
Âëàäèêàâêàçñêèé ìàòåìàòè÷åñêèé æóðíàë

2015, Òîì 17, Âûïóñê 3, Ñ. 23�35

ÓÄÊ 519.682.1+519.683+519.7+519.1

OBJECT-ORIENTED DATA

AS PREFIX REWRITING SYSTEMS

A. E. Gutman

To S. S. Kutatelaze on the o

asion

of his 70th birthday

A deterministic longest-prefix rewriting system is a rewriting system such that there are no rewriting

rules X→Y , X→Z with Y 6=Z, and only longest prefixes of words are subject to rewriting. Given such

a system, analogs are defined and examined of some concepts related to object-oriented data systems:

inheritance of classes and objects, instances of classes, class and instance attributes, conceptual dependence

and consistency, conceptual scheme, types and subtypes, etc. A special attention is paid to the effective

verification of various properties of the rewriting systems under consideration. In particular, algorithms

are presented for answering the following questions: Are all words finitely rewritable? Do there exist

recurrent words? Is the system conceptually consistent? Given two words X and Y , does X conceptually

depend on Y ? Does the type of X coincide with that of Y ? Is the type of X a subtype of that of Y ?

Mathematics Subject Classification (2000): 68Q42, 68P05, 68N19, 68T30.

Key words: prefix rewriting, term rewriting, object-oriented data system, information system, consis-

tency verification, ontology of a data model.

1. Introduction

The classical object-oriented approach to describing structured data employs the two
primary relations, has (or “has a”) and is (or “is a”).

The has relation links objects (and classes) with their attributes. By saying “X has a Y”
we mean that the object (or class) X possesses an attribute named Y, and we thus can speak
of “the Y of X” or “X’s Y” as a property of X conventionally denoted by X.Y. For instance,
if a web page has a submit button whose style assumes a border of a particular width, we can
speak of “the width of the border of the style of the submit button of the page” and thus
arrive at the object page.submitButton.style.border.width .

The is relation can be used for (1) instantiating objects from classes; (2) inheriting classes
from classes; and (3) assigning values to attributes. By saying “40 is an Integer” we associate
the object 40 with the class Integer and mean that 40 is an instance of Integer. The phrase
“Integer is Number” means that the class Integer inherits from the class Number. By
claiming that “John.age is 40” we assign the value 40 to the age attribute of John.

As is seen from the above examples, the wide interpretation of the is relation makes it
possible to eliminate the difference between objects and classes. A single data system can
syndicate the class declarations (“metadata”) and the object instantiations and initializations
(“data”). We do not assert that data and metadata are worth more combined than separated;

© 2015 Gutman A. E.

24 Gutman A. E.

nevertheless, this approach allows us to unify data analysis and develop a common tool for
verifying conceptual and semantical consistency.

The is and has relations are naturally connected. By interpreting “is” as “inherits,”
we assume that if “X is Y” then all the attributes of Y are inherited by X. In particular, if “X is Y”
and “Y has a Z” then “X has a Z .” Moreover, if “X is Y” is the only explicit information on X,
we can conclude that “X.Z is Y.Z .” (By the explicit information we mean the is rules which
form the data system under consideration.) In doing so, we derive an implicit information
on X and say that “X.Z is Y.Z implicitly.” Therefore, when evaluating the object X.Z , we
rewrite its prefix X with Y according to the explicit rule “X is Y .” The same is applicable
to objects of any length. For instance, if we know explicitly that “A.B is P.Q.R” then A.B.C.D

rewrites implicitly to P.Q.R.C.D.
It is clear that the explicit rules supersede any implicit derivatives; therefore, if “X is Y,”

“Y has a Z ,” and the data system contains the explicit rule “X.Z is A,” the latter wins over
the implicit “X.Z is Y.Z .” However, a conflict of another kind is possible in case several explicit
rules are simultaneously applicable. Consider the following fragment of a data system:

block.style.color is blue

header.style.color is red

button is block

button.style is header.style

Let us try to evaluate the button’s style color, i.e., button.style.color. Since button

is a block, we might conclude that button.style.color is block.style.color, which is
blue. On the other hand, button.style is header.style; therefore, button.style.color
is header.style.color, which is red. Intuitively, the latter evaluation should win, since
“ button.style is header.style” seems to take priority over “ button is block.” The rea-
son is not the fact that the former rule occurs next to the latter (we treat a data system as an
unordered set of is rules). The key point is that the rule “ button.style is header.style” is
more concrete as it evaluates a longer object, button.style rather than button. Therefore,
when evaluating an object, we should rewrite the longest prefix (i.e., use the most concrete
rule applicable).

We will now dwell on data consistency. Obviously, when designing a set of definitions,
conceptual cycles should be avoided. By saying “ man is man ” we define nothing, since
evaluation of man results in a dead cycle. However, conceptual consistency in no way outlaws
recursion. For instance, the rule “ man.son is man ” is quite legal. On the other hand, the
rule “ man is man.son” seems incorrect: we still do not know what man is unless man’s
son is defined, while the latter is senseless prior to defining man. Furthermore, the rules
“ man is Adam ” and “ Adam.rib is man.rib ” form an inconsistent pair, since Adam.rib is
man.rib, while the latter implicitly rewrites to Adam.rib. Such examples justify the need for
a formal definition of conceptual consistency and the search for the corresponding effective
verification. (This is similar to analyzing the ontology of a data system as a set of concept
definitions.)

