УДК 512.5 DOI 10.46698/h3104-8810-6070-х

О СТРОЕНИИ ЭЛЕМЕНТАРНЫХ СЕТЕЙ НАД КВАДРАТИЧНЫМИ ПОЛЯМИ

В. А. Койбаев^{1, 2}

 1 Южный математический институт — филиал ВНЦ РАН, Россия, 362027, Владикавказ, Маркуса, 22; 2 Северо-Осетинский государственный университет им. К. Л. Хетагурова, Россия, 362025, Владикавказ, Ватутина, 44

E-mail: koibaev-k1@yandex.ru

Посвящается 75-летию профессора С. С. Кутателадзе

Аннотация. Исследуется структура элементарных сетей над квадратичными полями. Система $\sigma=(\sigma_{ij}),\ 1\leqslant i,j\leqslant n,$ аддитивных подгрупп кольца R называется сетью (ковром) над кольцом R порядка n, если $\sigma_{ir}\sigma_{rj}\subseteq\sigma_{ij}$ при всех значениях индексов i,r,j. Сеть, рассматриваемая без диагонали, называется элементарной сетью (элементарный ковер). Элементарная сеть $\sigma=(\sigma_{ij})$ называется неприводимой, если все аддитивные подгруппы σ_{ij} отличны от нуля. Пусть $K=\mathbb{Q}(\sqrt{d})$ — квадратичное поле, D — кольцо целых квадратичного поля $K,\ \sigma=(\sigma_{ij})$ — неприводимая элементарная сеть порядка $n\geqslant 3$ над K, причем σ_{ij} — D-модули. Если целое d принимает одно из следующих значений (22 поля): -1,-2,-3,-7,-11,-19,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73, то для некоторого промежуточного подкольца $P,\ D\subseteq P\subseteq K,$ сеть σ сопряжена диагональной матрицей из D(n,K) с элементарной сетью идеалов кольца P.

Ключевые слова: сеть, ковер, элементарная сеть, замкнутая сеть, поле алгебраических чисел, квадратичное поле.

Mathematical Subject Classification (2010): 20G15.

Образец цитирования: Койбаев В. А. О строении элементарных сетей над квадратичными полями // Владикавк. мат. журн.—2020.—Т. 22, вып. 4.—С. 87—91. DOI: 10.46698/h3104-8810-6070-x.

Исследуется структура элементарных сетей над квадратичными полями. Система $\sigma=(\sigma_{ij}),\ 1\leqslant i,j\leqslant n,$ аддитивных подгрупп кольца R называется сетью (ковром) над полем K порядка n, если $\sigma_{ir}\sigma_{rj}\subseteq\sigma_{ij}$ при всех значениях индексов $i,\ r,\ j.$ Сеть, рассматриваемая без диагонали, называется элементарной сетью (элементарный ковер). Элементарная сеть $\sigma=(\sigma_{ij})$ называется неприводимой, если все аддитивные подгруппы σ_{ij} отличны от нуля. Пусть $K=\mathbb{Q}(\sqrt{d})$ — квадратичное поле, D — кольцо целых поля $K,\sigma=(\sigma_{ij})$ — неприводимая элементарная сеть порядка $n\geqslant 3$ над K, причем σ_{ij} — D-модули. Для некоторого класса квадратичных полей $\mathbb{Q}(\sqrt{d})$ (для некоторого класса целых чисел d) доказано, что с точностью до сопряжения (элементарной сети) диагональной матрицей из D(n,K) все σ_{ij} являются идеалами фиксированного промежуточного подкольца $P,D\subseteq P\subseteq K$. В заключение строится недополняемая симметрическая элементарная сеть над квадратичным полем.

88 Койбаев В. А.

1. Квадратичные поля. Кольцо целых квадратичного поля

Квадратичным полем мы называем расширение поля рациональных чисел \mathbb{Q} второй степени. Всякое квадратичное поле имеет вид $\mathbb{Q}(\sqrt{d})$, где $d \neq 1$ — некоторое целое рациональное число, свободное от квадратов [1, гл. II, § 7, п. 1].

Число a поля алгебраических чисел K (конечное расширение поля рациональных чисел) называется целым алгебраическим числом, если a является корнем унитарного (старший коэффициент многочлена равен 1) многочлена с целыми рациональными коэффициентами. Множество всех целых алгебраических чисел поля K является подкольцом поля K, которое называется кольцом целых поля K (см. [1, алгебраическое дополнение, § 4] и [2, гл. 5]). Кольцо целых D поля алгебраических чисел K совпадает с максимальным порядком поля K [1, гл. II, § 2, теорема 6].

