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Abstract. Let R be a prime ring with the extended centroid C and the Matrindale quotient ring Q.
An additive mapping F : R → R is called a semiderivation associated with a mapping G : R → R,
whenever F (xy) = F (x)G (y) + xF (y) = F (x)y + G (x)F (y) and F (G (x)) = G (F (x)) holds for all
x, y ∈ R. In this manuscript, we investigate and describe the structure of a prime ring R which satisfies
F (xm ◦ yn) ∈ Z (R) for all x, y ∈ R, where m,n ∈ Z

+ and F : R → R is a semiderivation with
an automorphism ξ of R. Further, as an application of our ring theoretic results, we discussed the nature
of C

∗-algebras. To be more specific, we obtain for any primitive C
∗-algebra A . If an anti-automorphism

ζ : A → A satisfies the relation (xn)ζ +xn∗ ∈ Z (A ) for every x, y ∈ A , then A is C
∗ −W4-algebra, i. e.,

A satisfies the standard identity W4(a1, a2, a3, a4) = 0 for all a1, a2, a3, a4 ∈ A .
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1. Introduction

Throughout the paper unless otherwise stated, R is the prime ring with centre Z (R),
Q is the Martindale quotient ring of R and C is the extended centroid R (for further details
see [1]). For given x, y ∈ R, the symbol [x, y] and x ◦ y stands for the commutator and anti-
commutator of x and y defined as xy−yx and xy+yx, respectively. We also note that a ring R

is said to be a prime ring if aRb = {0} implies that either a = 0 or b = 0. For any subsets A

and B of R, [A ,B] stands for the additive subgroup generated by [a, b] with a ∈ A and
b ∈ B. Also, an additive subgroup L of R is said to be Lie ideal of R if [u, r] ∈ L for
all u ∈ L and r ∈ R. A mapping g : R → R is said to be commuting (resp. centralizing)
on a subset S of R if [g(x), x] = 0 (resp. [g(x), x] ∈ Z (R)) for all x ∈ S . An additive
mapping D : R → R is called a derivation on R, if D(xy) = D(x)y + xD(y) holds for all
x, y ∈ R.

In [2], Bergen introduced the notion of semiderivation. An additive mapping F : R → R

is called a semiderivation associated with a mapping G : R → R, whenever

F (xy) = F (x)G (y) + xF (y) = F (x)y + G (x)F (y)
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and F (G (x)) = G (F (x)) holds for all x, y ∈ R. For G = 1R , the identity map on R, F

is clearly a derivation. Bres̆er [3] proved that the only semiderivations of prime rings are
ordinary derivations and mappings of the form F (x) = γ(x − G (x)), where γ ∈ C and G is
an endomorphism.

Let us briefly recall the motivation behind this study. In [4], Posner studied the centralizing
derivations of prime rings and proved that if R is a prime ring and D is a non-zero derivation
of R such that [D(x), x] ∈ Z (R), for all x ∈ R, then R is commutative. This result
due to Posner was then extended to Lie ideals by Lanski [5]. In [6], Daif and Bell showed
that a semiprime ring R must be commutative if it admits a derivation D such that either
D([x, y])−[x, y] = 0 for all x, y ∈ R or D([x, y])+[x, y] = 0 for all x, y ∈ R. In 2002, Ashraf and
Rehman [7] obtained the same conclusion if the commutator is replaced by an anti-commutator
which stated that if a prime ring R admits a derivation D such that D(x) ◦ D(y) = x ◦ y for
all x, y ∈ R, then R is commutative. In [8], Herstein proved that a ring R is commutative if it
has no nonzero nilpotent ideal and there is a fixed integer n > 1 such that (xy)n = xnyn for all
x, y ∈ R. In [9], Bell proved that a prime ring R with nonzero center, for which char(R) = 0
or char(R) > n, where n > 1, must be commutative if it admits a nonzero derivation D such
that D([xn, y]− [x, yn]) ∈ Z (R) for all x, y ∈ R. Further, Ali et al. [10] showed that if R be
a 2-torsion free semiprime ring and it admits a derivation D such that D(xm ◦ yn) ∈ Z (R)
for all x, y ∈ R, then R is commutative (for additional associated results [11–14]).