It is clear that, prior to defining a set of concepts (classes or objects), we need at least
one concept which does not require definition. In general, there can be several primary
concepts; however, a single “generic object” is sufficient. We denote the latter by ω. Given
a data system and a word X of the form entity. attr1. attr2 . · · · . attrn, we rewrite X
by applying the most concrete is rule, thus obtaining a new word, and continue rewriting
the longest prefixes of the subsequent words until ω is reached. In this case we conclude
that the initial word X is an object (or a concept). Otherwise, if the rewriting process either

Object-Oriented Data as Prefix Rewriting Systems 25

(1) ends with a nonrewritable word other than ω or (2) never terminates, we claim that X
is senseless. The possibility of (2) makes the analysis nontrivial and justifies the search for
an effective verification if a given word makes sense. (This is close to analyzing the ontology
of a concept within a data system.)

Given an object X and a word δ of the form attr1. attr2 . · · · . attrn, say that δ is a detail
of X if X. δ makes sense. The set ‖X‖ of all details of X can be regarded as the type of X.
Whenever an algorithmic procedure assumes a formal argument A, the body of the procedure
contains A along with some words A.δi. For the procedure to operate correctly with X
substituted for A, it is necessary (and probably sufficient) that all the words X.δi make
sense. This results in the requirement that X be of an appropriate type. Therefore, we need
an algorithm for comparing object types: given two objects X and Y , we should be able to
effectively compare the types of X and Y , i.e., determine which of the relations ‖X‖ = ‖Y ‖,
‖X‖ ⊆ ‖Y ‖, ‖X‖ ⊇ ‖Y ‖ hold. The problem is not trivial if for no other reason than the fact
that the type of an object can be infinite. (For instance, given the rule “ man.son is man ,”
the type of man contains all the words son , son.son , son.son.son , . . .)

In what follows we give formal definitions for the notions under consideration, state some
results, and present algorithms for all the problems mentioned above. (The paper does not
contain proofs of the theorems and justifications of the algorithms. All the details, including
various examples, will be published elsewhere.)

To make notation less cumbersome, we treat the names of entities and attributes as single
symbols (letters) of some alphabet A and agree to write the property paths α1 .α2 . · · · .αn

as α1α2 . . . αn thus making them words over A. The explicit rules “X is Y ” will be written
as X→Y .

2. Definitions and Main Results

Throughout the paper, A is a finite alphabet and A∗ (resp. A+) is the set of all (all
nonempty) words over A. The elements of A are called letters. We conventionally identify
the letters with the corresponding single-letter words. Say that X is a prefix (resp. a proper
prefix) of Y ∈ A+ and write X ⊑ Y or Y ⊒ X (X ⊏ Y or Y ⊐ X) if X ∈ A+ and Y = XS for
some S ∈ A∗ (S ∈ A+). The length of a word X is denoted by |X|. Given an integer n > 1
and a word X ∈ A+ such that |X| > n, define X↾n ∈ A+ so that X↾n ⊑ X and

∣
∣X↾n

∣
∣ = n.

For brevity, in the sequel we say “word” instead of “nonempty word over A.”
Given any binary relation , we conventionally denote by

+
 the transitive closure of

and by ∗ , the reflexive transitive closure of .
Consider a finite binary relation → on A+ (i.e., a finite subset of A+ × A+) and a letter

ω ∈ A. Say that the pair 〈→, ω〉 is a deterministic longest-prefix rewriting system, or a system
for short, if → is nonempty and the following hold:

(a) X → Y and X → Z imply Y = Z;
(b) there are no S, Y ∈ A∗ such that ωS → Y .

Put E := {X : X → Y for some Y } and call the elements of E explicit words. Say that E
is an explicit prefix of X if E ∈ E and E ⊑ X. Say that a word X is rewritable if X has
an explicit prefix.

As is easily seen, condition (a) means that, for each E ∈ E, there is a unique word E′

such that E → E′, while condition (b) amounts to the fact that all words of the form ωS,
with S ∈ A∗, are not rewritable.

Given a rewritable wordX, consider the longest explicit prefixE ofX, determine the suffix
S ∈ A∗ so that X = ES, and put X ′ := E′S. We call X ′ the rewrite of X. Introduce

26 Gutman A. E.

the binary relation ⇒ on A+ by setting X ⇒ Y if and only if X is a rewritable word and
Y = X ′.

By way of recursion, put W0 := A+, X(0) := X for X ∈ W0 and, for each n > 1, put
Wn := {X ∈ Wn−1 : X(n−1) is rewritable} and X(n) := (X(n−1))′ for X ∈ Wn. The word
X(n) is called the nth rewrite of X. It is clear that, for each X ∈ Wn, we have X = X(0) ⇒
X(1) ⇒ · · · ⇒ X(n), X

+

⇒ X(n) for n > 0, and X ∗⇒ X(n) for n > 0.

The elements of
⋂∞

n=1Wn are called infinitely rewritable words. The other words are
finitely rewritable. Given a word X, call the maximal (finite or infinite) sequence of the form
〈X(0), X(1), X(2), . . . 〉 the rewriting sequence ofX. Therefore, a wordX is finitely (infinitely)
rewritable if and only if the rewriting sequence of X is finite (infinite).

Say that X ∈ A+ is an object if X ∗⇒ ω. Let O be the set of all objects. Note that
the rewriting sequence of every object X ∈ O\{ω} has the formX = X(0) ⇒ · · · ⇒ X(n) → ω,
where n > 0.

From the above notation and definitions it is clear that we treat a system 〈→, ω〉 as
a rewriting system and assume that only longest prefixes of words are subject to rewriting.
The system is then regarded as a recognition device, with O the accepted language (see [1]).
We have called such a system “deterministic,” since every rewritable word has a unique
rewrite.

