at s = 0 is normal to the
path T� = T�(u). Therefore we can choose an arbitarily small �0 so that the
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operators T�+�0(u) have non-trivial rank for all u. (Note: at this stage we do
not have su�cently many perturbations in hand to make T�+�0 transverse to
V .) Thus if we work with � + �0 we �nd that the rank (over R) of H�

A(u);u

near u = 0 drops by one if dimR(H�
0 ) > 1 and becomes transverse to V = f0g

if dimR(H�
0 ) = 1. To complete the argument to obtain normal transversality

globally over the connection-irreducible strata, proceed by an induction argu-
ment with the overall rank of H�

A;t over Zr��+�0 decreasing by one in each step.
Letting �0 denote the �nal perturbation we see that over Zr��+�0 there exists a
�nite number of points where H�

A;t is non-trivial and these points H�
A;t
�= R

and with T�+�0 transverse to V = f0g. This is equivalent to transverse spec-
tral flow. The last assertion of the lemma in this case is a consequence of the
observation that the induction is completed in a �nite number of steps and in
each step we may take the perturbation to be as small as we like.

Case 2: Trivial strata Let ([A0]; t0) 2 f[�]g � [0; 1]. Here the relevant
parameterized local model map P is the same as the map P as above but
with A = � �xed, i.e. P : S ! SymH(H�

0 ). The argument proceeds just as
before (but without the complication of the deformation in the moduli space)
provided we can again establish that if dimH(H�

0 ) > 1 then rank(dP ) � 2.
This time let f�1; : : : ; �ng, n > 1 be a H{orthonormal basis for H�

0 . Again if
we assume the rank of dP is unity we get the pointwise orthogonal condition
h�i; �jiy = 0, i 6= j for all y 2 Y . However this would mean that S ⊗H E
has at least 8 pointwise orthogonal non-zero sections. This is impossible since
S ⊗H E is rank 4.

This completes the proof of the lemma.

Remark 6.4 A more satisfactory result would be that P is a submersion onto
SymK(H�

0 ) which is the situation in [3]; then transverse spectral flow follows
easily by Sard{Smale. A submersion does not seem to be generally true in our
and the original SW context. The same problem is encountered in [10] and [11].

De�nition 6.5 Suppose Zr� is normally tranverse and let u 7! ([A(u)]; t(u)),
juj < " be a 1{1{parameterization of an open neighbourhood in Zr� . A point in
Zr� which is contained in such a parameterization and where there is spectral
flow for Dt(u);�

A(u) is called a singular or bifurcation point.

At a singular point ([A0]; t0), the local model for Z� is the quotient by stab(A0)
of the zeros of a stab(A0){equivariant obstruction map �: H�

0 �R ! H�
0 of

the form
�(q; t) = qt:
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(See [10] and [3].) This in turn implies that the a neighbourhood of ([A0]; t0) is
the zeros of the map [0;1)�R! R, (r; t) 7! rt with f0g �R corresponding
to the reducible portion and (0;1) � f0g the irreducible. One other conse-
quence of the local model in this normal transverse situation is that the points
corresponding to the irreducibles su�ciently near ([A0]; t0) are non-degenerate.

On the other hand, at a non-singular point ([A0]; t0) of a normally transverse
Zr� the Kuranishi local model gives a neighbourhood of ([A0]; t0) in B � [0; 1]
an isolated open interval.

Corollary 6.6 Assume � as in Lemma 6.1. There exists a time-dependent
admissible perturbation �0 such that (i) Zr�+�0 ’ Zr� (ii) Zr�+�0 is normally
transverse and (iii) Z��+�0 is non-degenerate. Furthermore if k�0;1kB < �0 we
can assume k�t + �(t) + �0(t)kB < 4�0 .

Proof Run through the proof of Lemma 6.3. The comments above tell us
that Z��+�0 is non-degenerate in a neighbourhood of Zr�+�0 . Now construct and
apply admissible time-dependent perturbations �00 in the manner of section 5,
which can be chosen to have support away from Zr�+�0 , making all of Z��+�0+�00

non-degenerate. The perturbation �00 can be chosen arbitarily small.

Completion of proof of Theorem 3.7 As above we have two non-degenerate
metrics and perturbations (g0; �0) and (g1; �1) where �i is small with respect
to gi .

Assume �rst the case that the metric g = g0 = g1 is unchanging. The condition
�0 , �1 are small (De�nition 3.6) implies Mr�

�i � [jN
j where the N j are as

in the de�nition of the proposed invariant. By Corollary 6.6 we can �nd a
parameterized moduli space Z� such that

(i) Zr�� is a smooth compact 1{dimensional corbodism between Mr�
�0

and
Mr�

�1
. Additionally we know from [12] that this is an oriented cobordism

so that it’s boundary is Mr�
�1
− Mr�

�0
where Mr�

�0;1
are given Taubes’

orientation
(ii) Zr�� � [jN j

(iii) Z�� is a smooth compact 1{manifold with boundary

M��0
[M��1

[ fsingular points in Zr� g:
Just as in [3] it is seen thatX

[A]2Mr�
�1

"[A]�[A] −
X

[A]2Mr�
�0

"[A]�[A] (6.1)

