УДК 517.98

TRACE CLASS AND LIDSKIǐ TRACE FORMULA ON KAPLANSKY-HILBERT MODULES

U. Gönüllü

Abstract

In this paper, we introduce and study the concepts of the trace class operators and global eigenvalue of continuous Λ-linear operators in Kaplansky-Hilbert modules. In particular, we give a variant of Lidskiĭ trace formula for cyclically compact operators in Kaplansky-Hilbert modules.

Mathematics Subject Classification (2000): 47B60, 46A19, 46B99, 46L08, 47B07.
Key words: Kaplansky-Hilbert module, cyclically compact operator, global eigenvalue, trace class, Lidskiĭ trace formula.

1. Introduction

Kaplansky-Hilbert module or $A W^{*}$-module arose naturally in Kaplansky's study of $A W^{*}$ algebras of type I [2]. I. Kaplansky proved some deep and elegant results for such structures, and therefore they have many properties of Hilbert spaces. In [7] A. G. Kusraev established functional representations of Kaplansky-Hilbert modules and $A W^{*}$-algebras of type I by spaces of continuous vector-functions and strongly continuous operator-functions, respectively. The functional representations are the main technical tool used in this paper. Cyclically compact sets and operators in lattice-normed spaces were introduced by A. G. Kusraev in [5] and [6], respectively. In [8] (see also [9]) a general form of cyclically compact operators in Kaplansky-Hilbert modules, which, like the Schmidt representation of compact operators in Hilbert spaces, as well as a variant of the Fredholm alternative for cyclically compact operators, was also given. Recently, cyclically compact sets and operators in Banach-Kantorovich spaces over a ring of measurable functions were investigated in $[1,3,4]$.

In this paper, we introduce and study the concepts of the trace class operators and global eigenvalue and multiplicity of a global eigenvalue, and give a variant of Lidskiĭ trace formula for cyclically compact operators in Kaplansky-Hilbert modules. We refer to [9] for the whole standard terminology and detailed information.

2. Preliminaries

A C^{*}-module over the Stone algebra Λ is a Λ-module X equipped with a Λ-valued inner product $\langle\cdot \mid \cdot\rangle: X \times X \rightarrow \Lambda$ satisfying the following conditions:
(1) $\langle x \mid x\rangle \geqslant 0 ;\langle x \mid x\rangle=0 \Leftrightarrow x=0$;
(2) $\langle x \mid y\rangle=\langle y \mid x\rangle^{*}$;
(3) $\langle a x+b y \mid z\rangle=a\langle x \mid z\rangle+b\langle y \mid z\rangle$;

[^0](4) X is complete with respect to the norm $\|x\|\|:=\|\langle x \mid x\rangle \|^{\frac{1}{2}}$
for all x, y, z in X and a, b in Λ. As well as its scalar-valued norm $\left\|\|\cdot\|\right.$, a C^{*}-module X has a vector norm, given by $|x|:=\sqrt{\langle x \mid x\rangle}$. It is not difficult to deduce $\||x\|\|=\||x|\|$ and the Cauchy-Bunyakovskiǐ-Schwarz inequality $|\langle x \mid y\rangle| \leqslant|x| y \mid$.

A Kaplansky-Hilbert module or an $A W^{*}$-module over Λ is a unitary C^{*}-module over Λ that enjoys the following two properties:
(1) let x be an arbitrary element in X, and let $\left(e_{\xi}\right)_{\xi \in \Xi ~ b e ~ a ~ p a r t i t i o n ~ o f ~ u n i t y ~ i n ~}^{P}(\Lambda)$ with $e_{\xi} x=0$ for all $\xi \in \Xi$; then $x=0$;
(2) let $\left(x_{\xi}\right)_{\xi \in \Xi}$ be a norm-bounded family in X, and let $\left(e_{\xi}\right)_{\xi \in \Xi}$ be a partition of unity in $\mathfrak{P}(\Lambda)$; then there exists an element $x \in X$ such that $e_{\xi} x=e_{\xi} x_{\xi}$ for all $\xi \in \Xi$ where $\mathfrak{P}(\Lambda)$ denotes complete Boolean algebra of all projections p of Λ (i. e., $p^{2}=p$ and $p^{*}=p$). We say that X is faithful if for every $a \in \Lambda$ the condition $a x=0$ for all $x \in X$ implies that $a=0$.

Throughout this paper the letters X and Y denote faithful Kaplansky-Hilbert modules over Λ. Moreover, Q and H will denote an extremally disconnected compact space and a Hilbert space, respectively.

Let $B_{\Lambda}(X, Y)$ denote the set of all continuous Λ-linear operators from X into Y. In case $X=Y, B_{\Lambda}(X):=B_{\Lambda}(X, X)$ is an $A W^{*}$-algebra of type I with center isomorphic to $\Lambda[2$, Theorem 7$]$. Every continuous Λ-linear operator is dominated and bo-continuous $[9$, Theorem 7.5.7.(1)]. Furthermore, for every continuous Λ-linear operator T,

$$
|T| \mathbf{1}=\sup \{|T x|: x \in X,|x| \leqslant \mathbf{1}\}=\sup \{|T x|: x \in X,|x|=\mathbf{1}\},
$$

holds, and $|T| \in \operatorname{Orth}(\Lambda)$ [9, Theorem 5.1.8.], whence we can identify $|T| \mathbf{1}$ and $|T|$ since $\operatorname{Orth}(\Lambda)=\Lambda$.