We may regard the notion of an object as isolating “concepts” from “senseless words.”
An object is a word X possessing a “meaning,” the rewrite X ′ = X(1), which also possesses
a meaning, (X ′)′ = X(2), and so on up to the final rewrite, the “generic object” ω, whose
meaning is assumed predefined. The relation → is thus treated as conceptual definition, and
a ruleX → Y is regarded as a definition ofX via Y : “X is a Y.” Next, a ruleXα → Z is an at-
tribute definition, “the α ofX is a Z,” whileXαβ → Z means “the β of the α ofX is a Z,” etc.
In this respect, condition (a) imposed on the relation → amounts to conceptual unambiguity
(no concept can have several meanings).

We may also treat the relation → as object-oriented inheritance or instantiation and
regard a rule X → Y as an explicit indication of the fact that “class X directly inherits
class Y ” or “object X is an instance of class Y .” Next, a rule Xα → Z may be regarded
as an attribute declaration or property evaluation: “class X has attribute α of class Z” or
“the propertyXα has value Z” or “the property Xα is an instance of class Z.” In this respect,
having imposed condition (a) on the relation →, we thereby disallowed multiple inheritance
(therefore, no object can belong to several incomparable classes).

Introduce the binary relation ⇒w on A+ by setting X ⇒w Y if and only if X = ES and
Y = E′S for some E ∈ E, S ∈ A∗. Therefore, ⇒w is the rewriting corresponding to the system
〈→, ω〉 regarded as an ordinary prefix rewriting system rather than a longest-prefix rewriting
system. (It is clear that X → Y implies X ⇒ Y , and X ⇒ Y implies X ⇒w Y . We may thus
read the formulas X

+

⇒ Y and X
+

⇒w Y as “X rewrites to Y ” and “X weakly rewrites to Y.”
The formula X → Y can be read as “X explicitly rewrites to Y.”)

Introduce the binary relation֌ on A+ by setting X ֌ Y if and only if X ⊐ Y or X ⇒w Y .
As is easily seen, the transitive closure +

֌ is the least transitive relation on A+ possessing the
following three properties for all X,Y, S ∈ A+:

if X → Y then X +
֌ Y ; if X → Y then XS +

֌ Y S; XS +
֌ X.

In case X +
֌ Y we say that X depends on Y . A word X is well-defined if X does not

depend on X. Say that a system 〈→, ω〉 under consideration is conceptually consistent if all
words are well-defined, i.e., no word depends on itself. For brevity, introduce the following

Object-Oriented Data as Prefix Rewriting Systems 27

named condition:

The system is conceptually consistent. (Con)

The above terminology is justified by our informal treatment of a rewriting rule X → Y
as a definition of X via Y (“X is a Y ”) and regarding a rule XS → Z as a detail definition
(“the S of X is a Z ”). Therefore, informally, the relation X +

֌ Y can be understood as fol-
lows: the definition of X explicitly or implicitly employs Y ; in particular, when subsequently
describing a conceptual scheme, the concept Y should be introduced before X, otherwise X
becomes ill-defined.

If is a binary relation on A+, put | | := {X ∈ A+ : E ∗ X for some E ∈ E} and
denote by [] the directed graph whose nodes are the words in | | and arcs are the pairs
〈X,Y 〉 such that X,Y ∈ | | and X Y .

Given a system, we call [֌] the conceptual scheme and [⇒w] the weak rewriting scheme.
Since X ⇒w Y implies X ֌ Y , the weak rewriting scheme is a subgraph of the conceptual
scheme.

Proposition 1. Given X,Y ∈ A+, we have X +
֌ Y if and only if X ⊐ Y or X

+

⇒w Y S for
some S ∈ A∗.

Say that a word X is weakly recurrent if X
+

⇒w XS for some S ∈ A∗.

Corollary 2. A word is well-defined if and only if it is not weakly recurrent.

Theorem 3. The following properties of a system are equivalent:

(1) all words are well-defined, i.e., (Con) holds;
(2) each explicit word is well-defined;
(3) there are no weakly recurrent explicit words;
(4) there are no weakly recurrent words;
(5) the conceptual scheme is acyclic;
(6) the conceptual scheme is acyclic and finite;
(7) the weak rewriting scheme is acyclic and finite.

Say that a word X is recurrent if X
+

⇒ XS for some S ∈ A∗. Introduce the following
named condition:

There are no recurrent words. (Rec)

Proposition 4. (Con) implies (Rec).

Put AE := min{A ⊆ A : E ⊆ A+}, i.e., AE is the explicit alphabet, the set of all letters
occurred in explicit words. In addition, put µ := max{|E| : E ∈ E}.

Theorem 5. If each word X ∈ A+

E with |X| 6 µ is not recurrent then all words are not
recurrent, i.e., (Rec) holds.

Remark 6. Let B(S) be a set of words defined via a system S by some condition. Say
that B(S) is a recurrence basis if, given an arbitrary system S , nonrecurrence of all words in
B(S) implies nonrecurrence of all words. Theorem 5 states that the set {X ∈ A+

E : |X| 6 µ}
is a recurrence basis. Despite its finiteness, the set can be rather large. However, we are
not aware of conditions which determine considerably smaller recurrence bases. (There are
examples showing that neither the set E of explicit words, nor the set of all prefixes of
the explicit words can serve as a recurrence basis.)

Introduce the following named condition:

All words are finitely rewritable. (Fin)

28 Gutman A. E.

Theorem 7. If each explicit word is finitely rewritable then all words are finitely
rewritable, i.e., (Fin) holds.

Theorem 8. (Rec) implies (Fin).

Therefore, according to Proposition 4 and Theorem 8, we have the implications (Con) ⇒
(Rec) ⇒ (Fin). As examples show, the converse implications are not true in general.

