УДК 512.55 DOI 10.46698/d4945-5026-4001-v

A NOTE ON SEMIDERIVATIONS IN PRIME RINGS AND C*-ALGEBRAS#

M. A. Raza¹ and N. Rehman²

¹ Department of Mathematics, Faculty of Science & Arts-Rabigh, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia; ² Department of Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

arifraza03@gmail.com; nu.rehman.mm@amu.ac.in; rehman100@gmail.com

Abstract. Let \mathscr{R} be a prime ring with the extended centroid \mathscr{C} and the Matrindale quotient ring \mathscr{Q} . An additive mapping $\mathscr{F}: \mathscr{R} \to \mathscr{R}$ is called a semiderivation associated with a mapping $\mathscr{G}: \mathscr{R} \to \mathscr{R}$, whenever $\mathscr{F}(xy) = \mathscr{F}(x)\mathscr{G}(y) + x\mathscr{F}(y) = \mathscr{F}(x)y + \mathscr{G}(x)\mathscr{F}(y)$ and $\mathscr{F}(\mathscr{G}(x)) = \mathscr{G}(\mathscr{F}(x))$ holds for all $x, y \in \mathscr{R}$. In this manuscript, we investigate and describe the structure of a prime ring \mathscr{R} which satisfies $\mathscr{F}(x^m \circ y^n) \in \mathscr{Z}(\mathscr{R})$ for all $x, y \in \mathscr{R}$, where $m, n \in \mathbb{Z}^+$ and $\mathscr{F}: \mathscr{R} \to \mathscr{R}$ is a semiderivation with an automorphism ξ of \mathscr{R} . Further, as an application of our ring theoretic results, we discussed the nature of \mathscr{C}^* -algebras. To be more specific, we obtain for any primitive \mathscr{C}^* -algebra \mathscr{A} . If an anti-automorphism $\zeta : \mathscr{A} \to \mathscr{A}$ satisfies the relation $(x^n)^{\zeta} + x^n \in \mathscr{Z}(\mathscr{A})$ for every $x, y \in \mathscr{A}$, then \mathscr{A} is $\mathscr{C}^* - \mathscr{W}_4$ -algebra, i. e., \mathscr{A} satisfies the standard identity $\mathscr{W}_4(a_1, a_2, a_3, a_4) = 0$ for all $a_1, a_2, a_3, a_4 \in \mathscr{A}$.

Key words: prime ring, automorphism, semiderivation.

Mathematical Subject Classification (2010): 16W25, 16N60.

For citation: Raza, M. A. and Rehman, N. A Note on Semiderivations in Prime Rings and C*-Algebras, Vladikavkaz Math. J., 2021, vol. 23, no. 2, pp. 70–77. DOI: 10.46698/d4945-5026-4001-v.

1. Introduction

Throughout the paper unless otherwise stated, \mathscr{R} is the prime ring with centre $\mathscr{Z}(\mathscr{R})$, \mathscr{Q} is the Martindale quotient ring of \mathscr{R} and \mathscr{C} is the extended centroid \mathscr{R} (for further details see [1]). For given $x, y \in \mathscr{R}$, the symbol [x, y] and $x \circ y$ stands for the commutator and anticommutator of x and y defined as xy - yx and xy + yx, respectively. We also note that a ring \mathscr{R} is said to be a prime ring if $a\mathscr{R}b = \{0\}$ implies that either a = 0 or b = 0. For any subsets \mathscr{A} and \mathscr{B} of \mathscr{R} , $[\mathscr{A}, \mathscr{B}]$ stands for the additive subgroup generated by [a, b] with $a \in \mathscr{A}$ and $b \in \mathscr{B}$. Also, an additive subgroup \mathscr{L} of \mathscr{R} is said to be Lie ideal of \mathscr{R} if $[u, r] \in \mathscr{L}$ for all $u \in \mathscr{L}$ and $r \in \mathscr{R}$. A mapping $g : \mathscr{R} \to \mathscr{R}$ is said to be commuting (resp. centralizing) on a subset \mathscr{S} of \mathscr{R} if [g(x), x] = 0 (resp. $[g(x), x] \in \mathscr{L}(\mathscr{R})$) for all $x \in \mathscr{S}$. An additive mapping $\mathscr{D} : \mathscr{R} \to \mathscr{R}$ is called a derivation on \mathscr{R} , if $\mathscr{D}(xy) = \mathscr{D}(x)y + x\mathscr{D}(y)$ holds for all $x, y \in \mathscr{R}$.

In [2], Bergen introduced the notion of semiderivation. An additive mapping $\mathscr{F} : \mathscr{R} \to \mathscr{R}$ is called a semiderivation associated with a mapping $\mathscr{G} : \mathscr{R} \to \mathscr{R}$, whenever

$$\mathscr{F}(xy) = \mathscr{F}(x)\mathscr{G}(y) + x\mathscr{F}(y) = \mathscr{F}(x)y + \mathscr{G}(x)\mathscr{F}(y)$$

[#]For the second author, this research is supported by the National Board of Higher Mathematics (NBHM), India, Grant N 02011/16/2020 NBHM (R. P.) R & D II/ 7786.

^{© 2021} Raza, M. A. and Rehman, N.

and $\mathscr{F}(\mathscr{G}(x)) = \mathscr{G}(\mathscr{F}(x))$ holds for all $x, y \in \mathscr{R}$. For $\mathscr{G} = 1_{\mathscr{R}}$, the identity map on \mathscr{R} , \mathscr{F} is clearly a derivation. Brešer [3] proved that the only semiderivations of prime rings are ordinary derivations and mappings of the form $\mathscr{F}(x) = \gamma(x - \mathscr{G}(x))$, where $\gamma \in \mathscr{C}$ and \mathscr{G} is an endomorphism.