On the other hand, recently Haung [15] proved that a prime ring R satisfies s4,
the standard identity in four variables if char(R) > n + 1 or char(R) = 0 and F (x)n = 0
holds, where x ∈ L , a noncentral Lie ideal of R and F is a semiderivation associated with
an automorphism ξ of R.

Given the above discussions, we investigate and describe the structure of a ring R which
satisfies certain identities involving automorphisms and semi-derivations. Also, we discuss the
nature of C ∗-algebras. To be more specific, we obtain the following theorems:

Theorem 1.1. Let R be a prime ring of char(R) 6= 2 and m,n ∈ Z
+. If an automorphism ζ

of R satisfies (xm ◦ yn)ζ ∈ Z (R) for all x, y ∈ R, then R satisfies s4, the standard identity

in four variables.

Theorem 1.2. Let R be a prime ring of char(R) 6= 2 and m,n ∈ Z
+. If a semiderivation F

associated with an automorphism ξ such that F (xm ◦ yn) ∈ Z (R). Then R satisfies s4, the

standard identity in four variables.

Theorem 1.3. Let A be a primitive C ∗-algebra and m,n ∈ Z
+. If an automorphism

ξ : A → A satisfies the relation (xm ◦ yn)ζ ∈ Z (A ) for all x, y ∈ A , then A is C ∗ − W4-

algebra.

Theorem 1.4. Let A be a primitive C ∗-algebra and n ∈ Z
+. If an anti-automorphism

ζ : A → A satisfies the relation (xn)ζ + xn∗ ∈ Z (A ) for every x, y ∈ A , then A is

C ∗ − W4-algebra.

2. Preliminaries

Before proving our main results, we fix some notions which are required for the exposition
of our main results. An automorphism ξ is called Q-inner if there exists an invertible element
q ∈ Q such that ξ(x) = qxq−1 for all x ∈ R. Also, the standard identity s4 in four variables
is defined as follows:

s4 =
∑

(−1)µXµ(1)Xµ(2)Xµ(3)Xµ(4),
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where (−1)µ is a sign of permutation µ of the symmetric group of degree 4. Further we mention
the following results which are crucial in developing the proof of our main theorem.

Fact 2.1. Let R be a prime ring and I a two sided ideal of R. Then I , R, Q satisfy

the same generalized polynomial identities with coefficients in Q (see [16]). Furthermore, I ,

R and Q satisfy the same generalized polynomial identities with automorphisms (see [17,
Theorem 1]).

Fact 2.2. Let R be a prime ring with extended centroid C . Then the following conditions

are equivalent:

(i) dimC RC 6 4.
(ii) R satisfies s4, the standard identity in four variables.

(iii) R is commutative or R embeds in M2(F) for F a field.

(iv) R is algebraic of bounded degree 2 over C .

(v) R satisfies [[x2, y], [x, y]] = 0.

Fact 2.3. Let R be a prime ring and L a be non-central Lie ideal of R. If char(R) 6= 2, by

[18, Lemma 1] there exists a nonzero ideal I of R such that 0 6= [I ,R] ⊆ L . If char(R) = 2
and dimC RC > 4, i. e., char(R) = 2 and R does not satisfy s4, then by [19, Theorem 13]
there exists a nonzero ideal I of R such that 0 6= [I ,R] ⊆ L . Thus if either char(R) 6= 2
or R does not satisfy s4, then we may conclude that there exists a nonzero ideal I of R such

that [I ,I ] ⊆ L .

3. Main Results

Proposition 3.1. Let R be a dense subring of End(VD ) and ζ : R → R be

an automorphism of R. If R satisfies ([x1, x2] ◦ [y1, y2])
ζ ∈ Z (R) for all x1, x2, y1, y2 ∈ R,

then either dim(VD ) 6 2 or ζ is an identity map on End(VD).

