УДК 517.982 DOI 10.46698/j5441-9333-1674-х

INCREASING UNIONS OF STEIN SPACES WITH SINGULARITIES

Y. Alaoui 1

¹ Department of Fundamental Sciences, Hassan II Institute of Agronomy and Veterinary Sciences, B.P. 6202, Rabat, 10101, Morocco

E-mail: y.alaoui@iav.ac.ma, comp5123ster@gmail.com

Abstract. We show that if X is a Stein space and, if $\Omega \subset X$ is exhaustable by a sequence $\Omega_1 \subset \Omega_2 \subset \ldots \subset \Omega_n \subset \ldots$ of open Stein subsets of X, then Ω is Stein. This generalizes a well-known result of Behnke and Stein which is obtained for $X = \mathbb{C}^n$ and solves the union problem, one of the most classical questions in Complex Analytic Geometry. When X has dimension 2, we prove that the same result follows if we assume only that $\Omega \subset \subset X$ is a domain of holomorphy in a Stein normal space. It is known, however, that if X is an arbitrary complex space which is exhaustable by an increasing sequence of open Stein subsets $X_1 \subset X_2 \subset \cdots \subset X_n \subset \ldots$, it does not follow in general that X is holomorphically-convex or holomorphically-separate (even if X has no singularities). One can even obtain 2-dimensional complex manifolds on which all holomorphic functions are constant.

Key words: Stein spaces, q-complete spaces, q-convex functions, strictly plurisubharmonic functions.

Mathematical Subject Classification (2010): 32E10, 32E40.

For citation: Alaoui, Y. Increasing Unions of Stein Spaces with Singularities, Vladikavkaz Math. J., 2021, vol. 23, no. 1, pp. 5–10. DOI: 10.46698/j5441-9333-1674-x.

1. Introduction

Let X be a Stein space and $D \subset X$ an open subset which is the union of an increasing sequence of Stein open subsets of X.

Does it follow that D is necessarily Stein?

It is known from a classical theorem due to Behnke and Stein [1] that if $D_1 \subset D_2 \subset \cdots \subset$

 $D_n \subset \ldots$ is an increasing sequence of Stein open sets in \mathbb{C}^n , then their union $\bigcup_{j \ge 1} D_j$ is Stein. In 1977, Markoe [2] proved the following:

Let X be a reduced complex space which the union of an increasing sequence $X_1 \subset X_2 \subset \cdots \subset X_n \subset \cdots$ of Stein domains.

Then X is Stein if and only if the 1th cohomology group of X with values in the structure sheaf \mathscr{O}_X vanishes $(H^1(X, \mathscr{O}_X) = 0)$.

Similarly, it is known (see [3]) that in an arbitrary complex space X an increasing union of Stein spaces $(X_n)_{n\geq 0}$ is itself Stein if $H^1(X, \mathcal{O}_X)$ is separated.

It has been proved earlier by Fornaess in [4], [5] and [6] that, if an additional condition is not imposed on $H^1(X, \mathcal{O}_X)$, the space X is not necessarily holomorphically-convex or holomorphically-separate.

^{© 2021} Alaoui, Y.

It was shown in [7] that if $(D_j)_{j\geq 1}$ is an increasing sequence of Stein domains in a normal Stein space X, then $D = \bigcup_{j\geq 1} D_j$ is a domain of holomorphy (i. e. for each $x \in \partial D$ there is $f \in O(D)$ which is not holomorphically extendable through x).

It was proved in [8] that if X is a complex space and $(D_j)_{j\geq 1}$ is an increasing sequence of Stein open subsets of X, then $D = \bigcup D_j$ is 2-complete. We recall that a complex space X is said to be q-complete if there exists an exhaustion function $\phi \in C^{\infty}(X, \mathbb{R})$ which is q-convex on the whole space X, that is every point $x \in X$ has an open neighborhood U isomorphic to a closed analytic set in a domain $D \subset \mathbb{C}^n$ such that the restriction $\phi|_U$ has an extension $\tilde{\phi} \in C^{\infty}(D)$ whose Levi form $L(\tilde{\phi}, z)$ has at most q - 1 negative or zero eingenvalues at any point z of D.