Let B be a complete Boolean algebra. Denote by $\operatorname{Prt}_{\mathbb{N}}(B)$ the set of sequences $\nu: \mathbb{N} \rightarrow B$ which are partitions of unity in B. For $\nu_{1}, \nu_{2} \in \operatorname{Prt}_{\mathbb{N}}(B)$, the symbol $\nu_{1} \ll \nu_{2}$ abbreviates the following assertion: if $m, n \in \mathbb{N}$ and $\nu_{1}(m) \wedge \nu_{2}(n) \neq 0_{B}$ then $m<n$. Given a mixcomplete subset $K \subset X$, a sequence $s: \mathbb{N} \rightarrow K$, and a partition $\nu \in \operatorname{Prt}_{\mathbb{N}}(B)$, put $s_{\nu}:=$ $\operatorname{mix}(\nu(n) s(n)) n \in \mathbb{N}$. A cyclic subsequence of $s: \mathbb{N} \rightarrow K$ is any sequence of the form $\left(s_{\nu_{k}}\right)_{k \in \mathbb{N}}$, where $\left(\nu_{k}\right)_{k \in \mathbb{N}} \subset \operatorname{Prt}_{\mathbb{N}}(B)$ and $\nu_{k} \ll \nu_{k+1}$ for all $k \in \mathbb{N}$. A subset $C \subset X$ is said to be cyclically compact if C is mix-complete and every sequence in C has a cyclic subsequence that converges (in norm) to some element of C. A subset in X is called relatively cyclically compact if it is contained in a cyclically compact set. An operator $T \in B_{\Lambda}(X, Y)$ is called cyclically compact if the image $T(C)$ of any bounded subset $C \subset X$ is relatively cyclically compact in Y. The set of all cyclically compact operators is denoted by $\mathscr{K}(X, Y)$.

Let $x \in X, y \in Y$. Define the operator $\theta_{x, y}: X \rightarrow Y$ by the formula

$$
\theta_{x, y}(z):=\langle z \mid x\rangle y, \quad z \in X,
$$

and note that $\theta_{x, y} \in \mathscr{K}(X, Y)$.
The techniques employed in [1] yield the following theorem: $U=S_{\widetilde{u}}$ is a cyclically compact opeartor on $C_{\#}(Q, H)$ if and only if there is a comeager set Q_{0} in Q such that $u(q)$ is a compact operator on H for all $q \in Q_{0}$.

3. The Trace Class

In this section, we study the trace class operators on Kaplansky-Hilbert modules and investigate the dualities of the trace class.

From now onward, it will be assumed that $\left(e_{k}\right)_{k \in \mathbb{N}},\left(f_{k}\right)_{k \in \mathbb{N}}$, and $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ verify the representation of a cyclically compact operator T as in [9, Theorem 8.5.6]
3.1. Definition. Let $1 \leqslant p<\infty$. The symbol $\mathscr{S}_{p}(X, Y)$ denotes the set of all cyclically compact operators T such that $\left(\mu_{k}^{p}\right)_{k \in \mathbb{N}}$ is o-summable in Λ. Put $v_{p}(T):=\left(o-\sum_{k \in \mathbb{N}} \mu_{k}^{p}\right)^{\frac{1}{p}}$.
$\mathscr{S}_{1}(X, Y)$ and $\mathscr{S}_{2}(X, Y)$ are called the trace class and the Hilbert-Schmidt class, respectively.
3.2. Proposition. Let $T \in \mathscr{K}(X, Y)$. Then T is in $\mathscr{S}_{1}(X, Y)$ if and only if there exist families $\left(x_{i}\right)_{i \in I}$ in X and $\left(y_{i}\right)_{i \in I}$ in Y such that $\left(\left|x_{i} \| y_{i}\right|\right)_{i \in I}$ is o-summable and $T=$ bo- $\sum_{i \in I} \theta_{x_{i}, y_{i}}$. In particular, if $\left(x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ are projection orthonormal families and $\left(\alpha_{i}\right)_{i \in I}$ is a family with positive elements, then $v_{1}(T)=o-\sum_{i \in I} \alpha_{i} \mid x_{i}\left\|y_{i}\right\|$.
\triangleleft If T is in $\mathscr{S}_{1}(X, Y)$, then the result follows from $x_{n}:=\mu_{n} e_{n}$ and $y_{n}:=f_{n}$.
For the converse, assume that the families $\left(x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ satisfy the stated conditions. The inequality

$$
\begin{aligned}
\sum_{n=1}^{k} \mu_{n} & =\sum_{n=1}^{k}\left\langle T e_{n} \mid f_{n}\right\rangle=\sum_{n=1}^{k}\left(o-\sum_{i \in I}\left\langle e_{n} \mid x_{i}\right\rangle\left\langle y_{i} \mid f_{n}\right\rangle\right) \\
& \leqslant o-\sum_{i \in I}\left(\left(\sum_{n=1}^{k}\left|\left\langle e_{n} \mid x_{i}\right\rangle\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{k}\left|\left\langle y_{n} \mid f_{i}\right\rangle\right|^{2}\right)^{1 / 2}\right) \leqslant o-\sum_{i \in I}\left|x_{i} \|\left|y_{i}\right|\right.
\end{aligned}
$$

holds for each $k \in \mathbb{N}$, and the proof is finished. \triangleright
3.3. Corollary. Let $T \in \mathscr{S}_{1}(X, Y)$ and $\lambda \in \Lambda$. Then $v_{1}(\lambda T)=|\lambda| v_{1}(T)$ and $|T| \leqslant v_{1}(T)$ and

$$
v_{1}(T)=\inf \left\{o-\sum_{i \in I}\left|x_{i}\right|\left|y_{i}\right|:\left(x_{i}\right)_{i \in I} \subset X,\left(y_{i}\right)_{i \in I} \subset Y\right\}
$$

where $\left(x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ satisfy condition (ii) of Proposition 3.2.
3.4. Lemma. Let $T \in \mathscr{S}_{1}(X)$. Then the net $(|\langle T e \mid e\rangle|)_{e \in \mathscr{E}}$ is o-summable in Λ for all projection bases \mathscr{E}, and the sum $o-\sum_{e \in \mathscr{E}}\langle T e \mid e\rangle$ is the same for all projection bases \mathscr{E} of X.
$\triangleleft \mathrm{It}$ is enough to observe that there exist a positive cyclically compact operator R_{1} and a cyclically compact operator R_{2} in $\mathscr{S}_{2}(X)$ such that $T=R_{1} R_{2}$ and $\langle T e \mid e\rangle=\left\langle R_{2} e \mid R_{1} e\right\rangle$ hold for every $e \in \mathscr{E}$, namely,

$$
R_{1}:=b o-\sum_{k=1}^{\infty} \mu_{k}^{1 / 2} \theta_{f_{k}, f_{k}}, \quad R_{2}:=b o-\sum_{k=1}^{\infty} \mu_{k}^{1 / 2} \theta_{e_{k}, f_{k}} . \triangleright
$$