⊳ First assume that VD be a right vector space over a division ring D . Let End(VD)
the ring of D-linear transformations on VD . Thus in view of classical Jacobson Theorem [20,
Isomorphism Theorem, p. 79], we have sζ = PsP−1 for every s ∈ End(VD ), where ζ is
an automorphism of End(VD ) and P is an invertible semi-linear transformation. Hence,
for all v ∈ V , ζ ∈ D , P(vϕ) = (Pv)ζ(ϕ). Given by the hypotheses, we obtain

0=
[

[x1, x2]
ζ [y1, y2]

ζ + [y1, y2]
ζ [x1, x2]

ζ , z
]

=
[

P[x1, x2][y1, y2]P
−1 +P[y1, y2][x1, x2]P

−1, z
]

for every x1, x2, y1, y2, z ∈ End(VD ). Let us assume that v and P−1v are D-dependent for
every v ∈ V . In view of [21, Lemma 1], we find that P−1v = vχ, where χ ∈ D and v ∈ V .
Hence, for all s ∈ End(VD ), P−1(sv) = svχ and sv = P(svχ) = P(s(vχ)) = PsP−1(v) =
sζv for all s ∈ End(VD), v ∈ V . Therefore, we find that (sζ−s)V = (0) for every s ∈ End(VD ).
Hence, sζ = s for every s ∈ End(VD ). This shows that ζ is an identity map on End(VD ),
as required.

Thus, there exists v ∈ V such that v and P−1v are linearly D-independent. Firstly,
we assume that dim(VD) > 4. Then we may take w,Pv ∈ V such that {w, v,Pv,P−1v}
is D-independent. Let x, y ∈ End(VD) such that

x1v = 0, x1P
−1v = 0, x1w = v, y1P

−1v = 0, zv = 0;

x2v = w, x2P
−1v = v, y1v = v, y2P

−1v = v, zPv = w.

We notice that [x1, x2]P
−1v = 0, [y1, y2]P

−1v = v, [x1, x2]v = v and hence, our assumption
yields

0 =
([

P[x1, x2][y1, y2]P
−1 + P[y1, y2][x1, x2]P

−1, z
])

v = −w,

a contradiction, implying that dim(VD ) 6 3.
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Secondly, we assume that dim(VD) = 3. Take Pv ∈ V such that {v,Pv,P−1v} is
D-independent and then {v,Pv,P−1v} forms a D-basis of V . If P(v+P−1v+Pv) ∈ vD
and P(P−1v + Pv) ∈ vD , then Pv,P(P−1v + Pv) ∈ vD and then v,P−1v + Pv ∈
P−1(vD) = P−1(v)ζ−1(D) = P−1vD , contradicting the fact that {v,P−1v + Pv} is
D-independent. Therefore, one can pick ρ ∈ {0, 1} such that u = ρv + P−1v + Pv and
Pu /∈ vD . Write Pu = vα + P−1vβ + Pvγ, where α, β, γ ∈ D and β, γ both are not zero.
By density of theorem, there exist x1, x2, y1, y2, z ∈ End(VD ) such that

x1v = 0, x2v = Pv, y1v = v, y2v = v, zv = 0;

x1P
−1v = v, x2P

−1v = 0, y1P
−1v = 0, y2P

−1v = v, zP−1v = v;

x1Pv = u, x2Pv = 0, y1Pv = v, y2Pv = v, zPv = u.

That is x1u = (ρ+1)v+P−1v+Pv, x2u = Pv, y1u = (ρ+1)v and y2u = −uγ. Therefore,
we can see that [x1, x2]P

−1v = −P−1v, [y1, y2]P
−1v = v, [x1, x2]v = u, [y1, y2]P

−1v = 0.
Also, zPu = vβ + uγ. As β, γ are not both zero and v, u are D-dependent, so it is easy to
see that zPu 6= 0. Thus in all, we see that

0 =
([

P[x1, x2][y1, y2]P
−1 + P[y1, y2][x1, x2]P

−1, z
])

v = −zPu,

a contradiction, implying that dim(VD ) 6 2. ⊲

Theorem 3.1. Let R be a non-commutative prime ring of characteristic different from

two and ζ be an automorphism of R. If R satisfies ([x1, x2] ◦ [y1, y2])
ζ ∈ Z (R) for all

x1, x2, y1, y2 ∈ R, then R satisfies s4, the standard identity in four variables.

⊳ Firstly, we assume that ζ is an inner automorphism of R, i. e., sζ = psp−1 for every
s ∈ R. As ζ is the non-identity map, so p /∈ C . Then

Ψ(r) =
[

P[x1, x2][y1, y2]P
−1 + P[y1, y2][x1, x2]P

−1, z
]

is a non-trivial generalized polynomial identity (GPI) of R and hence of Q as well.
By Martindale’s theorem [22], Q is isomorphic to dense subring of the ring of linear
transformations of a vector space V over D , where D is a finite dimensional division ring
over C . By Proposition 3.1, we have dim(VD) 6 2. Thus it follows that either Q ∼= D

or Q ∼= M2(D), the ring of 2×2 matrices over D . More generally, we assume that Q ∼= Mk(D),
for k 6 2.