Let us briefly recall the motivation behind this study. In [4], Posner studied the centralizing derivations of prime rings and proved that if \mathscr{R} is a prime ring and \mathscr{D} is a non-zero derivation of \mathscr{R} such that $[\mathscr{D}(x), x] \in \mathscr{L}(\mathscr{R})$, for all $x \in \mathscr{R}$, then \mathscr{R} is commutative. This result due to Posner was then extended to Lie ideals by Lanski [5]. In [6], Daif and Bell showed that a semiprime ring \mathscr{R} must be commutative if it admits a derivation \mathscr{D} such that either $\mathscr{D}([x,y])-[x,y]=0$ for all $x, y \in \mathscr{R}$ or $\mathscr{D}([x,y])+[x,y]=0$ for all $x, y \in \mathscr{R}$. In 2002, Ashraf and Rehman [7] obtained the same conclusion if the commutator is replaced by an anti-commutator which stated that if a prime ring \mathscr{R} admits a derivation \mathscr{D} such that $\mathscr{D}(x) \circ \mathscr{D}(y) = x \circ y$ for all $x, y \in \mathscr{R}$, then \mathscr{R} is commutative. In [8], Herstein proved that a ring \mathscr{R} is commutative if it has no nonzero nilpotent ideal and there is a fixed integer n > 1 such that $(xy)^n = x^n y^n$ for all $x, y \in \mathscr{R}$. In [9], Bell proved that a prime ring \mathscr{R} with nonzero center, for which char(\mathscr{R}) = 0 or char(\mathscr{R}) > n, where n > 1, must be commutative if it admits a nonzero derivation \mathscr{D} such that $\mathscr{D}([x^n, y] - [x, y^n]) \in \mathscr{L}(\mathscr{R})$ for all $x, y \in \mathscr{R}$. Further, Ali et al. [10] showed that if \mathscr{R} be a 2-torsion free semiprime ring and it admits a derivation \mathscr{D} such that $\mathscr{D}(x^m \circ y^n) \in \mathscr{L}(\mathscr{R})$ for all $x, y \in \mathscr{R}$, then \mathscr{R} is commutative (for additional associated results [11–14]).

On the other hand, recently Haung [15] proved that a prime ring \mathscr{R} satisfies s_4 , the standard identity in four variables if $\operatorname{char}(\mathscr{R}) > n + 1$ or $\operatorname{char}(\mathscr{R}) = 0$ and $\mathscr{F}(x)^n = 0$ holds, where $x \in \mathscr{L}$, a noncentral Lie ideal of \mathscr{R} and \mathscr{F} is a semiderivation associated with an automorphism ξ of \mathscr{R} .

Given the above discussions, we investigate and describe the structure of a ring \mathscr{R} which satisfies certain identities involving automorphisms and semi-derivations. Also, we discuss the nature of \mathscr{C}^* -algebras. To be more specific, we obtain the following theorems:

Theorem 1.1. Let \mathscr{R} be a prime ring of char $(\mathscr{R}) \neq 2$ and $m, n \in \mathbb{Z}^+$. If an automorphism ζ of \mathscr{R} satisfies $(x^m \circ y^n)^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x, y \in \mathscr{R}$, then \mathscr{R} satisfies s_4 , the standard identity in four variables.

Theorem 1.2. Let \mathscr{R} be a prime ring of char $(\mathscr{R}) \neq 2$ and $m, n \in \mathbb{Z}^+$. If a semiderivation \mathscr{F} associated with an automorphism ξ such that $\mathscr{F}(x^m \circ y^n) \in \mathscr{Z}(\mathscr{R})$. Then \mathscr{R} satisfies s_4 , the standard identity in four variables.

Theorem 1.3. Let \mathscr{A} be a primitive \mathscr{C}^* -algebra and $m, n \in \mathbb{Z}^+$. If an automorphism $\xi : \mathscr{A} \to \mathscr{A}$ satisfies the relation $(x^m \circ y^n)^{\zeta} \in \mathscr{Z}(\mathscr{A})$ for all $x, y \in \mathscr{A}$, then \mathscr{A} is $\mathscr{C}^* - \mathscr{W}_4$ -algebra.

Theorem 1.4. Let \mathscr{A} be a primitive \mathscr{C}^* -algebra and $n \in \mathbb{Z}^+$. If an anti-automorphism $\zeta : \mathscr{A} \to \mathscr{A}$ satisfies the relation $(x^n)^{\zeta} + x^{n*} \in \mathscr{Z}(\mathscr{A})$ for every $x, y \in \mathscr{A}$, then \mathscr{A} is $\mathscr{C}^* - \mathscr{W}_4$ -algebra.

2. Preliminaries

Before proving our main results, we fix some notions which are required for the exposition of our main results. An automorphism ξ is called \mathscr{Q} -inner if there exists an invertible element $q \in \mathscr{Q}$ such that $\xi(x) = qxq^{-1}$ for all $x \in \mathscr{R}$. Also, the standard identity s_4 in four variables is defined as follows:

$$s_4 = \sum (-1)^{\mu} \mathbf{X}_{\mu(1)} \mathbf{X}_{\mu(2)} \mathbf{X}_{\mu(3)} \mathbf{X}_{\mu(4)},$$

where $(-1)^{\mu}$ is a sign of permutation μ of the symmetric group of degree 4. Further we mention the following results which are crucial in developing the proof of our main theorem.

Fact 2.1. Let \mathscr{R} be a prime ring and \mathscr{I} a two sided ideal of \mathscr{R} . Then $\mathscr{I}, \mathscr{R}, \mathscr{Q}$ satisfy the same generalized polynomial identities with coefficients in \mathscr{Q} (see [16]). Furthermore, \mathscr{I}, \mathscr{R} and \mathscr{Q} satisfy the same generalized polynomial identities with automorphisms (see [17, Theorem 1]).

Fact 2.2. Let \mathscr{R} be a prime ring with extended centroid \mathscr{C} . Then the following conditions are equivalent:

(i) $\dim_{\mathscr{C}} \mathscr{RC} \leq 4$.

(ii) \mathscr{R} satisfies s_4 , the standard identity in four variables.

(iii) \mathscr{R} is commutative or R embeds in $M_2(\mathbb{F})$ for \mathbb{F} a field.

(iv) \mathscr{R} is algebraic of bounded degree 2 over \mathscr{C} .

(v) \mathscr{R} satisfies $[[x^2, y], [x, y]] = 0$.