The trace of $T \in \mathscr{S}_{1}(X)$ is defined by $\operatorname{tr}(T):=o-\sum_{e \in \mathscr{E}}\langle T e \mid e\rangle$ where \mathscr{E} is a projection bases of X. Observe that $v_{1}(T)=\operatorname{tr}(T)$ is satisfied for every positive operator T in $\mathscr{S}_{1}(X)$ and $\operatorname{tr}(T)=o-\sum_{i \in I}\left\langle y_{i} \mid x_{i}\right\rangle$ where $\left(x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ satisfy the condition (ii) of Proposition 3.2, and so tr is a Λ-linear operator.
3.5. Lemma. The following statements hold:
(i) $\operatorname{tr}:\left(\mathscr{S}_{1}(X), v_{1}(\cdot)\right) \rightarrow \Lambda$ is a dominated and bo-continuous Λ-linear operator. In particular, $|\operatorname{tr}(T)| \leqslant v_{1}(T)$ and $|\operatorname{tr}|=\mathbf{1}$;
(ii) $\operatorname{tr}\left(T^{*}\right)=\operatorname{tr}(T)^{*}\left(T \in \mathscr{S}_{1}(X)\right)$;
(iii) $\operatorname{tr}(T L)=\operatorname{tr}(L T)$ whenever $T L, L T \in \mathscr{S}_{1}(X)\left(T \in \mathscr{K}(X)\right.$ and $\left.L \in B_{\Lambda}(X)\right)$;
(iv) If $T \in \mathscr{S}_{1}(Y, X)$ and $L \in B_{\Lambda}(X, Y)$, then $T L \in \mathscr{S}_{1}(X), L T \in \mathscr{S}_{1}(Y)$ and $|\operatorname{tr}(T L)| \leqslant$ $v_{1}(T)|L|$.
\triangleleft (i) Using the representation of T, we deduce $|\operatorname{tr}(T)| \leqslant v_{1}(T)$. Thus, tr is bo-continuous and subdominated, and hence it is dominated, by virtue of [9, Theorem 4.1.11.(1)].
(ii) Follows immediately from the definition of tr.
(iii) Use the representation of T to obtain $\operatorname{tr}(L T)=\operatorname{tr}(T L)$.
(iv) If $\left(x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ satisfy the condition (ii) of Proposition 3.2 for T, then $\left(L^{*} x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ also satisfy the same conditions for $T L$. Therefore, we have $T L \in \mathscr{S}_{1}(X)$ and the inequality

$$
|\operatorname{tr}(T L)|=\left|o-\sum_{i \in I}\left\langle y_{i} \mid L^{*} x_{i}\right\rangle\right|=\left|o-\sum_{i \in I}\left\langle L y_{i} \mid x_{i}\right\rangle\right| \leqslant o-\sum_{i \in I}\left|L y_{i}\left\|x_{i}\left|\leqslant|L| o-\sum_{i \in I}\right| y_{i}\right\| x_{i}\right|
$$

and so the desired inequality follows from Corollary 3.2. \triangleright
Let $(\mathscr{X},|\cdot|, \Lambda)$ be a Banach-Kantorovich space. Denote by \mathscr{X}^{*} the set of all Λ-linear operator $\eta: \mathscr{X} \rightarrow \Lambda$ such that $(\exists c \in \Lambda)|\eta(x)| \leqslant c|x|(\forall x \in \mathscr{X})$, and note that \mathscr{X}^{*} consists of all $||\cdot| \|$-continuous Λ-linear operators $\eta: \mathscr{X} \rightarrow \Lambda$.
3.6. Theorem. If $\varphi: \mathscr{S}_{1}(Y, X) \rightarrow \mathscr{K}(X, Y)^{*}$ is defined by $\varphi(T)(A)=\operatorname{tr}(T A)$ for all $A \in \mathscr{K}(X, Y)$ and $T \in \mathscr{S}_{1}(Y, X)$, then φ satisfies the following properties:
(i) φ is a bijective Λ-linear operator from $\mathscr{S}_{1}(Y, X)$ to $\mathscr{K}(X, Y)^{*}$;
(ii) $v_{1}(T)=|\varphi(T)|\left(T \in \mathscr{S}_{1}(Y, X)\right)$.
\triangleleft By Lemma 3.5 (i) and (iv), φ is a well-defined dominated Λ-linear operator, and $|\varphi(T)| \leqslant v_{1}(T)$ holds for all $T \in \mathscr{S}_{1}(Y, X)$. Let $\phi \in \mathscr{K}(X, Y)^{*}$. Since $\mathscr{S}_{2}(X, Y)$ is a Kaplansky-Hilbert module, $\phi_{\mid \mathscr{S}_{2}(X, Y)}$ is in $\mathscr{S}_{2}(X, Y)^{*}$ and there exists a unique $S \in \mathscr{S}_{2}(X, Y)$ such that $\phi_{\mid \mathscr{S}_{2}(X, Y)}=\langle\cdot, S\rangle$. Thus, $\phi_{\mid \mathscr{S}_{2}(X, Y)}(A)=\operatorname{tr}\left(S^{*} A\right)\left(A \in \mathscr{S}_{2}(X, Y)\right)$. Assume that $\left(x_{k}\right)_{k \in \mathbb{N}},\left(y_{k}\right)_{k \in \mathbb{N}}$, and $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ satisfy representation of S^{*} as [9, Theorem 8.5.6]. Define $P_{m}:=\sum_{k=1}^{m} \theta_{y_{k}, x_{k}}(m \in \mathbb{N})$, and note that $\left|P_{m}\right| \leqslant \mathbf{1}$. Thus, the following inequality

$$
|\phi|=|\phi| \mathbf{1} \geqslant|\phi|\left|P_{m}\right| \geqslant\left|\phi\left(P_{m}\right)\right|=\left|\operatorname{tr}\left(S^{*} P_{m}\right)\right|=\sum_{k=1}^{m} \lambda_{k}
$$

implies that $S^{*} \in \mathscr{S}_{1}(Y, X)$. From $\varphi\left(S^{*}\right)$ is bo-continuous $\varphi\left(S^{*}\right)(A)=\phi(A)$ is satisfied for all $A \in \mathscr{K}(X, Y)$. Thus, φ is onto and $\left|\varphi\left(S^{*}\right)\right| \geqslant v_{1}\left(S^{*}\right)$ holds, and the proof is finished. \triangleright