Introduce the following two named conditions:

All explicit words are objects, i.e., E ⊆ O. (Obj)

If X ∈ A+
, α ∈ A, and Xα ∈ E then X ∈ O. (PreObj)

Proposition 9. (1) Let X,Y ∈ A+, X ∗⇒ Y . Then X ∈ O if and only if Y ∈ O.
(2) Assume (Obj). Then, given X ∈ A+, we have X ∈ O\{ω} if and only if X ∗⇒ E for

some E ∈ E.
(3) Assume (PreObj). If X,S ∈ A+ and XS ∈ O then X ∈ O.

Let X ∈ O and α ∈ A. Say that α is an attribute of X if Xα ∈ O. Denote by ‖X‖1
the set of all attributes of X. It is clear that ‖ω‖1 = ∅.

Say that α is an explicit attribute (resp. implicit attribute) ofX ifXα ∈ O∩E (Xα ∈ O\E).
Say that α is an overriding attribute (resp. added attribute) of X if Xα ∈ O ∩ E and,

in addition, X ′α ∈ O (X ′α /∈ O). If α is an overriding attribute of X, we say that Xα over-
rides X ′α.

Therefore, every attribute is either explicit or implicit, and every explicit attribute is
either overriding or added.

Proposition 10. For all X ∈ O\{ω} and α ∈ A the following hold:
(1) α is an implicit attribute of X if and only if Xα /∈ E and X ′α ∈ O;
(2) α is an added attribute of X if and only if Xα ∈ O and X ′α /∈ O.

Proposition 11. Assume (Obj). If X,Y ∈ A+, α ∈ A, X ∗⇒ Y , and Yα ∈ O then
Xα ∈ O.

Proposition 12. Assume (Obj). Consider the rewriting sequence X = X(0) ⇒ · · · ⇒
X(n) = ω of an object X. If α ∈ ‖X‖1 then there is a number 0 6 i 6 n such that
X(0)α, . . . ,X(i)α ∈ O, X(i+1)α, . . . ,X(n)α /∈ O, and α is an added attribute of X(i).

Corollary 13. Assume (Obj). A letter α is an attribute of an object X if and only if
there is a number n > 0 such that X(n)α ∈ E.

Given an object X, say that δ is a detail of X if δ ∈ A+ and Xδ ∈ O. Denote by ‖X‖
the set of all details of X and call ‖X‖ the type of X. (It is clear that ‖ω‖ = ∅.) Note that
the set O of all objects can be infinite and, moreover, some object types ‖X‖ can be infinite.
On the other hand, we will see that the set {‖X‖ : X ∈ O} of all object types is always finite
(see Theorem 27).

Proposition 14. For all objects X and Y we have
(1) if ‖X‖ = ‖Y ‖ then ‖Xδ‖ = ‖Yδ‖ for all δ ∈ ‖X‖;
(2) if ‖X‖ ⊆ ‖Y ‖ then ‖Xδ‖ ⊆ ‖Yδ‖ for all δ ∈ ‖X‖.
On assuming (PreObj), we also have
(3) ‖X‖ = ‖Y ‖ if and only if ‖Y ‖1 = ‖X‖1 and ‖Xα‖ = ‖Yα‖ for all α ∈ ‖X‖1;
(4) ‖X‖ ⊆ ‖Y ‖ if and only if ‖X‖1 ⊆ ‖Y ‖1 and ‖Xα‖ ⊆ ‖Yα‖ for all α ∈ ‖X‖1.

Proposition 15. If X,Y ∈ O, X ⇒ Y , XS /∈ E for all S ∈ A+ then ‖X‖ = ‖Y ‖.

If we informally interpret the relation X
+

⇒ Y as “X inherits Y ” (or “X is a particular
case of Y ” or “X is a Y ”) and treat the objects Xα as “properties of X,” then in case X

+

⇒ Y

Object-Oriented Data as Prefix Rewriting Systems 29

the object X should in a sense inherit the properties of Y and optionally make them more
concrete and enlarge their totality. Formally, this requirement amounts to the following:

if X,Y ∈ O and X
+

⇒ Y then ‖X‖ ⊇ ‖Y ‖. (∗)

Introduce the following named condition:

If X,Y ∈ A+
, α ∈ A, Xα ∈ E, Yα ∈ O, and X ⇒ Y

then Xα ∈ O and ‖Xα‖ ⊇ ‖Yα‖.
(CoInh)

Theorem 16. Assume (PreObj). The following are equivalent:
(1) condition (CoInh) is satisfied;

(2) if X,Y ∈ O\{ω} and X ⇒ Y then ‖X‖ ⊇ ‖Y ‖;
(3) if X,Y ∈ O and X ∗⇒ Y then ‖X‖ ⊇ ‖Y ‖.

Therefore, with (PreObj) satisfied, (∗) is equivalent to (CoInh).

Corollary 17. Assume (PreObj) and (CoInh). If X,Y, S ∈ A+, X ∗⇒ Y , and YS ∈ O
then XS ∈ O and ‖XS‖ ⊇ ‖YS‖. In particular, if Y ∈ O and X ∗⇒ Y then ‖Y ‖1 ⊇ ‖X‖1
and ‖Xα‖ ⊇ ‖Yα‖.