Fact 2.3. Let \mathscr{R} be a prime ring and \mathscr{L} a be non-central Lie ideal of \mathscr{R} . If $\operatorname{char}(\mathscr{R}) \neq 2$, by [18, Lemma 1] there exists a nonzero ideal \mathscr{I} of \mathscr{R} such that $0 \neq [\mathscr{I}, \mathscr{R}] \subseteq \mathscr{L}$. If $\operatorname{char}(\mathscr{R}) = 2$ and $\dim_{\mathscr{C}} \mathscr{R} \mathscr{C} > 4$, i.e., $\operatorname{char}(\mathscr{R}) = 2$ and \mathscr{R} does not satisfy s_4 , then by [19, Theorem 13] there exists a nonzero ideal \mathscr{I} of \mathscr{R} such that $0 \neq [\mathscr{I}, \mathscr{R}] \subseteq \mathscr{L}$. Thus if either $\operatorname{char}(\mathscr{R}) \neq 2$ or \mathscr{R} does not satisfy s_4 , then we may conclude that there exists a nonzero ideal \mathscr{I} of \mathscr{R} such that $[\mathscr{I}, \mathscr{I}] \subseteq \mathscr{L}$.

3. Main Results

Proposition 3.1. Let \mathscr{R} be a dense subring of $End(\mathscr{V}_{\mathscr{D}})$ and $\zeta : \mathscr{R} \to \mathscr{R}$ be an automorphism of \mathscr{R} . If \mathscr{R} satisfies $([x_1, x_2] \circ [y_1, y_2])^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x_1, x_2, y_1, y_2 \in \mathscr{R}$, then either dim $(\mathscr{V}_{\mathscr{D}}) \leq 2$ or ζ is an identity map on End $(\mathscr{V}_{\mathscr{D}})$.

 \triangleleft First assume that $\mathscr{V}_{\mathscr{D}}$ be a right vector space over a division ring \mathscr{D} . Let $\operatorname{End}(\mathscr{V}_{\mathscr{D}})$ the ring of \mathscr{D} -linear transformations on $\mathscr{V}_{\mathscr{D}}$. Thus in view of classical Jacobson Theorem [20, Isomorphism Theorem, p. 79], we have $s^{\zeta} = \mathscr{P}s\mathscr{P}^{-1}$ for every $s \in \operatorname{End}(\mathscr{V}_{\mathscr{D}})$, where ζ is an automorphism of $\operatorname{End}(\mathscr{V}_{\mathscr{D}})$ and \mathscr{P} is an invertible semi-linear transformation. Hence, for all $v \in \mathscr{V}, \zeta \in \mathscr{D}, \mathscr{P}(v\varphi) = (\mathscr{P}v)\zeta(\varphi)$. Given by the hypotheses, we obtain

$$0 = \left[[x_1, x_2]^{\zeta} [y_1, y_2]^{\zeta} + [y_1, y_2]^{\zeta} [x_1, x_2]^{\zeta}, z \right] = \left[\mathscr{P}[x_1, x_2] [y_1, y_2] \mathscr{P}^{-1} + \mathscr{P}[y_1, y_2] [x_1, x_2] \mathscr{P}^{-1}, z \right]$$

for every $x_1, x_2, y_1, y_2, z \in \operatorname{End}(\mathscr{V}_{\mathscr{D}})$. Let us assume that v and $\mathscr{P}^{-1}v$ are \mathscr{D} -dependent for every $v \in \mathscr{V}$. In view of [21, Lemma 1], we find that $\mathscr{P}^{-1}v = v\chi$, where $\chi \in \mathscr{D}$ and $v \in \mathscr{V}$. Hence, for all $s \in \operatorname{End}(\mathscr{V}_{\mathscr{D}}), \mathscr{P}^{-1}(sv) = sv\chi$ and $sv = \mathscr{P}(sv\chi) = \mathscr{P}(s(v\chi)) = \mathscr{P}s\mathscr{P}^{-1}(v) = s^{\zeta}v$ for all $s \in \operatorname{End}(\mathscr{V}_{\mathscr{D}}), v \in \mathscr{V}$. Therefore, we find that $(s^{\zeta} - s)\mathscr{V} = (0)$ for every $s \in \operatorname{End}(\mathscr{V}_{\mathscr{D}})$. Hence, $s^{\zeta} = s$ for every $s \in \operatorname{End}(\mathscr{V}_{\mathscr{D}})$. This shows that ζ is an identity map on $\operatorname{End}(\mathscr{V}_{\mathscr{D}})$, as required.

Thus, there exists $v \in \mathscr{V}$ such that v and $\mathscr{P}^{-1}v$ are linearly \mathscr{D} -independent. Firstly, we assume that $\dim(\mathscr{V}_{\mathscr{D}}) \geq 4$. Then we may take $w, \mathscr{P}v \in \mathscr{V}$ such that $\{w, v, \mathscr{P}v, \mathscr{P}^{-1}v\}$ is \mathscr{D} -independent. Let $x, y \in \operatorname{End}(\mathscr{V}_{\mathscr{D}})$ such that

$$x_1v = 0, \quad x_1\mathscr{P}^{-1}v = 0, \quad x_1w = v, \quad y_1\mathscr{P}^{-1}v = 0, \quad zv = 0;$$

 $x_2v = w, \quad x_2\mathscr{P}^{-1}v = v, \quad y_1v = v, \quad y_2\mathscr{P}^{-1}v = v, \quad z\mathscr{P}v = w$

We notice that $[x_1, x_2] \mathscr{P}^{-1} v = 0$, $[y_1, y_2] \mathscr{P}^{-1} v = v$, $[x_1, x_2] v = v$ and hence, our assumption yields

$$0 = \left(\left[\mathscr{P}[x_1, x_2][y_1, y_2] \mathscr{P}^{-1} + \mathscr{P}[y_1, y_2][x_1, x_2] \mathscr{P}^{-1}, z \right] \right) v = -w,$$

a contradiction, implying that $\dim(\mathscr{V}_{\mathscr{D}}) \leq 3$.