Предложение 1 [1, гл. II, § 7, теорема 1]. Пусть $d \neq 1$ — целое рациональное число, свободное от квадратов. Кольцо целых (максимальный порядок) D квадратичного поля $\mathbb{Q}(\sqrt{d})$ совпадает c кольцом

$$D = \mathbb{Z}[\theta] = \mathbb{Z} + \mathbb{Z}\theta = \{x + y\theta : x, y \in \mathbb{Z}\},\$$

где $\theta = \sqrt{d}$ при $d \equiv 2, 3 \pmod 4$ и $\theta = \frac{1+\sqrt{d}}{2}$ при $d \equiv 1 \pmod 4$. Дискриминант поля $\mathbb{Q}(\sqrt{d})$ равен 4d в первом случае и d во втором.

Предложение 2 [1, гл. III, §2]. 1) Кольцо целых D мнимого квадратичного поля $\mathbb{Q}(\sqrt{d})$, d < 0, является евклидовым тогда и только тогда, когда (5 полей)

$$d \in \{-1, -2, -3, -7, -11\}.$$

2) Кольцо целых D вещественного квадратичного поля $\mathbb{Q}(\sqrt{d})$, d>0, является евклидовым тогда и только тогда, когда (16 полей)

$$d \in \{2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}.$$

2. Элементарные сети над квадратичными полями

В этом разделе мы дадим описание элементарных сетей над некоторым классом квадратичных полей.

Система $\sigma=(\sigma_{ij}),\ 1\leqslant i,j\leqslant n,$ аддитивных подгрупп кольца R называется cemью (ковром) [3, 4] над полем K порядка n, если $\sigma_{ir}\sigma_{rj}\subseteq\sigma_{ij}$ при всех значениях индексов $i,\ r,\ j.$ Сеть, рассматриваемая без диагонали, называется элементарной сетью (элементарный ковер) [3, 4]. Элементарная сеть $\sigma=(\sigma_{ij}), 1\leqslant i\neq j\leqslant n,$ называется dononuse-moŭ, если для некоторых аддитивных подгрупп (точнее, подколец) σ_{ii} кольца R таблица (с диагональю) $\sigma=(\sigma_{ij}), 1\leqslant i,j\leqslant n,$ является (полной) сетью. Хорошо известно (см., например, [3]), что элементарная сеть $\sigma=(\sigma_{ij})$ является дополняемой тогда и только тогда, когда $\sigma_{ij}\sigma_{ji}\sigma_{ij}\subseteq\sigma_{ij}$ для любых $i\neq j$.

Полную или элементарную сеть $\sigma = (\sigma_{ij})$ мы называем nenpusodumoŭ, если все аддитивные подгруппы σ_{ij} отличны от нуля.

Назовем элементарную сеть σ замкнутой (donycmumoй) ([5; 6, вопрос 15.46]), если элементарная группа $E(\sigma)$ не содержит новых элементарных трансвекций. Замкнутыми являются, например, дополняемые элементарные сети (см., например, [3]).

Дадим в начале описание промежуточных колец, заключенных между областью главных идеалов и его полем частных. Следующая лемма хорошо известна.

Лемма 1. Пусть R — область главных идеалов, K — поле частных кольца R. Если S — мультипликативное подмножество, порожденное подмножеством простых кольца R, то $S^{-1}R$ также является кольцом главных идеалов и $R\subseteq S^{-1}R\subseteq K$. C другой стороны, всякое промежуточное подкольцо $P,\ R\subseteq P\subseteq K$, является кольцом главных идеалов и имеет вид $P=S^{-1}R$ для некоторого мультипликативного подмножества $S\subseteq R$.

Предложение 3 [7, теорема 2]. Пусть $\sigma = (\sigma_{ij})$ — неприводимая элементарная сеть порядка $n \geqslant 3$ над полем частных K кольца главных идеалов R, причем для любых $i, j, i \neq j$, подгруппы σ_{ij} являются R-модулями. Тогда для некоторого промежуточного подкольца $P, R \subseteq P \subseteq K$, сеть σ сопряжена диагональной матрицей из D(n, K) с элементарной сетью $\pi = (\pi_{ij})$ идеалов кольца P, где $\pi_{ij} = q_{ij}P$, для некоторых $q_{ij} \in P$. В частности, элементарная сеть σ является замкнутой.