Here we solve affirmatively the above problem in the general case. We show that if X is a Stein space and, if Ω is an increasing sequence of Stein open subsets of X, then there exists an increasing sequence $(\Omega'_{\nu})_{\nu \ge 1}$ of open subsets of Ω such that $\Omega = \bigcup_{\nu \ge 1} \Omega'_{\nu}$ and there are continuous strictly psh functions $\psi''_{\nu} : \Omega'_{\nu} \to]0, +\infty[$ with the following properties

(a) $\psi_j'' > 2^{\nu+2}$ on $\Omega_{\nu+2}' \setminus \Omega_{\nu+1}'$ for every $j \ge \nu + 1$.

(b) $(\psi_{\nu}'')_{\nu \ge 1}$ is stationary on every compact subset of Ω .

This implies that the function $\psi : \Omega \to \mathbb{R}$ defined by $\psi = \lim \psi''_{\nu}$ is a continuous strictly psh exhaustion function on Ω .

2. The Union Problem

In order to solve the problem in dimension 2, it is sufficient to show

Theorem 1. Every domain of holomorphy D which is relatively compact in a 2-dimensional normal Stein space X is Stein.

 \triangleleft By the theorem of Andreotti–Narasimhan [9] we have only to prove that D is locally Stein and, we may of course assume that X is connected.

Let $p \in \partial D \cap \operatorname{Sing}(X)$, and choose a connected Stein open neighborhood U of p with $U \cap \operatorname{Sing}(X) = \{p\}$ and such that U is biholomorphic to a closed analytic set in a domain M in some \mathbb{C}^N . Let E be a complex affine subspace of \mathbb{C}^N of maximal dimension such that p is an isolated point of $E \cap U$.

By a coordinate transformation, one can obtain that $z_i(p) = 0$ for all $i \in \{1, 2, \dots, N\}$ and we may assume that there is a connected Stein open neighborhood V of p in M such that $U \cap V \cap \{z_1(x) = z_2(x) = 0\} = \{p\}.$

We may suppose that $N \ge 4$ and, let $E_1 = V \cap \{z_2(x) = \cdots = z_{N-1}(x) = 0\}$, $E_2 = \{x \in E_1 : z_1(x) = 0\}$. Then $A = (U \cap V) \cup E_1$ is a Stein closed analytic set in V as the union of two closed analytic subsets of V.

Let $\xi : \tilde{A} \to A$ be a normalization of A. Then $\xi : \tilde{A} \setminus \xi^{-1}(p) \to A \setminus \{p\}$ is biholomorphic and, clearly $\xi^{-1}(A \cap E_2) = \{x \in \tilde{A} : z_1(\xi(x)) = \cdots = z_{N-1}(\xi(x)) = 0\}$ is everywhere 1dimensional. It follows from a theorem of Simha [10] that $\tilde{A} \setminus \xi^{-1}(A \cap E_2)$ is Stein. Hence $A \setminus E_2 = \xi(\tilde{A} \setminus \xi^{-1}(A \cap E_2))$ itself is Stein.

Since $p \in E_2$ is the unique singular point of A, then $U \cap V \cap D$ is Stein, being a domain of holomorphy in the Stein manifold $A \setminus E_2$. \triangleright

Let now X be a Stein space of dimension $n \ge 2$ and $\Omega \subset X$ an open subset which is the union of an increasing sequence $\Omega_1 \subset \Omega_2 \subset \cdots \subset \Omega_n \subset \ldots$ of Stein open sets in X. Let $\phi_{\nu} : \Omega_{\nu} \to]0, +\infty[$ be a smooth strictly psh exhaustion function on Ω_{ν} , and let $(d_{\nu})_{\nu \ge 1}$ be a sequence with $d_{\nu} < d_{\nu+1}$, and $\sup d_{\nu} = +\infty$. One may assume that if $\Omega'_{\nu} = \{x \in \Omega_{\nu} : \phi_{\nu}(x) < d_{\nu}\}$, then $\Omega'_{\nu} \subset \subset \Omega'_{\nu+1}$. **Lemma 1.** There exist for each $\nu \ge 1$ an exhaustion function $\varphi_{\nu} \in C^{\infty}(\Omega_{\nu})$ which is strictly psh in a neighborhood of $\overline{\Omega'}_{\nu} \setminus \Omega'_{\nu-1}$, a locally finite covering $(U_{\nu})_{\nu\ge 1}$ of Ω by open sets $U_{\nu} \subset \Omega'_{\nu+1}$, and constants $c_{\nu} \in \mathbb{R}$, $\nu \ge 1$, with the following properties:

(a) For each $\nu \ge 1$ there exists a function $\psi_{\nu} : \Omega'_{\nu+1} \to]0, +\infty[$ such that $\psi_{\nu}|_{U_{\nu}}$ is strictly psh and $\psi_{\nu} = \psi_{\nu-1}$ on $\{x \in U_{\nu} : \varphi_{\nu+1}(x) < c_{\nu}\} \cap U_{\nu-1}$.