Secondly, we assume that $\dim(\mathscr{V}_{\mathscr{D}}) = 3$. Take $\mathscr{P}v \in \mathscr{V}$ such that $\{v, \mathscr{P}v, \mathscr{P}^{-1}v\}$ is \mathscr{D} -independent and then $\{v, \mathscr{P}v, \mathscr{P}^{-1}v\}$ forms a \mathscr{D} -basis of \mathscr{V} . If $\mathscr{P}(v + \mathscr{P}^{-1}v + \mathscr{P}v) \in v\mathscr{D}$ and $\mathscr{P}(\mathscr{P}^{-1}v + \mathscr{P}v) \in v\mathscr{D}$, then $\mathscr{P}v, \mathscr{P}(\mathscr{P}^{-1}v + \mathscr{P}v) \in v\mathscr{D}$ and then $v, \mathscr{P}^{-1}v + \mathscr{P}v \in \mathscr{P}^{-1}(v\mathscr{D}) = \mathscr{P}^{-1}(v)\zeta^{-1}(\mathscr{D}) = \mathscr{P}^{-1}v\mathscr{D}$, contradicting the fact that $\{v, \mathscr{P}^{-1}v + \mathscr{P}v\}$ is \mathscr{D} -independent. Therefore, one can pick $\rho \in \{0,1\}$ such that $u = \rho v + \mathscr{P}^{-1}v + \mathscr{P}v$ and $\mathscr{P}u \notin v\mathscr{D}$. Write $\mathscr{P}u = v\alpha + \mathscr{P}^{-1}v\beta + \mathscr{P}v\gamma$, where $\alpha, \beta, \gamma \in \mathscr{D}$ and β, γ both are not zero. By density of theorem, there exist $x_1, x_2, y_1, y_2, z \in \operatorname{End}(\mathscr{V}_{\mathscr{D}})$ such that

$$\begin{aligned} x_1v &= 0, \quad x_2v = \mathscr{P}v, \quad y_1v = v, \quad y_2v = v, \quad zv = 0; \\ x_1\mathscr{P}^{-1}v &= v, \quad x_2\mathscr{P}^{-1}v = 0, \quad y_1\mathscr{P}^{-1}v = 0, \quad y_2\mathscr{P}^{-1}v = v, \quad z\mathscr{P}^{-1}v = v; \\ x_1\mathscr{P}v &= u, \quad x_2\mathscr{P}v = 0, \quad y_1\mathscr{P}v = v, \quad y_2\mathscr{P}v = v, \quad z\mathscr{P}v = u. \end{aligned}$$

That is $x_1u = (\rho + 1)v + \mathscr{P}^{-1}v + \mathscr{P}v$, $x_2u = \mathscr{P}v$, $y_1u = (\rho + 1)v$ and $y_2u = -u\gamma$. Therefore, we can see that $[x_1, x_2]\mathscr{P}^{-1}v = -\mathscr{P}^{-1}v$, $[y_1, y_2]\mathscr{P}^{-1}v = v$, $[x_1, x_2]v = u$, $[y_1, y_2]\mathscr{P}^{-1}v = 0$. Also, $z\mathscr{P}u = v\beta + u\gamma$. As β , γ are not both zero and v, u are \mathscr{D} -dependent, so it is easy to see that $z\mathscr{P}u \neq 0$. Thus in all, we see that

$$0 = \left(\left[\mathscr{P}[x_1, x_2][y_1, y_2] \mathscr{P}^{-1} + \mathscr{P}[y_1, y_2][x_1, x_2] \mathscr{P}^{-1}, z \right] \right) v = -z \mathscr{P} u,$$

a contradiction, implying that $\dim(\mathscr{V}_{\mathscr{D}}) \leq 2$. \triangleright

Theorem 3.1. Let \mathscr{R} be a non-commutative prime ring of characteristic different from two and ζ be an automorphism of \mathscr{R} . If \mathscr{R} satisfies $([x_1, x_2] \circ [y_1, y_2])^{\zeta} \in \mathscr{L}(\mathscr{R})$ for all $x_1, x_2, y_1, y_2 \in \mathscr{R}$, then \mathscr{R} satisfies s_4 , the standard identity in four variables.

 \triangleleft Firstly, we assume that ζ is an inner automorphism of \mathscr{R} , i.e., $s^{\zeta} = psp^{-1}$ for every $s \in \mathscr{R}$. As ζ is the non-identity map, so $p \notin \mathscr{C}$. Then

$$\Psi(r) = \left[\mathscr{P}[x_1, x_2][y_1, y_2]\mathscr{P}^{-1} + \mathscr{P}[y_1, y_2][x_1, x_2]\mathscr{P}^{-1}, z\right]$$

is a non-trivial generalized polynomial identity (GPI) of \mathscr{R} and hence of \mathscr{Q} as well. By Martindale's theorem [22], \mathscr{Q} is isomorphic to dense subring of the ring of linear transformations of a vector space \mathscr{V} over \mathscr{D} , where \mathscr{D} is a finite dimensional division ring over \mathscr{C} . By Proposition 3.1, we have $\dim(\mathscr{V}_{\mathscr{D}}) \leq 2$. Thus it follows that either $\mathscr{Q} \cong \mathscr{D}$ or $\mathscr{Q} \cong \mathscr{M}_2(\mathscr{D})$, the ring of 2×2 matrices over \mathscr{D} . More generally, we assume that $\mathscr{Q} \cong \mathscr{M}_k(\mathscr{D})$, for $k \leq 2$.

If \mathscr{C} is finite, then \mathscr{D} is field by Wedderburn's theorem. On the other hand, if \mathscr{C} infinite, let \mathscr{F} be the algebraic closure of \mathscr{C} , therefore by the Van der monde determinant argument, we see that $\mathscr{Q} \otimes_{\mathscr{C}} \mathscr{F}$ satisfies the generalized polynomial identity $\Psi(r) = 0$. Moreover, $\mathscr{Q} \otimes_{\mathscr{C}} \mathscr{F} \cong$ $\mathscr{M}_k(\mathscr{D}) \otimes_{\mathscr{C}} \mathscr{F} \cong \mathscr{M}_k(\mathscr{D} \otimes_{\mathscr{C}} \mathscr{F}) \cong \mathscr{M}_t(\mathscr{F})$, for some $t \ge 1$. Considering Proposition 3.1 and the fact that \mathscr{Q} is not commutative, we assert that t = 2, yields the required conclusion.