The proof of the following lemma can be extracted from the proof of [10, Proposition 1.3].
3.7. Lemma. If the mapping $\sigma: X \times Y \rightarrow \Lambda$ satisfies the properties:
(i) $\sigma\left(\lambda x_{1}+\mu x_{2}, y\right)=\lambda \sigma\left(x_{1}, y\right)+\mu \sigma\left(x_{2}, y\right)\left(x_{1}, x_{2} \in X, y \in Y, \lambda, \mu \in \Lambda\right)$;
(ii) $\sigma\left(x, \lambda y_{1}+\mu y_{2}\right)=\lambda^{*} \sigma\left(x, y_{1}\right)+\mu^{*} \sigma\left(x, y_{2}\right)\left(x \in X, y_{1}, y_{2} \in Y, \lambda, \mu \in \Lambda\right)$;
(iii) There exists some $\lambda \in \Lambda_{+}$such that $|\sigma(x, y)| \leqslant \lambda|x \| y|(x \in X, y \in Y)$
then there exists a unique $A \in B_{\Lambda}(X, Y)$ such that $|A| \leqslant \lambda$ and $\sigma(x, y)=\langle A x \mid y\rangle$.
3.8. Theorem. If $\psi:\left(B_{\Lambda}(X, Y),|\cdot|\right) \rightarrow\left(\mathscr{S}_{1}(Y, X)^{*},|\cdot|_{1}\right)$ is defined by $\psi(L)(T)=\operatorname{tr}(T L)$ for all $L \in B_{\Lambda}(X, Y)$ and $T \in \mathscr{S}_{1}(Y, X)$, then ψ satisfies the following properties:
(i) ψ is a bijective Λ-linear operator from $B_{\Lambda}(X, Y)$ to $\mathscr{S}_{1}(Y, X)^{*}$;
(ii) $|L|=|\psi(L)|_{1}\left(L \in B_{\Lambda}(X, Y)\right)$.
\triangleleft By Lemma 3.5 (i) and (iv), ψ is a well-defined dominated Λ-linear operator, and $|\psi(L)|_{1} \leqslant|L|$ holds for all $L \in B_{\Lambda}(X, Y)$. Let $\tau \in \mathscr{S}_{1}(Y, X)^{*}$. Define $\sigma: X \times Y \rightarrow \Lambda$ by $\sigma(x, y):=\tau\left(\theta_{y, x}\right)$, and observe that

$$
|\sigma(x, y)|=\left|\tau\left(\theta_{y, x}\right)\right| \leqslant|\tau|_{1} v_{1}\left(\theta_{y, x}\right) \leqslant|\tau|_{1}|x||y|
$$

Therefore, there exists $A \in B_{\Lambda}(X, Y)$ with $\sigma(x, y)=\langle A x \mid y\rangle$. This implies that $\psi(A)\left(\theta_{y, x}\right)=$ $\tau\left(\theta_{y, x}\right)$ and $|A x|^{2} \leqslant\left|\tau_{1}\right| A x| | x \mid$. Thus, we have $|A| \leqslant|\tau|_{1}$ and $\psi(A)(T)=\tau(T)(T \in$ $\mathscr{S}_{1}(Y, X)$), and the proof is finished. \triangleright

4. Lidskiĭ trace formula

Our main aim in this section is to prove Lidskiĭ trace formula for cyclically compact operators in a Kaplansky-Hilbert modules.

Set $[\lambda]=\inf \{\pi \in \mathfrak{P}(\Lambda): \pi \lambda=\lambda\}$, the support of λ in Λ.
4.1. Definition. Let T be an operator on X. A scalar $\lambda \in \Lambda$ is said to be an eigenvalue if there exists nonzero $x \in X$ such that $T x=\lambda x$. A nonzero eigenvalue λ is called a global eigenvalue if for every nonzero projection $\pi \in \Lambda$ with $\pi \leqslant[\lambda]$ there exists a nonzero $x \in \pi X$ such that $T x=\lambda x$.
4.2. Proposition. Let T be a continuous Λ-linear operator on X and λ be a nonzero scalar. Then the following statements are equivalent:
(1) The scalar $\lambda \in \Lambda$ is a global eigenvalue of T;
(2) There is $x \in X$ such that $T x=\lambda x$ and $|x| \in \mathfrak{P}(\Lambda)$ with $|x| \geqslant[\lambda]$.
$\triangleleft(2) \Rightarrow(1)$: Obvious.
$(1) \Rightarrow(2)$: Let λ be a global eigenvalue of T. Consider the set

$$
C:=\{(|x|, x):|x| \in \mathfrak{P}(\Lambda), 0<|x| \leqslant[\lambda], T x=\lambda x\} .
$$

The definition of global eigenvalue and $[2$, Lemma 4.] yield $[\lambda]=\sup \{|x|:(\pi, x) \in C\}$. From this and the Exhaustion Principle, there exists an antichain $\left(\mu_{\alpha}\right)_{\alpha \in A}$ in $\mathfrak{P}(\Lambda)$ such that $\sup _{\alpha \in A} \mu_{\alpha}=[\lambda]$, and for each $\alpha \in A$ there is $\left(\left|x_{\alpha}\right|, x_{\alpha}\right) \in C$ with $\mu_{\alpha} \leqslant\left|x_{\alpha}\right|$. Hence, we get $x:=b o-\sum_{\alpha \in A} \mu_{\alpha} x_{\alpha}$ with $|x|=[\lambda]$ and $T x=\lambda x$, whence the proof.