Object systems with attribute value typing usually satisfy the following (or analogous)
requirements: Suppose that a class Y has a declared attribute α with value type τ . If x
is an instance of Y then x has attribute α whose value type is equal to or more concrete
than τ . Similarly, if X is a class inherited from Y then X has the inherited attribute α
whose value type is equal to or more concrete than τ . If we interpret the relation X ⇒ Y as
“the object X is an instance of the class Y ” or “the class X directly inherits the class Y ” and
treat the relationXα → V as “V is the explicit value of the propertyXα ” or “V is the declared
value class of the attribute α within the class X,” then the above requirements can be
formalized by the following named condition:

If X,Y ∈ A+
, α ∈ A, Yα ∈ O, Xα → V , and X ⇒ Y

then V ∈ O and ‖V ‖ ⊇ ‖Yα‖.
(CoVal)

Theorem 18. Conditions (PreObj) and (CoVal) imply (CoInh).

The conceptual dependence was introduced above as a relation on the set of all words.
As soon as non-object words are regarded as “senseless,” it is reasonable to describe depen-
dence between objects involving objects only; namely, if a concept X depends on a concept Y ,
then there should be a chain of concepts (rather than arbitrary words) connecting X with Y .
This principle is justified by the following theorem (see also Corollary 20).

Theorem 19. Assume (Obj), (PreObj), and (CoInh). Given X,Y ∈ O, X depends on Y
if and only if there exist X1, . . . ,Xn ∈ O, n > 1, such that X ֌ X1֌ · · ·֌ Xn = Y .

Corollary 20. Assume (Obj), (PreObj), and (CoInh). The restriction of +
֌ onto O is

the least transitive relation on O possessing the following three properties for all X,Y ∈ O
and δ ∈ A+ :

if X → Y then X +
֌ Y ;

if X → Y and δ ∈ ‖X‖ ∩ ‖Y ‖ then Xδ +
֌ Yδ;

if δ ∈ ‖X‖ then Xδ +
֌ X.

The last assertion shows that, with (Obj), (PreObj), and (CoInh) satisfied, the conceptual
dependence relation between objects can be described in full conformity with the initial

30 Gutman A. E.

definition of this relation on the set of all words. The only distinction consists in the fact
that the latter description does not go beyond the set of objects.

Remark 21. In Theorem 19 and Corollary 20, none of the conditions (Obj), (PreObj),
or (CoInh) can be omitted.

3. Algorithmization

The rest of the paper is devoted to the effective verification of various properties of
rewriting systems under consideration, and the following theorem is the main step in this
direction.

Theorem 22. Given a system, put µ := max{|E| : E ∈ E}. A word X is infinitely
rewritable if and only if one of the following two (mutually exclusive) conditions holds:

(a) there are integers n > 0 and r > 0 such that X(n) = X(n+r);

(b) there are integers n > 0 and r > 0 such that

µ 6
∣
∣X(n)

∣
∣ 6

∣
∣X(n+1)

∣
∣, . . . ,

∣
∣X(n+r)

∣
∣ ,

X(n) 6= X(n+r), X(n)↾µ = X(n+r)↾µ .

In case (a) we have X ∗⇒ X(n) ⇒ · · · ⇒ X(n+r−1)
︸ ︷︷ ︸

period

⇒ X(n) ⇒ · · · . In case (b) put

Y = X(n)↾µ and let S ∈ A∗ be such that X(n) = Y S. Then there is a word R ∈ A+ such that

Y (r) = Y R and the rewriting sequence 〈X(0), X(1), . . . 〉 contains a subsequence constituted
by the words X(n+mr) = Y RmS, m > 0, each of which starts a regular “growth period” of
length r:

X ∗⇒ X(n) = Y S ⇒ Y (1)S ⇒ · · · ⇒ Y (r−1)S
⇒ X(n+r) = Y RS ⇒ Y (1)RS ⇒ · · · ⇒ Y (r−1)RS
⇒ X(n+2r) = Y R2S ⇒ Y (1)R2S ⇒ · · · ⇒ Y (r−1)R2S
⇒ · · ·
⇒ X(n+mr) = Y RmS ⇒ Y (1)RmS ⇒ · · · ⇒ Y (r−1)RmS
⇒ · · · .

In particular,
{
X(n), X(n+1), . . .

}
=

{
Y (j)RmS : 0 6 j < r, m > 0

}
.

Let P be an arbitrary set of “constructive entities” (i.e., a set whose elements can be
used as inputs for algorithms) and let C(Y, p) be a condition imposed on words Y ∈ A+ with
additional parameters in P. Formally we may assume that C is a subset of A+ ×P and, for
all Y ∈ A+, p ∈ P, the expression C(Y, p) means the containment 〈Y, p〉 ∈ C.

Given C(Y, p) as above, introduce the condition C ′(Y,R, S, p) for Y,R ∈ A+, S ∈ A∗,
p ∈ P as follows:

C ′(Y,R, S, p) if and only if there is an m > 1 such that C(Y RmS, p).

Say that C(Y, p) is cyclically decidable if the following two conditions hold:

(a) there is an algorithm verifying C(Y, p) for Y ∈ A+, p ∈ P;
(b) there is an algorithm verifying C ′(Y,R, S, p) for Y,R ∈ A+, S ∈ A∗, p ∈ P.

Note that (a) does not in general imply (b), which fact can be derived from existence of
a recursive set C ⊆ N2 such that the set {n ∈ N : (∃m ∈ N) 〈m,n〉 ∈ C} is not recursive
(see, for instance, [2, Chapter C.1, § 6]).

Object-Oriented Data as Prefix Rewriting Systems 31

Let C(Y, p) be a cyclically decidable condition. Theorem 22 justifies the following simple
algorithm which, given a system, a word X ∈ A+, and a parameter p, verifies existence of
a word Y ∈ A+ such that X ∗⇒ Y and C(Y, p).

Algorithm 23. [Is there a word Y such that X ∗⇒ Y and C(Y, p)?]