(b) For every index $\nu \ge 1$, there exists $\varepsilon_{\nu} > 0$ such that

$$\Omega_{\nu-1}' \setminus \overline{\Omega'}_{\nu-2} \subset \left\{ x \in U_{\nu} : \varphi_{\nu+1}(x) < c_{\nu} - \varepsilon_{\nu} \right\}$$

and

$$\left\{ x \in U_{\nu} : \varphi_{\nu+1}(x) < c_{\nu} + \varepsilon_{\nu} \right\} \subset U_{\nu-1}.$$

 $\exists \text{ There exists a } C^{\infty} \text{ exhaustion function } \varphi_{\nu+1} \text{ on } \Omega_{\nu+1} \text{ which is strictly plurisubharmonic in a neighborhood of } \overline{\Omega'}_{\nu+1} \setminus \Omega'_{\nu} \text{ such that, if } m_{\nu+1} = \min_{\overline{\Omega'}_{\nu+1} \setminus \Omega'_{\nu}} \varphi_{\nu+1} \text{ and } M_{\nu+1} = \max_{\overline{\Omega'}_{\nu-1}} \varphi_{\nu+1}, \text{ then } m_{\nu+1} > M_{\nu+1}.$

In fact, we choose $\theta_{\nu} \in C_0^{\infty}(\Omega_{\nu+1})$ with compact support in $\Omega_{\nu+1} \setminus \overline{\Omega'}_{\nu-1}$ so that $0 \leq \theta_{\nu} \leq 1$ and $\theta_{\nu}(x) = 1$ when $x \in \overline{\Omega'}_{\nu+1} \setminus \Omega'_{\nu}$. Let ξ be a point of $\partial \Omega'_{\nu-1}$ such that $\phi_{\nu+1}(\xi) = \max_{\overline{\Omega'}_{\nu-1}} \phi_{\nu+1}$. Then it is clear that

$$\varphi_{\nu+1} = \phi_{\nu+1} + \phi_{\nu+1}(\xi)\theta_{\nu}$$

satisfies the requirements.

We now assume that $\Omega_0 = \emptyset$ and put

$$U_1 = \Omega'_2$$
, and $U_{\nu} = (\Omega'_{\nu+1} \setminus \overline{\Omega'}_{\nu-2})$ for $\nu \ge 2$.

Then $(U_{\nu})_{\nu \ge 1}$ is a locally finite covering of Ω . Moreover, if we set

$$c'_{\nu} = m_{\nu+1} = \operatorname{Inf}\left\{\varphi_{\nu+1}(x), \ x \in \left(\overline{\Omega'}_{\nu+1} \setminus \Omega'_{\nu}\right)\right\},\$$

then

$$\left(\overline{\Omega'}_{\nu-1} \setminus \overline{\Omega'}_{\nu-2}\right) \subset \left\{ x \in U_{\nu} : \varphi_{\nu+1}(x) < c'_{\nu} \right\} \subset \left(\Omega'_{\nu} \setminus \overline{\Omega'}_{\nu-2}\right) \subset U_{\nu-1}$$

Furthermore, there exist $c_{\nu} > 0$ and $\varepsilon_{\nu} > 0$ such that $c_{\nu} + \varepsilon_{\nu} = c'_{\nu}$ and $(\overline{\Omega'}_{\nu-1} \setminus \overline{\Omega'}_{\nu-2}) \subset \{x \in U_{\nu} : \varphi_{\nu+1}(x) < c_{\nu} - \varepsilon_{\nu}\}.$