Let T be in $B_{\Lambda}(X, Y)$. For an eigenvalue λ of T define

$$
N_{\lambda}:=\bigcup_{n \in \mathbb{N}} \operatorname{ker}(T-\lambda I)^{n}
$$

The following lemma gives a relation between N_{λ} and $\operatorname{ker}(T-\lambda I)^{n}(n \in \mathbb{N})$
4.3. Lemma. Let T be a cyclically compact operator on X and λ be a global eigenvalue of T. If π is a nonzero projection with $\pi \leqslant[\lambda]$, then there exist a nonzero projection μ with $\mu \leqslant \pi$ and $n \in \mathbb{N}$ such that $\mu N_{\lambda}=\mu \operatorname{ker}(T-\lambda I)^{n}$.
\triangleleft Assume by way of contradiction that the assertion is false. Then a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ can be constructed such that $x_{n} \in \pi\left(\left(\operatorname{ker}(T-\lambda I)^{n}\right)^{\perp} \cap \operatorname{ker}(T-\lambda I)^{n+1}\right)$ and $\pi=\left|x_{n}\right|$. Therefore, it follows from

$$
(T-\lambda I)^{n}\left((T-\lambda I) x_{n}-\lambda x_{m}-(T-\lambda I) x_{m}\right)=0 \quad(m<n)
$$

that $(T-\lambda I) x_{n}-\lambda x_{m}-(T-\lambda I) x_{m} \in \operatorname{ker}(T-\lambda I)^{n}$, and so

$$
\begin{gathered}
\left|T x_{n}-T x_{m} \mathbf{|}^{2}=\right| \lambda x_{n}+\left((T-\lambda I) x_{n}-\lambda x_{m}-(T-\lambda I) x_{m}\right) \mathbf{|}^{2} \\
\geqslant \mid \lambda x_{n} \mathbf{|}^{2}+\mathbf{| (T - \lambda I) x _ { n } - \lambda x _ { m } - (T - \lambda I) x _ { m } \mathbf { | } ^ { 2 }} \\
\geqslant|\lambda|^{2}\left|x_{n}\right|=\pi|\lambda|^{2} \neq 0
\end{gathered}
$$

which contradicts cyclically compactness of T. This proves the lemma. \triangleright

Let T be a cyclically compact operator on X. For a global eigenvalue λ of T and for each $N \in \mathbb{N}$ define

$$
\rho_{N}(\lambda):=\sup \left\{\pi \in \mathfrak{P}(\Lambda): \pi N_{\lambda}=\pi \operatorname{ker}(T-\lambda I)^{N}, \pi \leqslant[\lambda]\right\}
$$

Using the lemma above, we immediately have the following corollary.
4.4. Corollary. Let T be a cyclically compact operator on X and λ be a global eigenvalue
of T. The following conditions are satisfied:
(1) $\rho_{N}(\lambda) \leqslant \rho_{N+1}(\lambda)$;
(2) $\rho_{N}(\lambda) N_{\lambda}=\rho_{N}(\lambda) \operatorname{ker}(T-\lambda I)^{N}$;
(3) $[\lambda]=\sup \left\{\rho_{N}(\lambda): N \in \mathbb{N}\right\}$.

According to $[9$, Theorem $7.4 .7(2)]$, for each $N \in \mathbb{N}$, there exists a partition $\left(b_{\xi}\right)_{\xi \in \Xi}$ of $\rho_{N}(\lambda)$ such that $b_{\xi} N_{\lambda}$ is a strictly $\varkappa\left(b_{\xi}\right)$-homogeneous Kaplansky-Hilbert module over $b_{\xi} \Lambda$. Since T is cyclically compact, $\varkappa\left(b_{\xi}\right)$ must be a finite number. From [9, Theorem 7.4.7.(1)], we can assume that $\Xi=\mathbb{N}$ and $\varkappa\left(\tau_{\lambda, N}(n)\right)=n$ where $\tau_{\lambda, N}(n):=b_{n}$. So, there is a unique sequence $\left(\tau_{\lambda, l}\right)_{l \in \mathbb{N}}$ in $\mathfrak{P}(\Lambda)^{\mathbb{N}}$ such that $\tau_{\lambda, l}:=\left(\tau_{\lambda, l}(n)\right)_{n \in \mathbb{N}}$ is a partition of $\rho_{l}(\lambda)$ and $\tau_{\lambda, l}(n) N_{\lambda}=\tau_{\lambda, l}(n) \operatorname{ker}(T-\lambda I)^{l}$ is a strictly n-homogeneous Kaplansky-Hilbert module over $\tau_{\lambda, l}(n) \Lambda$. Moreover, $\tau_{\lambda, l}(n) \leqslant \tau_{\lambda, l+1}(n)$ and $\tau_{\lambda, l}(n) \wedge \tau_{\lambda, k}(m)=0$ are satisfied for all $k, l, m, n \in \mathbb{N}$ with $n \neq m$. So, $\left(\tau_{\lambda}(n)\right)_{n \in \mathbb{N}}$ is a partition of $[\lambda]$ where $\tau_{\lambda}(n):=\sup _{l \in \mathbb{N}}\left\{\tau_{\lambda, l}(n)\right\}$.

Now, we define the multiplicity of global eigenvalues of cyclically compact operators on X which is an element of the universally complete vector lattice $(\operatorname{Re} \Lambda)^{\infty}$, which in turn is the universal completion of $\operatorname{Re} \Lambda$.
4.5. Definition. Let T be a cyclically compact operator on X and λ be a global eigenvalue of T. The multiplicity of λ will be denoted by $\bar{\tau}_{\lambda}$ and is described as follows:

$$
\bar{\tau}_{\lambda}:=o-\sum_{n \in \mathbb{N}} n \tau_{\lambda}(n)=o-\sum_{n \in \mathbb{N}} n \sup _{l \in \mathbb{N}}\left\{\tau_{\lambda, l}(n)\right\}=\sup _{l, n \in \mathbb{N}}\left\{n \tau_{\lambda, l}(n)\right\} \in(\operatorname{Re} \Lambda)^{\infty}
$$