Secondly, we assume that ζ is an outer automorphism. By [17, Theorem 1], \mathscr{Q} and hence \mathscr{R} satisfy $[[x_1, x_2]^{\zeta}[y_1, y_2]^{\zeta} + [y_1, y_2]^{\zeta}[x_1, x_2]^{\zeta}, z] = 0$. As x^{ζ} , y^{ζ} -word degree \langle char (\mathscr{R}) , then by [23, Theorem 3], \mathscr{R} satisfies $[[x'_1, x'_2][y'_1, y'_2] + [y'_1, y'_2][x'_1, x'_2], z] = 0$. That is, \mathscr{R} is a polynomial identity (PI) ring. Thus, \mathscr{R} and $\mathscr{M}_t(\mathscr{F})$ satisfy the same polynomial identities [24, Lemma 1], i.e., for each $x'_1, x'_2, y'_1, y'_2, z \in \mathscr{M}_t(\mathscr{F}), [[x'_1, x'_2][y'_1, y'_2] + [y'_1, y'_2][x'_1, x'_2], z] = 0$. Take $k \geq 3$ and e_{ij} , the usual unit matrix. Therefore, for $x = e_{23}$, $y = e_{32}, z = e_{11}, s = e_{12}$, we get a contradiction $0 = [[x'_1, x'_2][y'_1, y'_2] + [y'_1, y'_2][x'_1, x'_2], z] = [[e_{11}, e_{12}][e_{23}, e_{32}] + [e_{23}, e_{32}][e_{11}, e_{12}], [e_{23}, e_{32}]] = e_{12} \neq 0$. Hence t = 2, i. e., \mathscr{R} satisfies s_4 , the standard identity in four variables. This completes the proof. \triangleright $< \mathsf{PROOF OF THEOREM 1.1. We are given that } (x^m \circ y^n)^{\zeta} \in \mathscr{Z}(\mathscr{R}) \text{ for every } x, y \in \mathscr{R}.$ Let $S_1 = \{r^m : r \in \mathscr{R}\}$ and $S_2 = \{r^n : r \in \mathscr{R}\}$ be the additive subgroups. It implies that $(a \circ b)^{\zeta} \in \mathscr{Z}(\mathscr{R}) \text{ for all } a \in S_1, b \in S_2.$ In view of [25, Main theorem], and since $\operatorname{char}(\mathscr{R}) \neq 2$, either S_1 have a non-central Lie ideal \mathscr{L}_1 of \mathscr{R} or $r^m \in \mathscr{Z}(\mathscr{R})$ for all $r \in \mathscr{R}$. The latter case concludes \mathscr{R} to be commutative. Similarly, assume that there exists a Lie ideal $\mathscr{L}_2 \not\subseteq \mathscr{Z}(\mathscr{R})$ such that $\mathscr{L}_2 \subseteq S_2.$ Moreover, in view of Fact 2.3, there exist \mathscr{I}_1 and \mathscr{I}_2 nonzero two-sided ideals of \mathscr{R} such that $0 \neq [\mathscr{I}_1, \mathscr{R}] \subseteq \mathscr{L}_1$ and $0 \neq [\mathscr{I}_2, \mathscr{R}] \subseteq \mathscr{L}_2.$ Also, \mathscr{R} is non-commutative as $\mathscr{L}_1, \mathscr{L}_2$ are non-central Lie ideal of $\mathscr{R}.$ Therefore $(x \circ y)^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x \in [\mathscr{I}_1, \mathscr{I}_1], y \in [\mathscr{I}_2, \mathscr{I}_2].$ Since $\mathscr{I}_1, \mathscr{I}_2$ and \mathscr{R} satisfy the same differential identities (see [24, Theorem 3]), so we have $(x \circ y)^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x, y \in [\mathscr{R}, \mathscr{R}].$ By Theorem 3.1, we get the required result. \triangleright

Using the same technique as used in Theorem 1.1 and Theorem 3.1, we can write in view of above result

Theorem 3.2. Let \mathscr{R} be a non-commutative prime ring of characteristic different from two and \mathscr{F} be a non-zero semiderivation associated with an automorphism ξ of \mathscr{R} . If \mathscr{R} satisfies $\mathscr{F}([x_1, x_2] \circ [y_1, y_2]) \in \mathscr{Z}(\mathscr{R})$ for all $x_1, x_2, y_1, y_2 \in \mathscr{R}$, then \mathscr{R} satisfies s_4 , the standard identity in four variables.

⊲ First we note that if ξ is an identity map on \mathscr{R} , then \mathscr{F} is not more than a derivation. In view of previous discussion, we have nothing to prove. Hence, we proceed by assuming that ξ is not an identity map on \mathscr{R} . Hence in view of Brešar [3], $\mathscr{F}(x) = \gamma(x-x^{\xi})$ for all $x \in \mathscr{R}$, where $0 \neq \gamma \in \mathscr{C}$. Thus by our hypothesis we can write $\gamma([x_1, x_2] \circ [y_1, y_2] - ([x_1, x_2] \circ [y_1, y_2])^{\xi}) \in \mathscr{Z}(\mathscr{R})$ which can be rewritten as $\gamma(([x_1, x_2] \circ [y_1, y_2])^{I_{\mathscr{R}}} - ([x_1, x_2] \circ [y_1, y_2])^{\xi}) \in \mathscr{Z}(\mathscr{R})$, where $I_{\mathscr{R}}$ is the identity map on \mathscr{R} . It is well known that if ξ is an automorphism of \mathscr{R} , then $\xi + kI_{\mathscr{R}}$ (k is an any integer) is also an automorphism on \mathscr{R} . Thus, we set $\xi - I_{\mathscr{R}} = \zeta$. Therefore, the last relation can be written as $\gamma([x_1, x_2] \circ [y_1, y_2])^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x_1, x_2, y_1, y_2 \in \mathscr{R}$. Since $0 \neq \gamma \in \mathscr{C}$, the above identity reduces to $([x_1, x_2] \circ [y_1, y_2])^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x_1, x_2, y_1, y_2 \in \mathscr{R}$ and hence in view of Theorem 3.1, we get the desired conclusion. ⊳