= #fsingular points on Zr�� g mod 2:
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For completeness we give an argument. Fix a component N j and consider
Zr�� \ N j . In the de�nition of �[A] for [A] 2 Mr�

�0;1
\ N j choose all the paths

[γ] to be in the same homotopy class rel f[�]g [ N j . Then for these [A]’s the
term cs(γ(0))− cs(γ(1)) is the same constant. Make this choice. Then �[A] is
the normal spectral flow SF�(γ) from [�] to [A] in the given �xed homotopy
class of [γ] plus a �xed additive constant. Notice then that �[A] changes exactly
by the normal spectral flow as we vary [A] within N j . Let Γ be a connected
component of Zr�� \ N j with non-empty boundary f[A]; [A0]g � Mr�

�0;1
\ N j .

After some consideration it is seen that the three following sums compute the
mod2 normal spectral flow along Γ and thus the mod2 cardinality of the sin-
gular points on Γ:

(i) "[A]�[A] + "[A0]�[A0] = �(�[A] − �[A0]) when [A]; [A0] 2Mr�
�1

(ii) −"[A]�[A] − "[A0]�[A0] = �(�[A]− �[A0]) when [A]; [A0] 2Mr�
�0

(iii) "[A]�[A] − "[A0]�[A0] = �(�[A] − �[A0]) when [A] 2Mr�
�1

, [A0] 2Mr�
�0

.

On the other hand, if Γ has empty boundary then the number of singular
points on Γ equals the normal spectral flow around Γ and this is zero, since
it is contained within N j . From this it is straightforward to deduce (6.1) by
rearranging the sum.

Next we compute that the di�erence
1
2
c(g; �1)− 1

2
c(g; �0) (6.2)

= H{spectral flow of fDt;�
� g1t=0

= �#
n

singular points on trivial strata f[�]g � [0; 1]
o
:

Finally we have equality of the sumsX
Mr�

�1

1
4
"[A] =

X
Mr�

�0

1
4
"[A] (6.3)

both being 1=2 of the algebraic sum which is Casson’s invariant [12]. Thus
from (6.1), (6.2), (6.3) we �nd that

1
2
c(g; �1) +

X
Mr�

�1

"[A]
�
�[A] +

1
4

�

− 1
2
c(g; �0)−

X
Mr�

�0

"[A]
�
�[A] +

1
4

�
� #

n
singular points on Zr�

o
mod 2

�
X
M��0

1−
X
M��1

1 mod 2:
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The last line follows from Z�� being a smooth compact 1{manifold with bound-
ary M��0

[M��1
[fsingular points on Zr�g. Thus the independence of �(Y ) on

choice of small, non-degenerate perturbation � is established.

The general case g0 6= g1 follows an identical argument except for the following
details. When varying the metric spectral flow can occur at the trivial con-
nection � in SF�(γ), which is the initial point of γ . However the operator
D� at this point is quaternionic and thus there is no change mod2. Secondly
the neighbourhoods N j are de�ned with reference to the background met-
ric, thus we get for the di�erent metrics g0 , g1 two sets of neighbourhoods
N j

0 , N j
1 . However by what we have established we can make any choice of

(non-degenerate) �0;1 we like. Choose �0;1 su�ciently small in norm so that
Mr�

�0;1
� [j(N j

0 \N
j
1 ). Then we may proceed with the rest of the argument as

before. This proves that �(Y ) is an invariant.

Finally, let us show that �(−Y ) = �(Y ), −Y denoting Y with the reversed ori-
entation. Reversing orientation but keeping the metric, spin structure P ! Y
and and spinor bundle S �xed simply changes the action of Cli�ord mutipli-
cation by −1. The SW{equation of the orientation reversed structure is the
same as the orginal except that the Dirac operator DA switches to −DA . If
� = (�k; l) is the non-degenerate and small perturbation used to compute �(Y )
then choose �0 = (�k;−l) for the reversed structure. Thus if (A;�) is a SW{
solution with respect to � then (A;−�) is a solution of the orientation reversed
situation for �0 . In the following M− , "− etc. will refer to the reversed orienta-
tion structure. Thus M−�0 =M� and �0 is a non-degenerate small perturbation
for M− .

The normal and tangential deformation operators D�
A and K�

A in the reversed
situation are the negatives of those in the original. Then SF�;−(γ) = −SF�(γ)−
dimkerK�

γ(0) � SF�(γ) mod 2 since K�
γ(0) � 0 mod 2. The orientation for

detind(−K�) = detind(K�) on the other hand is reversed by the parity of
dimkerK�

γ(0) = 3 as it’s overall orientation is �xed by that at [�]. The Chern{
Simons functional as well as APS spectral invariants depend on the orientation
of Y . Thus "−[A]�−[A] = "[A]�[A], c−(g; �0) = −c(g; �) and

P
Mr�;−

�0
"−[A] =

−PMr�
�
"[A].