Moreover, if the function $\theta_{\nu} \in C_0^{\infty}(\Omega_{\nu+1} \setminus \Omega'_{\nu-1})$ is chosen so that $\theta_{\nu} = 1$ on

$$(\Omega_{\nu+1}' \backslash \Omega_{\nu}') \cup \bigg\{ x \in \overline{\Omega_{\nu}'} \backslash \Omega_{\nu-1}' : \operatorname{Inf}_{\Omega_{\nu+1}' \backslash \Omega_{\nu}'} \phi_{\nu+1} - \frac{\varepsilon_{\nu}}{2} \\ \leqslant \phi_{\nu+1}(x) \leqslant \operatorname{Inf}_{\Omega_{\nu+1}' \backslash \Omega_{\nu}'} \phi_{\nu+1} + M_{\nu+1} \bigg\},$$

then clearly we obtain $\left\{x \in U_{\nu} : c_{\nu} + \frac{\varepsilon_{\nu}}{2} \leqslant \varphi_{\nu+1}(x) \leqslant c_{\nu} + \varepsilon_{\nu}\right\} \subset \{\theta_{\nu} = 1\}$. Therefore with such a choice of θ_{ν} there exists for each ν a function $\psi_{\nu} : \Omega'_{\nu+1} \to]0, +\infty[$ such that $\psi_{\nu}|_{U_{\nu}}$ is strictly plurisubharmonic and, $\psi_{\nu} = \psi_{\nu-1}$ on $\left\{x \in U_{\nu} : \varphi_{\nu+1}(x) < c_{\nu} + \frac{\varepsilon_{\nu}}{2}\right\}$.

In fact, if $\nu = 1$, then it is obvious that $\psi_1 = \phi_2$ has the required properties for $\Omega_1 = \emptyset$, since $U_1 = \Omega'_2$ and $\left\{ x \in U_1 : \varphi_2(x) < c_1 + \frac{\varepsilon_1}{2} \right\}$ is contained in Ω'_1 .

We now assume that $\nu \ge 2$ and, that $\psi_1, \ldots, \psi_{\nu-1}$ have been constructed. Let $\chi_{\nu}(t) = a_{\nu} \left(t - c_{\nu} - \frac{\varepsilon_{\nu}}{2}\right)$ where a_{ν} is a positive constant, and consider the function $\psi_{\nu} : \Omega'_{\nu+1} \to]0, +\infty[$ defined by

$$\psi_{\nu} = \begin{cases} \psi_{\nu-1} \text{ on } \{\varphi_{\nu+1} \leqslant c_{\nu} - \varepsilon_{\nu}\},\\ \max(\psi_{\nu-1}, \chi_{\nu}(\varphi_{\nu+1})) \text{ on } \{c_{\nu} - \varepsilon_{\nu} \leqslant \varphi_{\nu+1} \leqslant c_{\nu} + \varepsilon_{\nu}\},\\ \chi_{\nu}(\phi_{\nu+1} + \phi_{\nu+1}(\xi)) \text{ on } \{\varphi_{\nu+1} \geqslant c_{\nu} + \varepsilon_{\nu}\}. \end{cases}$$

Since on $U'_{\nu} = \left\{ x \in U_{\nu} : \varphi_{\nu+1}(x) < c_{\nu} + \frac{\varepsilon_{\nu}}{2} \right\} \subset U_{\nu-1}$ we have $\psi_{\nu-1} > 0 > \chi_{\nu}(\varphi_{\nu+1})$ and $\psi_{\nu-1}$ is strictly psh on $U_{\nu-1}$, then $\psi_{\nu}|_{U'_{\nu}} = \psi_{\nu-1}|_{U'_{\nu}}$ is strictly psh on U'_{ν} . On the other hand, the subset $\left\{ c_{\nu} + \frac{\varepsilon_{\nu}}{2} \leqslant \varphi_{\nu+1} \leqslant c_{\nu} + \varepsilon_{\nu} \right\} \subset U_{\nu-1}$ is contained in $\{\theta_{\nu} = 1\}$, which implies that $\psi_{\nu} = \max(\psi_{\nu-1}, \chi_{\nu}(\phi_{\nu+1} + \phi_{\nu+1}(\xi)))$ on $\left\{ c_{\nu} + \frac{\varepsilon_{\nu}}{2} \leqslant \varphi_{\nu+1} \leqslant c_{\nu} + \varepsilon_{\nu} \right\}$. Then clearly the function ψ_{ν} is well-defined and satisfies the required conditions, if a_{ν} is taken so that $a_{\nu} \frac{\varepsilon_{\nu}}{2} > \max_{\{\varphi_{\nu+1} = c_{\nu} + \varepsilon_{\nu}\} \cap \Omega'_{\nu}} \psi_{\nu-1}$.