Элементарная сеть $\pi = (\pi_{ij})$ из предложения наглядно представляется таблицей

$$\pi = (\pi_{ij}) = \begin{pmatrix} * & q_{12}P & q_{13}P & \dots & q_{1n}P \\ P & * & q_{23}P & \dots & q_{2n}P \\ P & q_{32}P & * & \dots & q_{3n}P \\ \dots & \dots & \dots & \dots & \dots \\ P & q_{n2}P & q_{n3}P & \dots & * \end{pmatrix}.$$
(1)

Теорема 1. Пусть $K = \mathbb{Q}(\sqrt{d})$ — квадратичное поле, D — кольцо целых поля K. Пусть, далее, $\sigma = (\sigma_{ij})$ — неприводимая элементарная сеть порядка $n \geqslant 3$ над полем K, причем для любых $i \neq j$, подгруппы σ_{ij} являются D-модулями. Если целое d принимает одно из следующих значений (22 поля):

$$-1$$
, -2 , -3 , -7 , -11 , -19 , 2 , 3 , 5 , 6 , 7 , 11 , 13 , 17 , 19 , 21 , 29 , 33 , 37 , 41 , 57 , 73 ,

то для некоторого промежуточного подкольца $P, D \subseteq P \subseteq K$, сеть σ сопряжена диагональной матрицей из D(n,K) с элементарной сетью $\pi = (\pi_{ij})$ идеалов кольца P, где $\pi_{ij} = q_{ij}P$, для некоторых $q_{ij} \in P$ (см. (1)). В частности, элементарная сеть σ является замкнутой.

Доказательство теоремы вытекает из предложений 2, 3 и леммы 1 (при этом нужно заметить, что всякая евклидова область является областью главных идеалов).

Замечание. Кольцо целых мнимого квадратичного поля $\mathbb{Q}(\sqrt{-19})$ является областью главных идеалов, но не является евклидовым [8].

3. Построение недополняемой элементарной сети над квадратичным полем

Результаты этого параграфа показывают существенное отличие строения элементарных сетей над полем рациональных чисел \mathbb{Q} [7] от строения элементарных сетей над квадратичными полями.

Пусть $d \equiv 2, 3 \pmod 4$). В поле $\mathbb{Q}[\sqrt{d}]$ рассмотрим кольцо целых $D = \mathbb{Z}[\sqrt{d}]$.

$$t = m(1 + \sqrt{d}), \quad A = t^4D, \quad m \in \mathbb{Z}, \ m \geqslant 3, \quad B = \mathbb{Z}t + A = \mathbb{Z}t + t^4D.$$

Заметим, что $A \subseteq B$ и

$$t^2 = m^2((1+d) + 2\sqrt{d}), \quad t^3 = m^3((1+3d) + (3+d)\sqrt{d}).$$

90 Койбаев В. А.

Предложение 4. Таблица

$$\tau = \begin{pmatrix} * & B & A & \dots & A \\ B & * & A & \dots & A \\ \dots & \dots & \dots & \dots & \dots \\ A & A & A & \dots & * \end{pmatrix}$$

является недополняемой элементарной сетью.

 \lhd Действитеьно, так как $A=t^4D$ — идеал кольца $D=\mathbb{Z}\big[\sqrt{d}\,\big]$, то $A^2\subseteq A$, $AB\subseteq A$, а потому таблица τ является элементарной сетью. Для того, чтобы показать, что элементарная сеть τ является недополняемой, нам достаточно показать (см. § 2), что B^3 не содержится в подгруппе B. Покажем, что t^3 не содержится в $B=\mathbb{Z}t+t^4D$. Действительно, если $t^3\in B$, то $t^2\in \mathbb{Z}+t^3D$, а потому для некоторых $a\in \mathbb{Z}$ и $x+y\sqrt{d}\in D$ мы имеем (см. выше значение t^2 и t^3)

$$m^{2}((1+d)+2\sqrt{d}) = a + m^{3}[(1+3d)+(3+d)\sqrt{d}](x+y\sqrt{d})$$

 $\implies 2 = m(y(1+3d)+x(3+d)) \in m\mathbb{Z}.$

Однако последнее невозможно так как $m \geqslant 3$. \triangleright

Литература

- 1. Боревич З. И., Шафаревич И. Р. Теория чисел.—М.: Наука, 1985.
- 2. Атья М., Макдональд И. Введение в коммутативную алгебру.—М.: Мир, 1972.
- 3. *Боревич З. И.* О подгруппах линейных групп, богатых трансвекциями // Зап. науч. сем. ЛОМИ.— 1978.—Т. 75.—С. 22–31.
- 4. Левчук В. М. Замечание к теореме Л. Диксона // Алгебра и логика.—1983.—Т. 22, № 4.—С. 421–434.
- Койбаев В. А. Элементарные сети в линейных группах // Тр. Ин-та матем. и мех. УрО РАН.— 2011.—Т. 17, № 4.—С. 134–141.
- 6. Коуровская тетрадь: нерешенные вопросы теории групп.—17-е изд.—Новосибирск, 2010.
- 7. Дряева Р. Ю., Койбаев В. А., Нужин Я. Н. Полные и элементарные сети над полем частных кольца главных идеалов // Зап. науч. сем. ПОМИ.—2017.—Т. 455.—С. 42–51.
- 8. Wilson J. C. A principal ideal ring that is not a euclidean ring // Mathematics Magazine.—1973.— Vol. 46, \aleph 1.—P. 34–38. DOI: 10.1080/0025570X.1973.11976270.