Now, we define the multiplicity of global eigenvalues of cyclically compact operators on X which is an element of the universally complete vector lattice $(\operatorname{Re} \Lambda)^{\infty}$, which in turn is the universal completion of $\operatorname{Re} \Lambda$.
4.6. Lemma. Let $U=S_{\widetilde{u}}$ be in $\operatorname{End}\left(C_{\#}(Q, H)\right)$ and λ be a global eigenvalue of U. Then there is a meager subset B_{0} such that $\lambda(q)$ is a nonzero eigenvalue of $u(q)$ for all $q \in A_{\lambda} \backslash B_{0}$.
\triangleleft By Proposition 4.2, $U \widetilde{x}=\lambda \widetilde{x}$ is satisfied for some $\widetilde{x} \in C_{\#}(Q, H)$ with $|\tilde{x}|=[\lambda]$. Thus, $u(q) x(q)=\lambda(q) x(q)$ holds for all $q \in Q_{0}:=\operatorname{dom} u \cap \operatorname{dom} x$. Define $B_{0}:=Q_{0}^{c} \cup$ $\left(A_{\lambda} \backslash\{q \in Q: \lambda(q) \neq 0\}\right)$, and note that B_{0} is a meager set in Q. The lemma follows. \triangleright
4.7. Lemma. Let $U=S_{\widetilde{u}}$ be a cyclically compact operator on $C_{\#}(Q, H)$ and λ be a global eigenvalue of U. Then there is a meager subset A_{0} such that for all $q \in A_{\lambda} \backslash A_{0}$ the following equality holds:

$$
\operatorname{ker}(U-\lambda I)(q):=(\operatorname{ker}(U-\lambda I))(q)=\operatorname{ker}(u(q)-\lambda(q) I)
$$

\triangleleft Clearly, $q \in \operatorname{dom} u$ implies $\operatorname{ker}(U-\lambda I)(q) \subset \operatorname{ker}(u(q)-\lambda(q) I)$. As U is a cyclically compact operator, there exists a partition of $[\lambda],\left(b_{k}\right)_{k \in \mathbb{N}}$ in $\mathfrak{P}(\Lambda)$ such that $b_{n} \operatorname{ker}(U-\lambda I)$ is a strictly n-homogeneous Kaplansky-Hilbert module over $b_{n} C(Q)$. Fix $k \in \mathbb{N}$. Let $\left\{\widetilde{e}_{i}: i=1, \ldots, k\right\}$ be a basis for $b_{k} \operatorname{ker}(U-\lambda I)$. Then for some meager set A_{k} the set $\left\{e_{i}(q): i=1, \ldots, k\right\}$ is a basis of $\operatorname{ker}(U-\lambda I)(q)$ for all $q \in V_{k} \backslash A_{k}$, where V_{k} is the clopen
set corresponding to the projection b_{k}. From the lemma above we obtain a meager subset B_{0} such that $\lambda(q)$ is a nonzero eigenvalue of $u(q)$ for all $q \in A_{\lambda} \backslash B_{0}$. Define

$$
C_{k}:=\left\{q \in V_{k} \backslash\left(A_{k} \cup B_{0}\right): \operatorname{ker}(U-\lambda I)(q) \neq \operatorname{ker}(u(q)-\lambda(q) I)\right\}
$$

Then we can see that C_{k} is meager, and so $A_{0}=\left(A_{\lambda} \backslash\left(\bigcup_{k \in \mathbb{N}} V_{k}\right)\right) \cup\left(\bigcup_{k \in \mathbb{N}} A_{k} \cup C_{k}\right) \cup B_{0}$ is meager. Therefore, $\operatorname{ker}(U-\lambda I)(q)=\operatorname{ker}(u(q)-\lambda(q) I)$ holds for all $q \in A_{\lambda} \backslash A_{0}$, as desired. \triangleright

An immediate consequence of the preceding results is the following.
4.8. Corollary. Let $U=S_{\widetilde{u}}$ be a cyclically compact operator on $C_{\#}(Q, H)$ and λ be a global eigenvalue of U. Then there exists a meager set B_{0} such that for all $q \in A_{\lambda} \backslash B_{0}$ the following statements hold:
(1) $\lambda(q)$ is a nonzero eigenvalue of compact operator $u(q)$;
(2) $\left(\operatorname{ker}(U-\lambda I)^{k}\right)(q)=\operatorname{ker}(u(q)-\lambda(q) I)^{k}(k \in \mathbb{N})$;
(3) $N_{\lambda}(q)=N_{\lambda(q)}$ where $N_{\lambda(q)}$ is the generalized eigenspace, corresponding to the eigenvalue $\lambda(q)$;
(4) $\bar{\tau}_{\lambda}(q)=m(\lambda(q))$ where $m(\lambda(q))$ is the algebraic multiplicity of $\lambda(q)$.

Denote by $\mathrm{Sp}^{*}(u(q))$ the set of all non-zero eigenvalues of $u(q)$, that is $\mathrm{Sp}^{*}(u(q))=$ $\operatorname{Sp}(u(q)) \backslash\{0\}$.
4.9. Lemma. Let $U=S_{\widetilde{u}}$ be a cyclically compact operator on $C_{\#}(Q, H)$ and let Σ be a finite subset of $C(Q)$ consisting of global eigenvalues of U and the set

$$
A_{u} \subset\left\{q \in \operatorname{dom}(u): \operatorname{Sp}^{*}(u(q)) \backslash\{\sigma(q): \sigma \in \Sigma\} \neq \varnothing\right\}
$$

be non meager in Q. If λ_{q} is in $\operatorname{Sp}^{*}(u(q)) \backslash\{\sigma(q): \sigma \in \Sigma\}$ for each $q \in A_{u}$, then there is a global eigenvalue λ of U and a comeager set Q_{0} that satisfy the following conditions:
(1) $[\lambda]=\bigvee_{N \in \mathbb{N}} \pi_{N}$ where π_{N} is the projection corresponding to clopen set $U_{N}:=$ $\operatorname{int}\left(\operatorname{cl}\left(A_{N}\right)\right)$ with

$$
A_{N}:=\left\{q \in A_{u}:(\forall \sigma \in \Sigma)\left|\sigma(q)-\lambda_{q}\right| \geqslant 1 / N \text { and }\left|\lambda_{q}\right| \geqslant 1 / N\right\}
$$