PROOF OF THEOREM 1.2. We are given that $\mathscr{F}(x^m \circ y^n) \in \mathscr{Z}(\mathscr{R})$ for every $x, y \in \mathscr{R}$. Let $S_1 = \{r^m : r \in \mathscr{R}\}$ and $S_2 = \{r^n : r \in \mathscr{R}\}$ be the additive subgroups. It is easy to see that $\mathscr{F}(x \circ y) \in \mathscr{Z}(\mathscr{R})$ for each $x \in S_1, y \in S_2$. Since $\operatorname{char}(\mathscr{R}) \neq 2$ and by main theorem of [25], we have either $r^m \in \mathscr{Z}(\mathscr{R})$ for every $r \in \mathscr{R}$ or S_1 contains a non-central Lie ideal \mathscr{L}_1 of \mathscr{R} . The first case concludes that \mathscr{R} to be commutative. Similarly, assume that there exists a Lie ideal $\mathscr{L}_2 \not\subseteq Z(\mathscr{R})$ such that $\mathscr{L}_2 \subseteq S_2$. According to Fact 2.3, there exist nonzero two-sided ideals \mathscr{I}_1 and \mathscr{I}_2 of \mathscr{R} such that $0 \neq [\mathscr{I}_1, \mathscr{R}] \subseteq \mathscr{L}_1$ and $0 \neq [\mathscr{I}_2, \mathscr{R}] \subseteq \mathscr{L}_2$. Since $\mathscr{L}_1, \mathscr{L}_2$ are non-central Lie ideal of \mathscr{R} , so \mathscr{R} is non-commutative. Hence, $\mathscr{F}(x \circ y) \in Z(\mathscr{R})$ for all $x \in [\mathscr{I}_1, \mathscr{I}_1], y \in [\mathscr{I}_2, \mathscr{I}_2]$. Since $\mathscr{I}_1, \mathscr{I}_2$ and \mathscr{R} satisfy the same differential identities (see [24, Theorem 3]), so we have $\mathscr{F}(x \circ y) \in \mathscr{L}(\mathscr{R})$ for all $x, y \in [\mathscr{R}, \mathscr{R}]$. Applying Theorem 3.2, we are done.

Corollary 3.1. Let \mathscr{R} be a prime ring of characteristic different from two, m be fixed positive integer and \mathscr{F} be a nonzero semiderivation associated with an automorphism ξ of \mathscr{R} . If $\mathscr{F}(x^m) \in \mathscr{Z}(\mathscr{R})$ for all $x, y \in \mathscr{R}$, then \mathscr{R} satisfies s_4 , the standard identity in four variables.

Corollary 3.2. Let \mathscr{R} be a prime ring of characteristic not two. If \mathscr{R} admits an automorphism ζ of \mathscr{R} such that $(x^n)^{\zeta} \in \mathscr{Z}(\mathscr{R})$ for all $x \in \mathscr{R}$, then \mathscr{R} satisfies s_4 , the standard identity in four variables.

Theorem 3.3. Let \mathscr{R} be a prime ring of characteristic not two. If \mathscr{R} admits an automorphism ζ of \mathscr{R} such that $(x^n)^{\zeta} + x^n \in \mathscr{Z}(\mathscr{R})$ for all $x \in \mathscr{R}$, then \mathscr{R} satisfies s_4 , the standard identity in four variables.

 \triangleleft It is well known that if ζ is an automorphism of \mathscr{R} , then $\zeta + kI_{\mathscr{R}}$ (k is an any integer) is also an automorphism on \mathscr{R} . We have given that $(x^n)^{\zeta} + x^n \in Z(\mathscr{R})$ for all $x \in \mathscr{R}$ which can be rewritten as $(x^n)^{\zeta} + (x^n)^{I_{\mathscr{R}}} \in Z(\mathscr{R})$, where $I_{\mathscr{R}}$ is the identity map on \mathscr{R} . Thus, we set $\zeta - I_{\mathscr{R}} = \xi$. Therefore, the last relation can be written as $(x^n)^{\xi} \in Z(\mathscr{R})$ for all $x \in \mathscr{R}$ and hence by Corollary 3.2 we have done. \triangleright

4. Result Based on \mathscr{C}^* -Algebras

A Banach algebra is a linear associate algebra which, as a vector space, is a Banach space with norm $\|\cdot\|$ satisfying the multiplicative inequality; $\|xy\| \leq \|x\| \|y\|$ for all x and y in \mathscr{A} . A Banach algebra \mathscr{A} is a PI-algebra if and only if there exists $n \in \mathbb{N}$ and a polynomial $q \in \mathscr{W}_n$, $q \neq 0$, such that $q(x_1, x_2, \ldots, x_n) = 0$ for all $x_1, x_2, \ldots, x_n \in \mathscr{A}$, where \mathscr{W}_n is the set of all complex polynomials in n non-commuting variables. An involution on an algebra \mathscr{A} is a map $x \mapsto x^*$ of \mathscr{A} onto such that the following conditions are hold: (i) $(xy)^* = y^*x^*$, (ii) $(x^*)^* = x$, and (iii) $(x + \lambda y)^* = x^* + \overline{\lambda}y^*$ for all $x, y \in \mathscr{A}$ and $\lambda \in \mathbb{C}$ the field of complex number, where $\overline{\lambda}$ is the conjugate of λ . Of course the prototypical example of an involution on a Banach algebra is the adjoint operation on $\mathscr{B}(\mathscr{H})$, the set of bounded linear operators on Hilbert space \mathscr{H} . Another important example is complex conjugation on $\mathbb{C}(\mathbb{X})$, the set of all continuous complex valued functions on \mathbb{X} , a compact Hausdroff space defined as $f^*(x) := \overline{f(x)}$.

An algebra equipped with an involution is called a *-algebra or algebra with involution. A Banach *-algebra is a Banach algebra \mathscr{A} together with an isometric involution $||x^*|| = ||x||$ for all $x \in \mathscr{A}$. A Banach *-algebra is called a \mathscr{C}^* -algebra \mathscr{A} if $||x^*x|| = ||x||^2$ for all $x \in \mathscr{A}$. A \mathscr{C}^* -algebra \mathscr{A} is primitive if its zero ideal is primitive, that is, if \mathscr{A} has a faithful nonzero irreducible representation. Let \mathscr{W}_n denote the standard polynomial of degree n in nnon-commuting variables, $\mathscr{W}_n = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)}$, where S_n is the set of all permutations of $\{1, 2, 3, \cdots, n\}$ and $\operatorname{sign}(\sigma) = \pm 1$ for σ even (odd) (see [26, 27] and references therein). An algebra \mathscr{A} is said to be an $\mathscr{C}^* \cdot \mathscr{W}_n$ -algebra if $\mathscr{W}_n(a_1, a_2, \cdots, a_n) = 0$ for each choice of elements $a_1, a_2, \cdots, a_n \in \mathscr{A}$. In particular, an algebra is $\mathscr{C}^* - \mathscr{W}_4$ -algebra if it satisfies the standard identity $\mathscr{W}_4(a_1, a_2, a_3, a_4) = 0$ for all $a_1, a_2, a_3, a_4 \in \mathscr{A}$. Moreover, an algebra is $\mathscr{C}^* - \mathscr{W}_2$ -algebra if and only if it is commutative, i. e., a $\mathscr{C}^* - \mathscr{W}_2$ -algebra is commutative if it satisfies the standard identity $\mathscr{W}_2(a_1, a_2) = 0$ for all $a_1, a_2 \in \mathscr{A}$. Many researcher discussed Gelfand's theory for Banach algebra and \mathscr{C}^* -algebra namely, Banach- \mathscr{W}_{2n} -algebra and $\mathscr{C}^* - \mathscr{W}_{2n}$ -algebra. Throughout the present section, \mathscr{C}^* -algebras are assumed to be nonunital unless indicated otherwise.