Theorem 2. If X is a Stein space and Ω an open subset of X which is an increasing union of Stein open sets in X, then Ω is Stein.

 \triangleleft We shall prove that there exists for each $\nu \geq 1$ a continuous strictly psh function ψ_{ν}'' in a neighborhood of $\overline{\Omega_{\nu}'}$ such that $\psi_{j}'' > 2^{\nu+1}$ on $\Omega_{\nu+2}' \setminus \Omega_{\nu+1}'$ for every $j \geq \nu+2$ and $(\psi_{\nu}'')_{\nu \geq 1}$ is stationary on every compact set in Ω .

In fact, let φ'_{ν} be the function defined by

$$\varphi'_{\nu} = \begin{cases} \psi_{\nu} & \text{on } \Omega'_{\nu+1} \setminus \overline{\Omega'}_{\nu-1}, \\ \psi_{\mu} & \text{on } \{ x \in U_{\mu+1} : \varphi_{\mu+2}(x) < c_{\mu+1} - \varepsilon_{\mu+1} \} \text{ for } \mu \leqslant \nu. \end{cases}$$

Then, by Lemma 1, φ'_{ν} is a continuous strictly plurisubharmonic function on $\Omega'_{\nu+1}$.

Moreover, we have $\varphi'_{\nu} = \varphi'_{\nu-1}$ on $\{x \in U_{\mu+1} : \varphi_{\mu+2}(x) < c_{\mu+1} - \varepsilon_{\mu+1}\}$ for all $\mu \leq \nu - 1$. Let now K be a compact set in Ω and $\nu \geq 2$ such that $K \subset \Omega'_{\nu-1}$. Since $\varphi'_{\nu} = \varphi'_{\nu-1}$ on $K \cap (\overline{\Omega'}_{\mu} \setminus \overline{\Omega'}_{\mu-1}) \subset \{x \in U_{\mu+1} : \varphi_{\mu+2}(x) < c_{\mu+1} - \varepsilon_{\mu+1}\}$ for all $\mu \leq \nu - 1$, then $\varphi'_{\nu} = \varphi'_{\nu-1}$ on K. This implies that the sequence $(\varphi'_{\nu})_{\nu \geq 1}$ is stationary on every compact subset of Ω .

Let now $\nu \ge 1$ be an arbitrary natural number. Then there exists a smooth function $\psi'_{\nu} \in C^{\infty}(X)$ which is strictly plurisubharmonic in a neighborhood of $(X \setminus \Omega'_{\nu+1}) \cup \overline{\Omega'}_{\nu}$ such that $\psi'_{\nu} > 2^{\nu+2}$ in $\overline{\Omega'}_{\nu+2} \setminus \Omega'_{\nu+1}$ but $\psi'_{\nu} < 0$ in $\overline{\Omega'}_{\nu}$.

In fact, let $h \in C^{\infty}(X)$ be a strictly plurisubharmonic exhaustion function such that h < 0in $\overline{\Omega'}_{\nu}$, and let $\chi_{\nu} \in C^{\infty}(X)$ be a smooth function with compact support in $\Omega'_{\nu+1}$ such that $\chi_{\nu} = 1$ in $\overline{\Omega'}_{\nu}$. Then it is clear that

$$h_{\nu} = h + b_{\nu} \chi_{\nu},$$

where $b_{\nu} = \min_{x \in \overline{\Omega'}_{\nu+2} \setminus \Omega'_{\nu+1}} h(x)$, is a smooth exhaustion function on X which is strictly plurisubharmonic in a neighborhood of $(X \setminus \Omega'_{\nu+1}) \cup \overline{\Omega'}_{\nu}$ such that if $m'_{\nu} = \min_{y \in \overline{\Omega'}_{\nu+2} \setminus \Omega'_{\nu+1}} h_{\nu}(y)$ and $M'_{\nu} = \max_{y \in \overline{\Omega'}_{\nu}} h_{\nu}(y)$, then $m'_{\nu} > M'_{\nu}$.