(2) $\pi_{N}|\lambda| \geqslant \frac{1}{N} \pi_{N}$ and $\pi_{N}|\sigma-\lambda| \geqslant \frac{1}{2 N} \pi_{N}(N \in \mathbb{N}, \sigma \in \Sigma)$;
(3) If q is in $A_{N} \cap Q_{0}$, then $|\lambda(q)| \geqslant \frac{1}{N}$ and $|\sigma(q)-\lambda(q)| \geqslant \frac{1}{2 N}$ hold for each $\sigma \in \Sigma$;
(4) If $\lambda(q) \neq 0$ holds for some $q \in Q_{0}$, then $\lambda(q) \in \operatorname{Sp}^{*}(u(q)) \backslash\{\sigma(q): \sigma \in \Sigma\}$;
(5) If $\lambda(q)=0$ holds for some $q \in Q_{0}$, then $q \notin A_{u}$.
\triangleleft Without loss of generality we may assume that $u(q)$ is a compact operator on H for each $q \in \operatorname{dom} u$. Since $A_{u}=\bigcup_{N \in \mathbb{N}} A_{N}$ is not meager, $U_{N_{0}} \neq \varnothing$ holds for some N_{0}. Let h_{q} be an eigenvector of $u(q)$ corresponding to λ_{q} with $\left\|h_{q}\right\|=1$ for every $q \in A_{u}$. For every $N, n \in \mathbb{N}$ and $q \in U_{N} \cap A_{N}$ we can find a clopen set $U_{q, n, N} \subset U_{N}$ such that

$$
\left\|u(w) h_{q}-\lambda_{q} h_{q}\right\| \leqslant \frac{1}{n} \quad \text { and } \quad\left|\sigma(w)-\lambda_{q}\right| \geqslant \frac{1}{2 N} \quad(\sigma \in \Sigma)
$$

for all $w \in U_{q, n, N} \cap \operatorname{dom} u$. We can establish a global eigenvalue λ_{N} of U such that $\left[\lambda_{N}\right]=\pi_{N}$ and

$$
\left|\lambda_{N}\right| \geqslant \frac{1}{N} \pi_{N} \quad \text { and } \quad \pi_{N}\left|\sigma-\lambda_{N}\right| \geqslant \frac{1}{2 N} \pi_{N} \quad(\sigma \in \Sigma)
$$

Therefore, if we define $\lambda:=\pi_{1} \lambda_{1}+o-\sum_{N \in \mathbb{N}}\left(\pi_{N+1}-\pi_{N}\right) \lambda_{N+1}$, then $[\lambda]=\bigvee_{N \in \mathbb{N}} \pi_{N}$ and λ is a global eigenvalue of U. This and Proposition 4.6 complete the proof. \triangleright
4.10. Theorem. Let T be a cyclically compact operator on X. Then there exists a sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ consisting of global eigenvalues of T or zeros in Λ with the following properties:
(1) $\left|\lambda_{k}\right| \leqslant|T|,\left[\lambda_{k}\right] \geqslant\left[\lambda_{k+1}\right](k \in \mathbb{N})$ and $o-\lim _{k \rightarrow \infty} \lambda_{k}=0$;
(2) There exists a projection π_{∞} in Λ such that $\pi_{\infty}\left|\lambda_{k}\right|$ is a weak order-unity in $\pi_{\infty} \Lambda$ for all $k \in \mathbb{N}$;
(3) There exists a partition $\left(\pi_{k}\right)$ of the projection π_{∞}^{\perp} such that $\pi_{0} \lambda_{1}=0, \pi_{k} \leqslant\left[\lambda_{k}\right]$, and $\pi_{k} \lambda_{k+m}=0, m, k \in \mathbb{N}$;
(4) $\pi \lambda_{k+m} \neq \pi \lambda_{k}$ for every nonzero projection $\pi \leqslant \pi_{\infty}+\pi_{k}$ and for all $m, k \in \mathbb{N}$;
(5) Every global eigenvalue λ of T is of the form $\lambda=\operatorname{mix}_{k \in \mathbb{N}}\left(p_{k} \lambda_{k}\right)$, where $\left(p_{k}\right)_{k \in \mathbb{N}}$ is a partition of $[\lambda]$.
\triangleleft The theorem will be proved in case of $X=C_{\#}(Q, H)$ and $T=S_{\widetilde{u}}$. General case can be obtained by the functional representations of Kaplansky-Hilbert modules and bounded linear operators on them (see [9, Theorems 7.4.12 and 7.5.12]). Now, by induction and Lemma 4.9, a sequence (λ_{n}) consisting of global eigenvalues of $S_{\widetilde{u}}$ or zeros, and a decreasing sequence of comeager sets $\left(Q_{n}\right)$, can be established as follows:
(i) if $\lambda_{n}(q) \neq 0$ holds for some $q \in Q_{n}$, then $\lambda_{n}(q) \in \operatorname{Sp}^{*}(u(q)) \backslash\left\{\lambda_{i}(q): i=1, \ldots, n-1\right\}$;
(ii) if $\lambda_{n}(q)=0$ holds for some $q \in Q_{n}$, then $\operatorname{Sp}^{*}(u(q)) \backslash\left\{\lambda_{i}(q): i=1, \ldots, n-1\right\}=\varnothing$;
(iii) $\mathrm{Sp}^{*}(u(q))=\left\{\lambda_{n}(q): \lambda_{n}(q) \neq 0(n \in \mathbb{N})\right\}$ is satisfied for all $q \in Q_{0}:=\bigcap Q_{n}$.

Define $\pi_{\infty}:=\bigwedge_{k \in \mathbb{N}}\left[\lambda_{k}\right]$ and $\pi_{0}:=\left[\lambda_{1}\right]^{\perp}$ and $\pi_{k}:=\left[\lambda_{k}\right] \wedge\left[\lambda_{k+1}\right]^{\perp}(k \in \mathbb{N})$. Then this implies (2), (3) and (4). Moreover, since $\left|\lambda_{n}(q)\right| \leqslant\|u(q)\|$ and $\lim _{k \rightarrow \infty} \lambda_{k}(q)=0$ hold for all $q \in Q_{0}$, we have $\left|\lambda_{n}\right| \leqslant|U|$ and $o-\lim \lambda_{k}=0$, and so this implies (1). Let λ be an global eigenvalue of U. Then we can assume that the meager set A_{0} satisfies the condition of the Lemma. From (iii) we have $\left(A_{\lambda} \cap Q_{0}\right) \backslash A_{0}=\bigcup_{k \in \mathbb{N}} A_{k}$ where

$$
A_{k}:=\left\{q \in A_{\lambda} \backslash A_{0}: \lambda(q)=\lambda_{k}(q)\right\} \quad(k \in \mathbb{N}) .
$$