• If C(X, p), return Yes. If X is not rewritable, return No.

• Otherwise, subsequently calculate the rewrites X(1), . . . ,X(i), . . . and, at each step i > 1,
subsequently analyze the fragments 〈X(n), X(n+1), . . . , X(n+r)〉 for 0 6 n < n + r = i,
as follows:

◦ If C
(
X(n+r), p

)
, return Yes. If X(n) = X(n+r), return No.

◦ If 〈X(n), . . . , X(n+r)〉 satisfies condition (b) of Theorem 22,
put Y := X(n)↾µ ; let S ∈ A∗ be such that X(n) = YS;
let R ∈ A+ be such that Y (r) = YR (such an R exists by Theorem 22);
if C ′(Y,R, S, p), return Yes; otherwise return No.

◦ If X(n+r) is not rewritable, return No. Otherwise proceed to the next step, i+ 1.

By Theorem 22, the above procedure terminates for every input.

As is easily seen, given a system S , the condition C(Y,S) = “Y is not rewritable within
S ” is cyclically decidable. Therefore, specialized with this condition, Algorithm 23 verifies
finite rewritability of a given word within a given system. A simplified version is presented
below.

Algorithm 24. [Is a word X finitely rewritable?] Start subsequent calculation of
the rewrites X(0), X(1), If a nonrewritable word X(i) occurs, return Yes. Otherwise,
according to Theorem 22, a fragment 〈X(n), X(n+1), . . . , X(n+r)〉 will occur which satis-
fies (a) or (b) of Theorem 22; in this case return No.

Since the set E of explicit words is finite, Theorem 7 implies that (Fin) is effectively
verifiable: it suffices to apply Algorithm 24 to all explicit words.

The specialization of Algorithm 23 with the condition C(Y) = “Y =ω ” checks if a given
word is an object. (This can be also verified by a slight modification of Algorithm 24.) It is
now clear that (Obj) and (PreObj) are effectively verifiable.

Note that if (Fin) holds, the containment X ∈ O can be trivially verified: just check if
the (finite) rewriting sequence of X ends with ω. In addition, if (Obj) holds, we can stop
calculating the rewriting sequence of X if X(n) ∈ E at some step n > 0; furthermore, if
both (Obj) and (PreObj) hold, the calculation can be terminated if some X(n) becomes
a prefix of any explicit word (see Proposition 9).

As is easily seen, the condition C(Y,X) = “Y ⊒ X ” is cyclically decidable. Therefore
a properly specialized version of Algorithm 23 checks if a given word X is recurrent. By
Theorem 5, we conclude that (Rec) is effectively verifiable: to check if all words are not
recurrent, it suffices to apply the algorithm to all words over AE of length at most µ. (However,
the resultant verification occurs exponential-time; see Remark 6.)

Another approach to verifying (Rec) can be based on Theorem 8 which states that (Rec)
implies (Fin). Check (Fin) first. If it fails then (Rec) also fails. If (Fin) holds true, condi-
tion (Rec) can be verified by processing all words X over AE of length at most µ and returning
Yes whenever an X occurs such that X ⊑ X(n) for some n > 1.

By Theorem 3, condition (Con) can be effectively verified by constructing the conceptual
scheme and checking (during the construction) if the scheme is acyclic. The algorithm de-
scribed below checks if a given system is conceptually consistent. If it is so, the algorithm
returns the conceptual scheme of the system; otherwise it returns an example of a cycle in

32 Gutman A. E.

the conceptual scheme. The algorithm uses a variable directed graph Γ = 〈ΓN,ΓA〉 (with ΓN

the nodes and ΓA the arcs) and a variable A whose values are finite subsets of A+ ×A+.

Algorithm 25. [Is a system conceptually consistent?]
(1) Put ΓN := E, ΓA := ∅.
(2) Put A := {〈X,Y 〉 : X is a sink of Γ and X ֌ Y }.
(3) If A = ∅, claim that the system is conceptually consistent and return Γ as
the conceptual scheme.
(4) Otherwise do the following for each pair 〈X,Y 〉 ∈ A :
if X = Y or Γ contains a path from Y to X,

claim that the system is conceptually inconsistent

and return a cycle: X֌X or Y ֌ · · · ֌X֌Y ;
otherwise put ΓN := ΓN ∪ {Y }, ΓA := ΓA ∪ {〈X,Y 〉}.
(5) Go to (2).

When applied to a conceptually inconsistent system, Algorithm 25 returns an example
of a cycle X0 ֌ X1 ֌ · · ·֌ Xm = X0 in the conceptual scheme, but it is not guaranteed
that all words Xi in the cycle are objects (even in case X0 is an object). On the other
hand, Theorem 19 implies that, with (Obj), (PreObj), and (CoInh) satisfied, every path
X0 ֌ X1 ֌ · · · ֌ Xm between objects X0,Xm can be transformed into a path of objects
Y0֌ Y1֌ · · ·֌ Yn, with Y0 = X0 and Yn = Xm. We note that such a transformation can
be performed effectively.

By slightly modifying Algorithm 25, we can obtain a procedure for constructing the weak
rewriting scheme rather than the conceptual scheme. The algorithm presented below checks
in an arbitrary system if there are weakly recurrent words, and either returns an example of
such a word or constructs the weak rewriting scheme of the system.