Let $\varepsilon'_{\nu} > 0$ be such that $m'_{\nu} > M'_{\nu} + \varepsilon'_{\nu}$. Then we can choose a sufficiently big constant $C_{\nu} > 1$ so that

$$\psi'_{\nu}(x) = C_{\nu} \left(h_{\nu}(x) - M'_{\nu} - \varepsilon'_{\nu} \right)$$

is $2^{\nu+2}$ in $(\overline{\Omega'}_{\nu+2} \setminus \Omega'_{\nu+1})$, $\psi'_{\nu} < 0$ in $\overline{\Omega'}_{\nu}$, and strictly plurisubharmonic in a neighborhood of $(X \setminus \Omega'_{\nu+1}) \cup \overline{\Omega'}_{\nu}$.

If now we consider the following function defined in Lemma 1

$$\psi_{\nu} = \begin{cases} \psi_{\nu-1} & \text{on } \{\varphi_{\nu+1} \leqslant c_{\nu} - \varepsilon_{\nu}\}, \\ \max\left(\psi_{\nu-1}, \chi_{\nu}(\varphi_{\nu+1})\right) & \text{on } \{c_{\nu} - \varepsilon_{\nu} \leqslant \varphi_{\nu+1} \leqslant c_{\nu} + \varepsilon_{\nu}\}, \\ \chi_{\nu}(\phi_{\nu+1} + \phi_{\nu+1}(\xi)) & \text{on } \{\varphi_{\nu+1} \geqslant c_{\nu} + \varepsilon_{\nu}\} \end{cases}$$

and the fact that $c_{\nu} + \varepsilon_{\nu} = \text{Inf} \{ \varphi_{\nu+1}(x), x \in (\overline{\Omega'}_{\nu+1} \setminus \Omega'_{\nu}) \}$, we find that

$$\left(\Omega_{\nu+1}' \setminus \overline{\Omega_{\nu}'}\right) \subset \left\{x \in U_{\nu} : \varphi_{\nu+1}(x) \ge c_{\nu} + \varepsilon_{\nu}\right\}$$

and, on the set $(\Omega'_{\nu+1} \setminus \overline{\Omega'}_{\nu})$ we have

$$\varphi_{\nu}' = \psi_{\nu} = \chi_{\nu}(\phi_{\nu+1} + \phi_{\nu+1}(\xi)) \ge a_{\nu}\left(\varphi_{\nu+1} - c_{\nu} - \frac{\varepsilon_{\nu}}{2}\right) \ge a_{\nu}\frac{\varepsilon_{\nu}}{2}.$$

We can therefore choose a_{ν} again big enough so that $a_{\nu}\frac{\varepsilon_{\nu}}{2} > \psi'_{\nu}$ on $(\overline{\Omega'}_{\nu+1}\backslash\Omega'_{\nu})$. Moreover, by suitable choice of the constants a_{μ} we can also achieve that $\varphi'_{\nu} > \psi'_{\mu}$ on $(\Omega'_{\mu+1}\backslash\Omega'_{\mu})$ for all $\mu < \nu$. In fact, since $(\Omega'_{\mu}\backslash\overline{\Omega'}_{\mu-1}) \subset \{x \in U_{\mu+1} : \varphi_{\mu+2}(x) < c_{\mu+1} - \varepsilon_{\mu+1}\}$, then, for every $2 \leq \mu \leq \nu, \ \varphi'_{\nu} = \psi_{\mu}$ on $(\Omega'_{\mu}\backslash\overline{\Omega'}_{\mu-1})$. If we set $A_{\mu} = (\Omega'_{\mu}\backslash\overline{\Omega'}_{\mu-1}) \cap \{x \in U_{\mu} : \varphi_{\mu+1}(x) < c_{\mu} - \varepsilon_{\mu}\}$, then $\psi_{\mu} = \psi_{\mu-1}$ on A_{μ} . Since in addition $(\Omega'_{\mu}\backslash\overline{\Omega'}_{\mu-1}) \subset \{x \in U_{\mu-1} : \varphi_{\mu}(x) \geq c_{\mu-1} + \varepsilon_{\mu-1}\}$, then on the set A_{μ} we have $\varphi'_{\nu} = \psi_{\mu} = \psi_{\mu-1} \geq \chi_{\mu-1}(\varphi_{\mu}) \geq a_{\mu-1}\frac{\varepsilon_{\mu-1}}{2}$. Let now $x \in (\Omega'_{\mu}\backslash\Omega'_{\mu-1})$. If $x \notin A_{\mu}$, since $x \in U_{\mu}$, then $\varphi_{\mu+1}(x) \geq c_{\mu} - \varepsilon_{\mu}$. Because $(\Omega'_{\mu}\backslash\overline{\Omega'}_{\mu-1}) \subset \{x \in U_{\mu-1} : \varphi_{\mu}(x) \geq c_{\mu-1} + \varepsilon_{\mu-1}\}$, we obtain, if $\varphi_{\mu+1}(x) \leq c_{\mu} + \varepsilon_{\mu}$,