Since $A_{k} \backslash \operatorname{int}\left(\operatorname{cl}\left(A_{k}\right)\right)$ is nowhere dense, $[\lambda]=\bigvee_{k \in \mathbb{N}} \mu_{k}$ and $\mu_{k} \lambda=\mu_{k} \lambda_{k}$ where μ_{k} denotes the projection corresponding clopen set int $\left(\mathrm{cl}\left(A_{k}\right)\right)$. Thus, there exists a partition $\left(p_{k}\right)_{k \in \mathbb{N}}$ of $[\lambda]$ such that $\lambda=\operatorname{mix} p_{k} \lambda_{k} k \in \mathbb{N}$ holds, and the proof is finished. \triangleright

Let $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ be as Theorem 4.10. If $\lambda_{k}=0$, take $\bar{\tau}_{\lambda_{k}}=0$.
4.11. Definition. The sequence $\left(\lambda_{k}(T)\right)_{k \in \mathbb{N}}$, where $\lambda_{k}(T):=\lambda_{k}$ is given by the above theorem, is called a global eigenvalue sequence of T with the multiplicity sequence $\left(\bar{\tau}_{k}(T)\right)_{k \in \mathbb{N}}$ where $\bar{\tau}_{k}(T):=\bar{\tau}_{\lambda_{k}}$.
4.12. Theorem (Lidskiĭ trace formula). Let T be in $\mathscr{S}_{1}(X)$ and $\left(\lambda_{k}(T)\right)_{k \in \mathbb{N}}$ be a global eigenvalue sequence of T with the multiplicity sequence $\left(\bar{\tau}_{k}(T)\right)_{k \in \mathbb{N}}$. Then the following equality holds

$$
\operatorname{tr}(T)=o-\sum_{k \in \mathbb{N}} \bar{\tau}_{k}(T) \lambda_{k}(T)
$$

\triangleleft As in Theorem 4.10, the theorem will be proved in case of $X=C_{\#}(Q, H)$ and $T=$ $S_{\widetilde{u}}$. Let $\left(\lambda_{k}(T)\right)_{k \in \mathbb{N}}$ be a global eigenvalue sequence of T with the multiplicity sequence $\left(\bar{\tau}_{k}(T)\right)_{k \in \mathbb{N}}$. From Corollary 4.8 and Theorem 4.10, there exists a comeager set Q_{0} such that for each $q \in Q_{0}$ the following statements hold:
(i) $\operatorname{tr}(T)(q)=\operatorname{tr}(u(q))$ and $v_{1}(T)(q)=v_{1}(u(q))$;
(ii) $\mathrm{Sp}^{*}(u(q))=\left\{\lambda_{n}(T)(q): \lambda_{n}(T)(q) \neq 0\right\}$;
(iii) $\lambda_{n}(T)(q) \neq \lambda_{m}(T)(q)$ if $\lambda_{n}(T)(q) \neq 0$ or $\lambda_{m}(T)(q) \neq 0$ for $n \neq m$;
(iv) if $\lambda_{k}(T)(q) \neq 0$, then $\bar{\tau}_{k}(T)(q)=m\left(\lambda_{k}(T)(q)\right) \in \mathbb{N}$ where $m\left(\lambda_{k}(T)(q)\right)$ is the algebraic multiplicity of $\lambda_{k}(T)(q)$.

From (i), (ii), (iii), (iv) and Lidskiĭ trace formula for the compact operator $u(q)$, we see that

$$
\operatorname{tr}(T)(q)=\operatorname{tr}(u(q))=\sum_{k \in \mathbb{N}} \bar{\tau}_{k}(T)(q) \lambda_{k}(T)(q)
$$

is absolutely convergent on the comeager set Q_{0}, and so we have

$$
\operatorname{tr}(T)=o-\sum_{k \in \mathbb{N}} \bar{\tau}_{k}(T) \lambda_{k}(T)
$$

References

1. Ganiev I. G., Kudaybergenov K. K. Measurable bundles of compact operators // Methods Funct. Anal. Topology.-2001.-Vol. 7, № 4.-P. 1-5.
2. Kaplansky I. Modules over operator algebras // Amer. J. Math.-1953.-Vol. 75, № 4.-P. 839-858.
3. Kudaybergenov K. K., Ganiev I. G. Measurable bundles of compact sets // Uzbek. Mat. Zh.-1999.№ 6.-P. 37-44.-[in Russian].
4. Kudaybergenov K. K. ∇-Fredholm operators in Banach-Kantorovich spaces // Methods Funct. Anal. Topology.-2006.-Vol. 12, № 3.-P. 234-242.
5. Kusraev A. G. Boolean valued analysis of duality between universally complete modules // Dokl. Akad. Nauk SSSR.-1982.-Vol. 267, № 5.-P. 1049-1052.
6. Kusraev A. G. Vector Duality and Its Applications.-Novosibirsk: Nauka, 1985.-[in Russian].
7. Kusraev A. G. On functional representation of type I $A W^{*}$-algebras // Sibirsk. Math. Zh.-1991.Vol. 32, № 3.-P. 78-88.
8. Kusraev A. G. Cyclically Compact Operators in Banach Spaces // Vladikavkaz Math. J.-2000.-Vol. 2, № 1.-P. 10-23.
9. Kusraev A. G. Dominated Operators.-Dordrecht etc.: Kluwer Academic Publishers, 2000.
10. Wright J. D. M. A spectral theorem for normal operators on a Kaplansky-Hilbert module // Proc. London Math. Soc.-1969.-Vol. 19, № 3.-P. 258-268.

Received September 15, 2013.
UĞUR GÖNÜLLÜ
Department of Mathematics and Computer Science
İstanbul Kültür University
Bakırköy, 34156, İstanbul, TURKEY
E-mail: u.gonullu@iku.edu.tr

КЛАСС ОПЕРАТОРОВ СО СЛЕДОМ И ФОРМУЛА ЛИДСКОГО В МОДУЛЯХ КАПЛАНСКОГО - ГИЛЬБЕРТА

Гёнюллю У.

Вводятся и изучаются класс операторов со следом и глобальные собственные значения непрерывных гомоморфизмов в модулях Капланского - Гильберта. В частности, устанавливается вариант формулы Лидского о следе для циклически компактных операторов в модулях Капланского - Гильберта.

Ключевые слова: модуль Капланского - Гильберта, циклически компактный оператор, глобальное собственное значение, класс операторов со следом, формула Лидского о следе.

[^0]: © 2014 Gönüllü U .