Algorithm 26. [Is there a weakly recurrent word?]
(1) Put ΓN := E, ΓA := ∅.
(2) Put A := {〈X,Y 〉 : X is a sink of Γ and X ⇒w Y }.
(3) If A = ∅, claim that there are no weakly recurrent words and return Γ as
the weak rewriting scheme.
(4) Otherwise do the following for each pair 〈X,Y 〉 ∈ A :

if X ⊑ Y or Γ contains a path from a prefix Y0 ⊑ Y to X,
return a weakly recurrent word:
X⇒wY ⊒ X or Y0 ⇒w · · · ⇒wX⇒wY ⊒Y0;

otherwise put ΓN := ΓN ∪ {Y }, ΓA := ΓA ∪ {〈X,Y 〉}.

(5) Go to (2).

According to Theorem 3, the weak rewriting scheme of a conceptually inconsistent system
includes a path X0

+

⇒w Xn ⊒ X0 with X0 ∈ E. Given an inconsistent system, Algorithm 25
returns an example of a path Y0

+

⇒w Yn ⊒ Y0, but the leading word Y0 need not be explicit.
In this connection it is worth noting that every path of the form Y0

+

⇒w Yn ⊒ Y0 can be
effectively transformed into a path X0

+

⇒w Xn ⊒ X0 (of the same length) with X0 ∈ E.
To the author’s opinion, the most convincing indication of conceptual inconsistency is

an example of some cycle X0 ֌ · · · ֌ Xn = X0 which is constituted by objects and starts
with an explicit word X0. We note that, if an inconsistent system satisfies (Obj), (PreObj),
and (CoInh), then a cycle of this kind can be found effectively.

We now turn to the effective analysis of object types.
Say that C ∈ O is a character if either C = ω or C ⊏ E for some E ∈ E. Let C be the set

of all characters. It is clear that C is finite.

Object-Oriented Data as Prefix Rewriting Systems 33

Given an object X, consider the rewriting sequence X(0) ⇒ · · · ⇒ X(n) = ω and denote
by ch(X) the first character in the sequence 〈X(0), . . . ,X(n)〉. Call ch(X) the character of X.

It is clear that ch(C) = C for all C ∈ C. Therefore, C = {ch(X) : X ∈ O}.

Theorem 27. For every object X we have ‖X‖ = ‖ch(X)‖. Consequently, {‖X‖ : X ∈
O} = {‖C‖ : C ∈ C}, and the set {‖X‖ : X ∈ O} is finite.

By the type comparison problem we mean the following: given two objects X and Y ,
effectively compare the types of X and Y , i.e., determine which of the relations ‖X‖ = ‖Y ‖,
‖X‖ ⊆ ‖Y ‖, ‖X‖ ⊇ ‖Y ‖ hold.

It is clear that the character of an object can be effectively determined. Therefore, due to
Theorem 27, the type comparison problem reduces to effective comparison of the character
types.

Given X ∈ C and α ∈ ‖X‖1, introduce the notation Xα := ch(Xα) and, given an
arbitrary function τ : C → {1, . . . , N}, define the following equivalence relation on C:

X ∼
τ
Y if and only if ‖X‖1 = ‖Y ‖1 and τ(Xα) = τ(Yα) for all α ∈ ‖X‖1.

The following algorithm uses two variable functions τ, τ̃ : C → {1, 2, . . . } (each of which
can be encoded as an array of naturals indexed by the characters).

Algorithm 28. [Compute a character typing.]
(1) Define τ by putting τ(X) := 1 for all X ∈ C.
(2) If X ∼

τ
Y for all X,Y ∈ C such that τ(X) = τ(Y), return τ .

(3) Assign τ̃ a copy of τ .
(4) For each k ∈

{
τ(X) : (∃Y ∈ C)

(
X ≁

τ
Y & τ(X) = τ(Y)

)}
do the following:

arbitrarily enumerate the set {X ∈ C : τ(X) = k} thus making it a sequence
〈X1, . . . ,Xn〉, n > 2, and, for each i = 2, . . . , n, do the following:

if Xi ∼τ Xj for some 1 6 j < i, reassign τ̃(Xi) := τ̃(Xj);
otherwise reassign τ̃(Xi) := max{τ̃ (X) : X ∈ C}+ 1.

(5) Assign τ := τ̃ and go to (2).

Theorem 29. Algorithm 28 halts for any system and, if the system meets (PreObj),
the resultant function τ : C → {1, . . . , N} is such that τ(X) = τ(Y) if and only if ‖X‖ = ‖Y ‖.

Remark 30. Algorithm 28 is analogous to Vizing’s algorithm of partitioning the vertex
set of a graph into classes of similar vertices (see [3]). The author is grateful to S. V. Av-
gustinovich for discovering the analogy.

The following algorithm uses two variable sets Σ,Σ0 ⊆ C2.

Algorithm 31. [Compute the character subtyping.]
(1) Put Σ := C2.
(2) Put Σ0 :=

{
〈X,Y 〉 ∈ Σ : ‖X‖1 ⊆ ‖Y ‖1 & (∀α ∈ ‖X‖1) 〈Xα, Yα〉 ∈ Σ

}
.

(3) If Σ0 = Σ, return Σ. Otherwise reassign Σ := Σ0 and go to (2).

Theorem 32. Given any system, Algorithm 31 always halts and, if the system meets
(PreObj), the resultant set Σ equals {〈X,Y 〉 ∈ C2 : ‖X‖ ⊆ ‖Y ‖}.

Therefore, given a system subject to (PreObj), we can effectively verify the relation
‖X‖ ⊆ ‖Y ‖ for X,Y ∈ O.

(
As is easily seen, this implies that (CoInh) and (CoVal) are

effectively verifiable.
)
However, the mere claim “‖X‖ * ‖Y ‖” is not always sufficient, and

one may require a particular reason why the inclusion fails. Within a bulky system, it may
occur nontrivial to find a particular detail δ ∈ ‖X‖\‖Y ‖, and a corresponding algorithm
would thus be a useful troubleshooting tool. Recall that, due to Theorem 27, it suffices to
automate the solution for characters only.