$$\varphi_{\nu}'(x) = \psi_{\mu}(x) = \max\left(\psi_{\mu-1}(x), \chi_{\mu}(\varphi_{\mu+1}(x))\right) \ge \psi_{\mu-1}(x) = \chi_{\mu-1}(\varphi_{\mu}(x)) > a_{\mu-1}\frac{\varepsilon_{\mu-1}}{2}.$$

Or $\varphi_{\nu}'(x) = \psi_{\mu}(x) \ge \chi_{\mu}(\varphi_{\mu+1})(x) > a_{\mu}\frac{\varepsilon_{\mu}}{2}, \text{ if } \varphi_{\mu+1}(x) \ge c_{\mu} + \varepsilon_{\mu}.$

So we may of course take the constants a_{μ} sufficiently large so that $a_{\mu-1}\frac{\varepsilon_{\mu-1}}{2} > \psi'_{\mu-1}$ and $a_{\mu}\frac{\varepsilon_{\mu}}{2} > \psi'_{\mu-1}$ on $(\overline{\Omega'}_{\mu} \setminus \Omega'_{\mu-1})$ for all $\mu \leq \nu$. Since only finitely many conditions are required to get $\varphi'_{\nu} > \psi'_{\mu}$ on $(\Omega'_{\mu+1} \setminus \Omega'_{\mu})$ for $\mu \leq \nu$, it follows that the function $\psi''_{\nu} : \Omega'_{\nu+1} \to \mathbb{R}$ given by $\psi''_{\nu} = \max(\varphi'_{\nu}, \psi'_{\nu}, \psi'_{\nu-1}, \dots, \psi'_{1})$ is obviously continuous and strictly plurisubharmonic in $\Omega'_{\nu+1}$. Also it is clear that for every $j \geq \nu + 1$, $\psi''_{j} \geq \psi'_{\nu} > 2^{\nu+2}$ on $(\Omega'_{\nu+2} \setminus \overline{\Omega'}_{\nu+1})$. Let now $K \subset \Omega$ be a compact subset and $\nu \geq 2$ such that $K \subset \Omega'_{\nu-1}$. Since $\varphi'_{\nu} > 0 > \psi'_{\nu}$ on

Let now $K \subset \Omega$ be a compact subset and $\nu \ge 2$ such that $K \subset \Omega'_{\nu-1}$. Since $\varphi'_{\nu} > 0 > \psi'_{\nu}$ on $\overline{\Omega'}_{\nu-1}$ and $\varphi'_{\nu} = \varphi'_{\nu-1}$ on K, then $\max(\varphi'_{\nu-1}, \psi'_{\nu-1}, \psi'_{\nu-2}, \cdots, \psi'_1) = \max(\varphi'_{\nu}, \psi'_{\nu}, \psi'_{\nu-1}, \cdots, \psi'_1)$ on K, which implies that the sequence $(\psi''_{\nu})_{\nu\ge 1}$ is stationary on every compact subset of Ω .