If C is finite, then D is field by Wedderburn’s theorem. On the other hand, if C infinite,
let F be the algebraic closure of C , therefore by the Van der monde determinant argument, we
see that Q⊗C F satisfies the generalized polynomial identity Ψ(r) = 0. Moreover, Q⊗C F ∼=
Mk(D) ⊗C F ∼= Mk(D ⊗C F ) ∼= Mt(F ), for some t > 1. Considering Proposition 3.1 and
the fact that Q is not commutative, we assert that t = 2, yields the required conclusion.

Secondly, we assume that ζ is an outer automorphism. By [17, Theorem 1], Q and
hence R satisfy [[x1, x2]

ζ [y1, y2]
ζ + [y1, y2]

ζ [x1, x2]
ζ , z] = 0. As xζ , yζ-word degree <

char(R), then by [23, Theorem 3], R satisfies [[x′1, x
′

2][y
′

1, y
′

2] + [y′1, y
′

2][x
′

1, x
′

2], z] = 0.
That is, R is a polynomial identity (PI) ring. Thus, R and Mt(F ) satisfy the same
polynomial identities [24, Lemma 1], i. e., for each x′1, x

′

2, y
′

1, y
′

2, z ∈ Mt(F ), [[x′1, x
′

2][y
′

1, y
′

2] +
[y′1, y

′

2][x
′

1, x
′

2], z] = 0. Take k > 3 and eij , the usual unit matrix. Therefore, for x = e23,
y = e32, z = e11, s = e12, we get a contradiction 0 = [[x′1, x

′

2][y
′

1, y
′

2] + [y′1, y
′

2][x
′

1, x
′

2], z] =
[[e11, e12][e23, e32]+ [e23, e32][e11, e12], [e23, e32]] = e12 6= 0. Hence t = 2, i. e., R satisfies s4, the
standard identity in four variables. This completes the proof. ⊲
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⊳ Proof of Theorem 1.1. We are given that (xm ◦ yn)ζ ∈ Z (R) for every x, y ∈ R.
Let S1 = {rm : r ∈ R} and S2 = {rn : r ∈ R} be the additive subgroups. It implies that
(a ◦ b)ζ ∈ Z (R) for all a ∈ S1, b ∈ S2. In view of [25, Main theorem], and since char(R) 6= 2,
either S1 have a non-central Lie ideal L1 of R or rm ∈ Z (R) for all r ∈ R. The latter case
concludes R to be commutative. Similarly, assume that there exists a Lie ideal L2 6⊆ Z (R)
such that L2 ⊆ S2. Moreover, in view of Fact 2.3, there exist I1 and I2 nonzero two-sided
ideals of R such that 0 6= [I1,R] ⊆ L1 and 0 6= [I2,R] ⊆ L2. Also, R is non-commutative
as L1,L2 are non-central Lie ideal of R. Therefore (x ◦ y)ζ ∈ Z (R) for all x ∈ [I1,I1],
y ∈ [I2,I2]. Since I1, I2 and R satisfy the same differential identities (see [24, Theorem 3]),
so we have (x◦y)ζ ∈ Z (R) for all x, y ∈ [R,R]. By Theorem 3.1, we get the required result. ⊲

Using the same technique as used in Theorem 1.1 and Theorem 3.1, we can write in view
of above result

Theorem 3.2. Let R be a non-commutative prime ring of characteristic different from two

and F be a non-zero semiderivation associated with an automorphism ξ of R. If R satisfies

F ([x1, x2] ◦ [y1, y2]) ∈ Z (R) for all x1, x2, y1, y2 ∈ R, then R satisfies s4, the standard

identity in four variables.