Статья поступила 9 августа 2020 г.

Койбаев Владимир Амурханович

Южный математический институт — филиал ВНЦ РАН,

ведущий научный сотрудник

РОССИЯ, 362027, Владикавказ, Маркуса, 22;

Северо-Осетинский государственный университет им. К. Л. Хетагурова,

профессор кафедры алгебры и геометрии

РОССИЯ, 362019, Владикавказ, Ватутина, 44

E-mail: koibaev-k1@yandex.ru

https://orcid.org/0000-0002-5142-2612

Vladikavkaz Mathematical Journal 2020, Volume 22, Issue 4, P. 87–91

ON THE STRUCTURE OF ELEMENTARY NETS OVER QUADRATIC FIELDS

Koibaev, V. A.^{1,2}

Southern Mathematical Institute VSC RAS,
 22 Markus St., Vladikavkaz 362027, Russia;
 North-Ossetian State University after K. L. Khetagurov,
 44 Vatutina St., Vladikavkaz 362025, Russia

E-mail: koibaev-k1@yandex.ru

Abstract. The structure of elementary nets over quadratic fields is studied. A set of additive subgroups $\sigma = (\sigma_{ij}), 1 \leq i, j \leq n$, of a ring R is called a net of order n over R if $\sigma_{ir}\sigma_{rj} \subseteq \sigma_{ij}$ for all i, r, j. The same system, but without the diagonal, is called elementary net (elementary carpet). An elementary net $\sigma = (\sigma_{ij})$ is called irreducible if all additive subgroups σ_{ij} are different from zero. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field, D a ring of integers of the quadratic field K, $\sigma = (\sigma_{ij})$ an irreducible elementary net of order $n \geq 3$ over K, and σ_{ij} a D-modules. If the integer d takes one of the following values (22 fields): -1, -2, -3, -7, -11, -19, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73, then for some intermediate subring <math>P, $D \subseteq P \subseteq K$, the net σ is conjugated by a diagonal matrix of D(n, K) with an elementary net of ideals of the ring P.

Key words: net, carpet, elementary net, closed net, algebraic number field, quadratic field.

Mathematical Subject Classification (2010): 20G15.

For citation: Koibaev, V. A. On the Structure of Elementary Nets Over Quadratic Fields, Vladikavkaz Math. J., 2020, vol. 22, no. 4, pp. 87–91 (in Russian). DOI: 10.46698/h3104-8810-6070-x.

References

- 1. Borevich, Z. I. and Shafarevich, I. R. Number Theory, New York-London, Academic Press, 1966.
- 2. Atiyah, M. F. and Macdonald, I. G. Introduction to Commutative Algebra, Addison-Wesley, 1969.
- 3. Borevich, Z. I. Subgroups of Linear Groups Rich in Transvections, Journal of Soviet Mathematics, 1987, vol. 37, no. 2, pp. 928–934. DOI: 10.1007/BF01089083.
- 4. Levchuk, V. M. Remark on a Theorem of L. Dickson, $Algebra\ and\ Logic$, 1983, vol. 22, no. 4, pp. 306–316. DOI: 10.1007/BF01979677.
- 5. Koibaev, V. A. Elementary Nets in Linear Groups, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, vol. 17, no. 4, pp. 134–141 (in Russian).
- 6. Kourovskaya tetrad': nereshennye voprosy teorii grupp [The Kourovka Notebook: Unsolved Problems in Group Theory], Novosibirsk, 2010, issue 17 (in Russian).
- 7. Dryaeva, R. Yu., Koibaev, V. A. and Nuzhin, Ya. N. Full and Elementary Nets Over the Field of Fractions of a Principal Ideal Ring, Journal of Mathematical Sciences, 2018, vol. 234, no. 2, pp. 141–147. DOI: 10.1007/s10958-018-3990-y.
- Wilson, J. C. A Principal Ideal Ring That is not a Euclidean Ring, Mathematics Magazine, 1973, vol. 46, no. 1, pp. 34–38. DOI: 10.1080/0025570X.1973.11976270.

Received August 9, 2020

VLADIMIR A. KOIBAEV
Southern Mathematical Institute VSC RAS,
22 Markus St., Vladikavkaz 362027, Russia,
Leading Researcher;
North-Ossetian State University after K. L. Khetagurov,
44 Vatutina St., Vladikavkaz 362025, Russia,
Professor of the Department of Algebra and Geometry
E-mail: koibaev-kl@yandex.ru
https://orcid.org/0000-0002-5142-2612