 \triangleleft PROOF OF THEOREM 1.3. We have given that $\zeta : \mathscr{A} \to \mathscr{A}$ is an automorphism of \mathscr{A} and \mathscr{A} is a primitive \mathscr{C}^* -algebra such that $(x^m \circ y^n)^{\zeta} \in Z(\mathscr{A})$ for all $x, y \in \mathscr{A}$. Therefore, \mathscr{A} is prime by [28, Theorem 5.4.5] because \mathscr{A} is primitive \mathscr{C}^* -algebra. Hence, \mathscr{A} is a prime ring since \mathscr{A} is a prime \mathscr{C}^* -algebra. By application of Theorem 1.1 get the required conclusion, thereby proving the theorem. \triangleright

⊲ PROOF OF THEOREM 1.4. We have $(x^n)^{\zeta} + x^{n*} \in Z(\mathscr{A})$ for all $x \in \mathscr{A}$. Replace x^* for x, to get $(x^{n*})^{\zeta} + x^n \in Z(\mathscr{A})$ for all $x \in \mathscr{A}$. Now, a map $\pi : \mathscr{A} \to \mathscr{A}$ by $x^{\pi} = x^{*\xi}$ for every $x \in \mathscr{A}$. It is easy to see that $(xy)^{\pi} = x^{\pi}y^{\pi}$ for all $x, y \in \mathscr{A}$, that is, π is an automorphism of \mathscr{A} and hence we find that $(x^n)^{\pi} + x^n \in Z(\mathscr{A})$ for every $x \in \mathscr{A}$. Therefore, \mathscr{A} is prime by [28, Theorem 5.4.5] because \mathscr{A} primitive \mathscr{C}^* -algebra. Hence, \mathscr{A} is a prime ring since \mathscr{A} is a prime \mathscr{C}^* -algebra. Application of Theorem 3.3 yields the required conclusion. ▷

References

- Beidar, K. I., Martindale III, W. S. and Mikhalev, V. Rings with Generalized Identities, Pure and Applied Math., vol. 196, New York, Dekker, 1996.
- Bergen, J. Derivations in Prime Ring, Canadian Mathematical Bulletin, 1983, vol. 26, no. 3, pp. 267–270. DOI: 10.4153/CMB-1983-042-2.
- Brešar, M. Semiderivations of Prime Rings, Proceedings of the American Mathematical Society, 1990, vol. 108, no. 4, pp. 859–860. DOI: 10.1090/S0002-9939-1990-1007488-X.
- Posner, E. C. Derivations in Prime Rings, Proceedings of the American Mathematical Society, 1957, vol. 8, no. 6, pp. 1093–1100. DOI: 10.1090/S0002-9939-1957-0095863-0.
- Lanski, C. Differential Identities, Lie Ideals and Posner's Theorems, *Pacific Journal of Mathematics*, 1988, vol. 134, no. 2, pp. 275–297. DOI: 10.2140/pjm.1988.134.275.
- Daif, M. N. and Bell, H. E. Remarks on Derivations on Semiprime Rings, International Journal of Mathematics and Mathematical Sciences, 1992, vol. 15, Article ID 863506, 2 p. DOI: 10.1155/S0161171292000255.
- Ashraf, M. and Rehman, N. On Commutativity of Rings with Derivations, Results in Mathematics, 2002, vol. 42, no. 1–2, pp. 3–8. DOI: 10.1007/BF03323547.
- Herstein, I. N. A Remark on Rings and Algebras, Michigan Mathematical Journal, 1963, vol. 10, no. 3, pp. 269–272. DOI: 10.1307/mmj/1028998910.
- Bell, H. E. On the Commutativity of Prime Rings with Derivation, Quaestiones Mathematicae, 1999, vol. 22, pp. 329–335. DOI: 10.1080/16073606.1999.9632085.
- Ali, S., Khan, M. S., Khan, A. N. and Muthana, N. M. On Rings and Algebras with Derivations, Journal of Algebra and its Applications, 2016, vol. 15, no. 6, 1650107, 10 p. DOI: 10.1142/S0219498816500225.
- Ali, S., Ashraf, M., Raza, M. A. and Khan, A. N. n-Commuting Mappings on (Semi)-Prime Rings with Application, *Communications in Algebra*, 2019, vol. 47, no. 5, pp. 2262–2270. DOI: 10.1080/00927872. 2018.1536203.
- Raza, M. A. and Rehman, N. An Identity on Automorphisms of Lie Ideals in Prime Rings, Annali dell'Universita' di Ferrara, 2016, vol. 62, no. 1, pp. 143–150. DOI: 10.1007/s11565-016-0240-4.
- Raza, M. A. and Rehman, N. On Prime and Semiprime Rings with Generalized Derivations and Non-Commutative Banach Algebras, *Proceedings–Mathematical Sciences*, 2016, vol. 126, no. 3, pp. 389–398.
- Rehman, N. and Raza, M. A. On m-Commuting Mappings with Skew Derivations in Prime Rings, St. Petersburg Mathematical Journal, 2016, vol. 27, no. 4, pp. 641–650. DOI: 10.1090/spmj/1411.
- Huang, S. Semiderivations with Power Values on Lie Ideals in Prime Rings, Ukrainian Mathematical Journal, 2013, vol. 65, no. 6, pp. 967–971. DOI: 10.1007/s11253-013-0834-2.
- Chuang, C. L. GPIs Having Quotients in Utumi Quotient Rings, Proceedings of the American Mathematical Society, 1988, vol. 103, no. 3, pp. 723–728. DOI: 10.1090/S0002-9939-1988-0947646-4.
- Chuang, C. L. Differential Identities with Automorphism and Anti-Automorphism-I, Journal of Algebra, 1992, vol. 149, pp. 371–404. DOI: 10.1016/0021-8693(92)90023-F.
- Bergen, J., Herstein, I. N. and Kerr, J. W. Lie Ideals and Derivations of Prime Rings, Journal of Algebra, 1981, vol. 71, pp. 259–267. DOI: 10.1016/0021-8693(81)90120-4.
- Lanski, C. and Montgomery, S. Lie Structure of Prime Rings of Characteristic 2, Pacific Journal of Mathematics, 1972, vol. 42, no. 1, pp. 117–136. DOI: 10.2140/pjm.1972.42.117.
- Jacobson, N. Structure of Rings, Amer. Math. Soc. Colloq. Pub., vol. 37, Amer. Math. Soc., Providence, RI, 1964.
- Chuang, C. L., Chou, M. C. and Liu, C. K. Skew Derivations with Annihilating Engel Conditions, Publicationes Mathematicae Debrecen, 2006, vol. 68, no. 1–2, pp. 161–170.
- Martindale 3rd, W. S. Prime Rings Satisfying a Generalized Polynomial Identity, Journal of Algebra, 1969, vol. 12, no. 4, pp. 576–584. DOI: 10.1016/0021-8693(69)90029-5.
- Chuang, C. L. Differential Identities with Automorphisms and Antiautomorphisms, II, Journal of Algebra, 1993, vol. 160, no. 1, pp. 291–335. DOI: 10.1006/jabr.1993.1181.
- 24. Lee, T. K. Semiprime Rings with Differential Identities, Bulletin of the Institute of Mathematics Academia Sinica, 1992, vol. 20, no. 1, pp. 27–38.
- Chuang, C. L. The Additive Subgroup Generated by a Polynomial, Israel Journal of Mathematics, 1987, vol. 59, no. 1, pp. 98–106. DOI: 10.1007/BF02779669.
- Krupnik, N., Roch, S. and Silbermann, B. On C*-Algebras Generated by Idempotents, Journal of Functional Analysis, 1996, vol. 137, no. 2, pp. 303–319. DOI: 10.1006/jfan.1996.0048.
- Müller, V. Nil, Nilpotent and PI-Algebras, Functional Analysis and Operator Theory, Banach Center Publications, 1994, vol. 30, pp. 259–265. DOI: 10.4064/-30-1-259-265.
- 28. Murphy, G. J. C*-Algebras and Operator Theory, New York, Academic Press Inc., 1990.