⊳ First we note that if ξ is an identity map on R, then F is not more than a derivation.
In view of previous discussion, we have nothing to prove. Hence, we proceed by assuming that ξ
is not an identity map on R. Hence in view of Bres̆ar [3], F (x) = γ(x−xξ) for all x ∈ R, where
0 6= γ ∈ C . Thus by our hypothesis we can write γ([x1, x2] ◦ [y1, y2] − ([x1, x2] ◦ [y1, y2])

ξ) ∈
Z (R) which can be rewritten as γ(([x1, x2]◦ [y1, y2])

IR − ([x1, x2]◦ [y1, y2])
ξ) ∈ Z (R), where

IR is the identity map on R. It is well known that if ξ is an automorphism of R, then ξ+kIR

(k is an any integer) is also an automorphism on R. Thus, we set ξ − IR = ζ. Therefore, the
last relation can be written as γ([x1, x2] ◦ [y1, y2])

ζ ∈ Z (R) for all x1, x2, y1, y2 ∈ R. Since
0 6= γ ∈ C , the above identity reduces to ([x1, x2] ◦ [y1, y2])

ζ ∈ Z (R) for all x1, x2, y1, y2 ∈ R

and hence in view of Theorem 3.1, we get the desired conclusion. ⊲

Proof of Theorem 1.2. We are given that F (xm ◦yn) ∈ Z (R) for every x, y ∈ R. Let
S1 = {rm : r ∈ R} and S2 = {rn : r ∈ R} be the additive subgroups. It is easy to see that
F (x ◦ y) ∈ Z (R) for each x ∈ S1, y ∈ S2. Since char(R) 6= 2 and by main theorem of [25],
we have either rm ∈ Z (R) for every r ∈ R or S1 contains a non-central Lie ideal L1 of R.
The first case concludes that R to be commutative. Similarly, assume that there exists a Lie
ideal L2 6⊆ Z(R) such that L2 ⊆ S2. According to Fact 2.3, there exist nonzero two-sided
ideals I1 and I2 of R such that 0 6= [I1,R] ⊆ L1 and 0 6= [I2,R] ⊆ L2. Since L1,L2

are non-central Lie ideal of R, so R is non-commutative. Hence, F (x ◦ y) ∈ Z(R) for all
x ∈ [I1,I1], y ∈ [I2,I2]. Since I1, I2 and R satisfy the same differential identities (see [24,
Theorem 3]), so we have F (x◦y) ∈ Z (R) for all x, y ∈ [R,R]. Applying Theorem 3.2, we are
done.

Corollary 3.1. Let R be a prime ring of characteristic different from two, m be fixed

positive integer and F be a nonzero semiderivation associated with an automorphism ξ of R.

If F (xm) ∈ Z (R) for all x, y ∈ R, then R satisfies s4, the standard identity in four variables.

Corollary 3.2. Let R be a prime ring of characteristic not two. If R admits an auto-

morphism ζ of R such that (xn)ζ ∈ Z (R) for all x ∈ R, then R satisfies s4, the standard

identity in four variables.

Theorem 3.3. Let R be a prime ring of characteristic not two. If R admits an auto-

morphism ζ of R such that (xn)ζ+xn ∈ Z (R) for all x ∈ R, then R satisfies s4, the standard

identity in four variables.
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⊳ It is well known that if ζ is an automorphism of R, then ζ + kIR (k is an any integer)
is also an automorphism on R. We have given that (xn)ζ + xn ∈ Z(R) for all x ∈ R which
can be rewritten as (xn)ζ +(xn)IR ∈ Z(R), where IR is the identity map on R. Thus, we set
ζ − IR = ξ. Therefore, the last relation can be written as (xn)ξ ∈ Z(R) for all x ∈ R and
hence by Corollary 3.2 we have done. ⊲

4. Result Based on C ∗-Algebras

A Banach algebra is a linear associate algebra which, as a vector space, is a Banach space
with norm ‖·‖ satisfying the multiplicative inequality; ‖xy‖ 6 ‖x‖‖y‖ for all x and y in A . A
Banach algebra A is a PI-algebra if and only if there exists n ∈ N and a polynomial q ∈ Wn,
q 6= 0, such that q(x1, x2, . . . , xn) = 0 for all x1, x2, . . . , xn ∈ A , where Wn is the set of all
complex polynomials in n non-commuting variables. An involution on an algebra A is a map
x 7−→ x∗ of A onto such that the following conditions are hold: (i) (xy)∗ = y∗x∗, (ii) (x∗)∗ = x,
and (iii) (x+ λy)∗ = x∗+λy∗ for all x, y ∈ A and λ ∈ C the field of complex number, where λ
is the conjugate of λ. Of course the prototypical example of an involution on a Banach algebra
is the adjoint operation on B(H ), the set of bounded linear operators on Hilbert space H .
Another important example is complex conjugation on C(X), the set of all continuous complex
valued functions on X, a compact Hausdroff space defined as f∗(x) := f(x).