Combining all of the above we obtain

�(Y )− �(−Y ) = c(g; �) +
1
2

X
Mr�

�

"[A]:
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Let �(Y ) denote Casson’s invariant [1]. In [12] it is established that

1
2

X
Mr�

�

"[A] = −�(Y )

and it was proven by Casson that �(Y ) � �(Y ) mod 2. Since c(g; �) �
�(Y ) mod 2 we obtain �(Y ) − �(−Y ) � 0 mod 2. This completes the proof
of Theorem 3.7.

7 Proof of Theorem 3.8

Let us begin by reviewing the SU(3){Casson invariant (in our terminology). For
more details refer to [3]. Denote by MSU(3) the moduli space of flat SU(3){
connections on the trivial SU(3) principal bundle over Y . As always Y is
oriented. The reducible subspace is exactly MSU(2) , the moduli space of flat
SU(2){connections. This coincides with Mr in our SW{context. A suitable
class of ‘holonomy’ perturbations h can be constructed so that the perturbed
space MSU(3)

h is non-degenerate. This means that it is a �nite number of
points. Additionally each irreducible point [A] has an oriented b"[A] 2 �1 given
by spectral flow. However the perturbed reducible portion MSU(3);r

h does not
consist of SU(2){connections but essentially U(2){connections. MSU(3);r

h lies
in BU(2) the quotient space of U(2){connections; as before there is a Chern{
Simons function cs on connnections which descends to cs: BU(2) ! R=Z. To
make an invariant out of

P
MSU(3)�

h

b"[A] there are counter-terms associated to

MSU(3)r�
h = MSU(3);r

h − f[�]g. However we need to make h small which is
the same condition used in our SW{context (and from which our de�nition
originated). Denote by fN j

SU(3)g the corresponding system of neighbourhoods

of components of MSU(2) − f[�]g in BU(2) .

Along the reducible strata BU(2) we have tangential and normal deformation op-
erators giving rise to tangential and normal spectral flow quantities SF�SU(3)(γ)
(real spectral flow), SF�SU(3)(γ) (complex spectral flow) along γ , respectively.
The term SF�SU(3)(γ) is used to de�ne Taubes’ orientation "[A] = �1 for

[A] 2MSU(3)r�
h . SF�SU(3)(γ) is used in the term

�SU(3)[A] = SF�SU(3)(γ) + 2cs(γ(0)) − 2cs(γ(1)):

As before [γ(t)], 0 � t � 1 is a path from [�] to [A] 2 N j
SU(3) say and [γ] is

the path from [�] to the component Kj � MSU(2) , and homotopic to [γ] rel

Geometry & Topology, Volume 7 (2003)



998 Yuhan Lim

N j
SU(3) [f[�]g. The value of �SU(3)[A] does not depend on the choice of [γ] or

[γ]. The SU(3){Casson invariant is then de�ned as

�SU(3)(Y ) =
X

MSU(3)�
h

b"[A]−
X

MSU(3)r�
h

"[A](�SU(3)[A] + 1) 2 R:

Fix a component Kj and homotopy class [γj ] rel N j
SU(3) [ f[�]g of paths from

[�] to N j
SU(3) . For every [A] 2 N j

SU(3) de�ne �SU(3)[A] using a path [γ]
homotopic to [γj ]. Then the Chern{Simons term is the same constant over all
[A] 2 N j

SU(3) , and the spectral flow term is well-de�ned (depending only on
[γj ]). We express this as

�SU(3)[A] = SF�SU(3)[A] + 2�cs(j):

Thus we may rewrite the counter-termX
MSU(3)r�

h

"[A]�SU(3)[A] =
X
j

X
MSU(3)r�

h
\N j

SU(3)

"[A] SF�SU(3)[A] (7.1)

+ 2
X
j

� X
MSU(3)r�

h
\N j

SU(3)

"[A]
�

�cs(j):

The local index term

�U(2)(Kj) =
X

MSU(3)r�
h

\N j
SU(3)

"[A]

is well-de�ned independent of small perturbation h. Given any other small non-
degenerate perturbation h0 we have a parameterized moduli space which is a
compact oriented cobordism betweenMSU(3)r�

h \N j
SU(3) andMSU(3)r�

h0 \N j
SU(3) .

In our SW{context make the same construction. We can identify homotopy
classes [γj ] in our SW{context with those in the SU(3){Casson by the inclusion
BA � BU(2) which is a homotopy equivalence. Then we have in a similiar
manner X

Mr�
�

"[A]�[A] =
X
j

X
Mr�

� \N j
"[A] SF� [A] (7.2)

+
X
j

� X
Mr�

� \N j
"[A]

�
�cs(j)

and a local index
�SU(2)(Kj) =

X
Mr�

� \N j
"[A]:
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The two indices �U(2) and �SU(2) are equal. This is established by working
with a restricted class of holonomy perturbations h0 as in [12] or [3] which
keeps MSU(3)r�

h0 within SU(2){connections. Then it is straightforward to relate
this to our space Mr�

� by a compact oriented cobordism. The non-integral
terms for �SU(3)(Y ), 2�(Y ) come from (7.1), (7.2) respectively. It follows that
�SU(3)(Y ) + 2�(Y ) mod 4 is integral. It is also independent of the orientation
of Y , since �SU(3)(Y ) and �(Y ) are both independent of orientation.
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