This proves that the limit ψ'' of (ψ''_{ν}) is a continuous strictly plurisubharmonic exhaustion function on Ω , which shows that Ω is Stein. \triangleright

References

- Behnke, H. and Stein, K. Konvergente Folgen Von Regularitätsbereichen and die Meromorphiekonvexitat, Mathematische Annalen, 1939, vol. 116, pp. 204–216. DOI: 10.1007/BF01597355.
- Markoe, A. Runge Families and Inductive Limits of Stein Spaces, Annales de l'Institut Fourier, 1977, vol. 27, no. 3, pp. 117–127. DOI: 10.5802/aif.663.
- Silva, A. Rungescher Satz and a Condition for Steiness for the Limit of an Increasing Sequence of Stein Spaces, Annales de l'Institut Fourier, 1978, vol. 28, no. 2, pp. 187–200. DOI: 10.5802/aif.695.
- Fornæss, J. E. An Increasing Sequence of Stein Manifolds whose Limit is not Stein, Mathematische Annalen, 1976, vol. 223, pp. 275–277. DOI: 10.1007/BF01360958.

- Fornæss, J. E. 2-Dimensional Counterexamples to Generalizations of the Levi Problem, Mathematische Annalen, 1977, vol. 230, pp. 169–173. DOI: 10.1007/BF01370661.
- Fornæss, J. E. and Stout, E. L. Polydiscs in Complex Manifolds, Mathematische Annalen, 1977, vol. 227, pp. 145–153. DOI: 10.1007/BF01350191.
- Coltoiu, M. Remarques sur les Réunions Croissantes d'Ouverts de Stein, Comptes Rendus de l'Academie des Sciences. Ser. I, 1988, vol. 307, pp. 91–94.
- 8. Våjâitu, V. q-Completeness and q-Concavity of the Union of Open Subspaces, Mathematische Zeitschrift, 1996, vol. 221, pp. 217–229. DOI: 10.1007/PL00022735.
- Andreotti, A. and Narasimhan, R. Oka's Heftungslemma and the Levi Problem for Complex Spaces, Transactions of the American Mathematical Society, 1964, vol. 111, no. 2, pp. 345–366. DOI: 10.1090/S0002-9947-1964-0159961-3.
- 10. Simha, R. R. On the Complement of a Curve on a Stein Space of Dimension Two, Mathematische Zeitschrift, 1963, vol. 82, pp. 63–66. DOI: 10.1007/BF01112823.

Received May 22, 2020

YOUSSEF ALAOUI Department of Fundamental Sciences, Hassan II Institute of Agronomy and Veterinary Sciences, B.P. 6202, Rabat, 10101, Morocco, *Professor* E-mail: y.alaoui@iav.ac.ma, comp5123ster@gmail.com https://orcid.org/0000-0002-7014-8671

> Владикавказский математический журнал 2021, Том 23, Выпуск 1, С. 5–10

ВОЗРАСТАЮЩЕЕ ОБЪЕДИНЕНИЕ ПРОСТРАНСТВ СТЕЙНА С СИНГУЛЯРНОСТЯМИ

Алауи Ю.1

¹ Институт агрономии и ветеринарии имени Хасана II, Рабат, Марокко E-mail: y.alaoui@iav.ac.ma, comp5123ster@gmail.com

Аннотация. В статье показано, что если X — пространство Стейна, а множество $\Omega \subset X$ исчерпаемо последовательностью открытых множеств Стейна $\Omega_1 \subset \Omega_2 \subset \ldots \subset \Omega_n \subset \ldots$, содержащихся в X, то Ω — также множество Стейна. Этот факт обобщает хорошо известный результат Бенке и Стейна, полученный для $X = \mathbb{C}^n$, и решет проблему объединения — один из классических вопросов комплексной аналитической геометрии. В том случае, когда X двумерно, для справедливости полученного результата достаточно предположить, что $\Omega \subset X$ — область голоморфности в нормальном пространстве Стейна. В то же время, известно, что произвольное комплексное пространство X, исчернаемое возрастающей последовательностью открытых множеств Стейна $X_1 \subset X_2 \subset \cdots \subset X_n \subset \ldots$, не является, вообще говоря, голоморфно выпуклым или голоморфно отделимым (даже если X не имеет сингулярностей). Имеются даже двумерные комплексные многообразия, на которых все голоморфные функции постоянны.

Ключевые слова: пространство Стейна, *q*-полное пространство, *q*-выпуклая функция, строго плюрисубгармонические функции.

Mathematical Subject Classification (2010): 32E10, 32E40.

Образец цитирования: Alaoui Y. Increasing unions of Stein spaces with singularities // Владикавк. мат. журн.—2020.—Т. 23, № 1.—С. 5–10 (in English). DOI: 10.46698/j5441-9333-1674-х.