Received September 7, 2020

MOHD ARIF RAZA Department of Mathematics, Faculty of Science & Arts-Rabigh, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia, Associate Professor E-mail: arifraza03@gmail.com https://orcid.org/0000-0001-6799-8969

NADEEM UR REHMAN Department of Mathematics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India, *Professor* E-mail: nu.rehman.mm@amu.ac.in, rehman100@gmail.com https://orcid.org/0000-0003-3955-7941

> Владикавказский математический журнал 2021, Том 23, Выпуск 2, С. 70–77

ПОЛУДИФФЕРЕНЦИРОВАНИЯ В ПЕРВИЧНЫХ КОЛЬЦАХ

Раза М. А.¹ and Рехман $H.^2$

¹ Университет короля Абдул-Азиза, Саудовская Аравия, 21589, Джидда; ² Алигархский мусульманский университет, Индия, 202002, Алигарх arifraza03@gmail.com; nu.rehman.mm@amu.ac.in, rehman100@gmail.com

Аннотация. Пусть \mathscr{R} — первичное кольцо с расширенным центроидом \mathscr{C} и с фактор-кольцо Матриндейла \mathscr{Q} . Аддитивное отображение $\mathscr{F} : \mathscr{R} \to \mathscr{R}$ называют полупроизводной, ассоциированной с $\mathscr{G} : \mathscr{R} \to \mathscr{R}$, если $\mathscr{F}(xy) = \mathscr{F}(x)\mathscr{G}(y) + x\mathscr{F}(y) = \mathscr{F}(x)y + \mathscr{G}(x)\mathscr{F}(y)$ и $\mathscr{F}(\mathscr{G}(x)) = \mathscr{G}(\mathscr{F}(x))$ для всех $x, y \in \mathscr{R}$. В этой работе мы исследуем и описываем строение первичных колец \mathscr{R} , удовлетворяющих условию $\mathscr{F}(x^m \circ y^n) \in \mathscr{E}(\mathscr{R})$ для всех $x, y \in \mathscr{R}$, где $m, n \in \mathbb{Z}^+$ и $\mathscr{F} : \mathscr{R} \to \mathscr{R}$ — полупроизводная с автоморфизмом ξ кольца \mathscr{R} . Далее, в качестве приложения нашего теоретико-кольцевого результата мы обсуждаем природу \mathscr{C}^* -алгебр. Точнее, для любой примитивной \mathscr{C}^* -алгебры \mathscr{A} . Точнее, для любой примитивной \mathscr{C}^* -алгебры \mathscr{A} получаем следующее. Если антиизоморфизм $\zeta : \mathscr{A} \to \mathscr{A}$ удовлетворяет соотношению $(x^n)^{\zeta} + x^{n*} \in \mathscr{Z}(\mathscr{A})$ для всех $x, y \in \mathscr{A}$, то \mathscr{A} служит $\mathscr{C}^* - \mathscr{W}_4$ -алгеброй, т. е., \mathscr{A} удовлетворяет сотношению тождеству $\mathscr{W}_4(a_1, a_2, a_3, a_4) = 0$ for all $a_1, a_2, a_3, a_4 \in \mathscr{A}$.

Ключевые слова: первичное кольцо, автоморфизм, полупроизводная.

Mathematical Subject Classification (2010): 16W25, 16N60.

Образец цитирования: *Raza, M. A. and Rehman, N. A* Note on Semiderivations in Prime Rings and *C*^{*}-Algebras // Владикавк. мат. журн.—2021.—Т. 23, № 2.—С. 70–77 (in English). DOI: 10.46698/d4945-5026-4001-v.