34 Gutman A. E.

The following algorithm uses a variable set ∆ ⊆ C2 and a variable function δ : ∆ → A+.

Algorithm 33. [Compute a diagnosis for subtyping failure.]
(1) Put ∆ := ∅ and n := 1.
(2) For all pairwise distinct X,Y ∈ C do the following:
if there is an α ∈ ‖X‖1\‖Y ‖1, add 〈X,Y 〉 to ∆ and assign δ(X,Y) := α.
(3) For all pairwise distinct X,Y ∈ C such that 〈X,Y 〉 /∈ ∆ do the following:
if there is an α ∈ ‖X‖1 such that 〈Xα, Yα〉 ∈ ∆ and |δ(Xα, Yα)| = n,
add 〈X,Y 〉 to ∆ and assign δ(X,Y) := α δ(Xα, Yα).

(4) If there were no assignments at step (3), return δ. Otherwise put n := n+1 and go
to (3).

Theorem 34. Given any system, Algorithm 33 always halts and, if the system meets
(PreObj), the resultant function δ : ∆ → A+ is such that

∆ = {〈X,Y 〉 ∈ C2 : ‖X‖ * ‖Y ‖},
δ(X,Y) ∈ ‖X‖\‖Y ‖ for all 〈X,Y 〉 ∈ ∆,
|δ(X,Y)| = min{|δ′| : δ′ ∈ ‖X‖\‖Y ‖} for all 〈X,Y 〉 ∈ ∆.

Acknowledgments. The author is grateful to Sergei Vladimirovich Avgustinovich for fruitful
discussions.

Referen
es

1. Salomaa A. Formal Languages.�N. Y.: A
ademi
 Press, 1973.�336 p.

2. Barwise J. (ed.) Handbook of Mathemati
al Logi
.�Amsterdam: North-Holland, 1977.�1165 p.

3. Vizing V. G. Distributive Coloring of Graph Verti
es // Diskretn. Anal. Issled. Oper.�1995.�Vol. 2,

� 4.�P. 3�12.

Re
eived O
tober 17, 2013.

Gutman Alexander Efimovi
h

Sobolev Institute of Mathemati
s,

Head of the Laboratory of Fun
tional Analysis

A
ad. Koptyug av. 4, 630090, Novosibirsk, Russia;

Novosibirsk State University, Professor

Pirogova 2, 630090, Novosibirsk, Russia

E-mail: gutman�math.ns
.ru

Obje
t-Oriented Data as Pre�x Rewriting Systems 35

ÎÁÚÅÊÒÍÎ-Î�ÈÅÍÒÈ�ÎÂÀÍÍÛÅ ÄÀÍÍÛÅ

ÊÀÊ ÏÅ�ÅÇÀÏÈÑÛÂÀÞÙÈÅ ÑÈÑÒÅÌÛ

�óòìàí À. Å.

�àññìàòðèâàþòñÿ ïåðåçàïèñûâàþùèå ñèñòåìû, íå ñîäåðæàùèå ïàð ïðàâèë âèäà X→Y , X→Z,

ãäå Y 6=Z, â êîòîðûõ ïåðåçàïèñè ïîäëåæàò òîëüêî ñàìûå äëèííûå ïðå�èêñû. Â ðàìêàõ òà-

êèõ ñèñòåì îïðåäåëÿþòñÿ è èññëåäóþòñÿ àíàëîãè êîíöåïöèé, õàðàêòåðíûõ äëÿ ñèñòåì îáúåêòíî-

îðèåíòèðîâàííûõ äàííûõ: íàñëåäîâàíèå êëàññîâ è îáúåêòîâ, ýêçåìïëÿðû êëàññîâ, àòðèáóòû ýêçåì-

ïëÿðîâ è êëàññîâ, êîíöåïòóàëüíàÿ çàâèñèìîñòü è íåïðîòèâîðå÷èâîñòü, êîíöåïòóàëüíûå ñõåìû, òèïû,

ïîäòèïû è äð. Îñîáîå âíèìàíèå óäåëÿåòñÿ ý��åêòèâíîé ïðîâåðêå ðàçíîîáðàçíûõ ñâîéñòâ ðàññìàò-

ðèâàåìûõ ïåðåçàïèñûâàþùèõ ñèñòåì. Â ÷àñòíîñòè, ïðèâîäÿòñÿ àëãîðèòìû äëÿ îòâåòà íà ñëåäóþùèå

âîïðîñû: Âñå ëè ñëîâà êîíå÷íî ïåðåïèñûâàåìû? Ñóùåñòâóþò ëè ðåêóððåíòíûå ñëîâà? ßâëÿåòñÿ ëè

ñèñòåìà êîíöåïòóàëüíî íåïðîòèâîðå÷èâîé? Êîíöåïòóàëüíî çàâèñèò ëè äàííîå ñëîâî X îò ñëîâà Y ?

Ñîâïàäàþò ëè òèïû X è Y ? ßâëÿåòñÿ ëè òèï X ïîäòèïîì òèïà Y ?

Êëþ÷åâûå ñëîâà: ïðå�èêñíàÿ ïåðåçàïèñûâàþùàÿ ñèñòåìà, ïîëóòóýâñêàÿ ñèñòåìà, ñèñòåìà

îáúåêòíî-îðèåíòèðîâàííûõ äàííûõ, èí�îðìàöèîííàÿ ñèñòåìà, ïðîâåðêà íåïðîòèâîðå÷èâîñòè, îí-

òîëîãèÿ ìîäåëè äàííûõ.