An algebra equipped with an involution is called a ∗-algebra or algebra with involution.
A Banach ∗-algebra is a Banach algebra A together with an isometric involution ‖x∗‖ = ‖x‖
for all x ∈ A . A Banach ∗-algebra is called a C ∗-algebra A if ‖x∗x‖ = ‖x‖2 for all x ∈ A .
A C ∗-algebra A is primitive if its zero ideal is primitive, that is, if A has a faithful non-
zero irreducible representation. Let Wn denote the standard polynomial of degree n in n
non-commuting variables, Wn = Σσ∈Sn sign (σ)aσ(1)aσ(2) · · · aσ(n), where Sn is the set of
all permutations of {1, 2, 3, · · · , n} and sign(σ) = ±1 for σ even (odd) (see [26, 27] and
references therein). An algebra A is said to be an C ∗-Wn-algebra if Wn(a1, a2, · · · , an) = 0
for each choice of elements a1, a2, · · · , an ∈ A . In particular, an algebra is C ∗ − W4-algebra
if it satisfies the standard identity W4(a1, a2, a3, a4) = 0 for all a1, a2, a3, a4 ∈ A . Moreover,
an algebra is C ∗ − W2-algebra if and only if it is commutative, i. e., a C ∗ − W2-algebra is
commutative if it satisfies the standard identity W2(a1, a2) = 0 for all a1, a2 ∈ A . Many
researcher discussed Gelfand’s theory for Banach algebra and C ∗-algebra namely, Banach-
W2n-algebra and C ∗−W2n-algebra. Throughout the present section, C ∗-algebras are assumed
to be nonunital unless indicated otherwise.

⊳ Proof of Theorem 1.3. We have given that ζ : A → A is an automorphism of A

and A is a primitive C ∗-algebra such that (xm ◦ yn)ζ ∈ Z(A ) for all x, y ∈ A . Therefore,
A is prime by [28, Theorem 5.4.5] because A is primitive C ∗-algebra. Hence, A is a prime
ring since A is a prime C ∗-algebra. By application of Theorem 1.1 get the required conclusion,
thereby proving the theorem. ⊲

⊳ Proof of Theorem 1.4. We have (xn)ζ + xn∗ ∈ Z(A ) for all x ∈ A . Replace x∗

for x, to get (xn∗)ζ+xn ∈ Z(A ) for all x ∈ A . Now, a map π : A → A by xπ = x∗ξ for every
x ∈ A . It is easy to see that (xy)π = xπyπ for all x, y ∈ A , that is, π is an automorphism
of A and hence we find that (xn)π + xn ∈ Z(A ) for every x ∈ A . Therefore, A is prime by
[28, Theorem 5.4.5] because A primitive C ∗-algebra. Hence, A is a prime ring since A is a
prime C ∗-algebra. Application of Theorem 3.3 yields the required conclusion. ⊲
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ПОЛУДИФФЕРЕНЦИРОВАНИЯ В ПЕРВИЧНЫХ КОЛЬЦАХ

Раза М. А.1 and Рехман Н.2

1 Университет короля Абдул-Азиза, Саудовская Аравия, 21589, Джидда;
2 Алигархский мусульманский университет, Индия, 202002, Алигарх

arifraza03@gmail.com; nu.rehman.mm@amu.ac.in, rehman100@gmail.com

Аннотация. Пусть R — первичное кольцо с расширенным центроидом C и с фактор-кольцо Мат-
риндейла Q. Аддитивное отображение F : R → R называют полупроизводной, ассоциированной
с G : R → R, если F (xy) = F (x)G (y) + xF (y) = F (x)y + G (x)F (y) и F (G (x)) = G (F (x)) для
всех x, y ∈ R. В этой работе мы исследуем и описываем строение первичных колец R, удовлетворяющих
условию F (xm ◦ yn) ∈ Z (R) для всех x, y ∈ R, где m,n ∈ Z

+ и F : R → R — полупроизоводная
с автоморфизмом ξ кольца R. Далее, в качестве приложения нашего теоретико-кольцевого результата
мы обсуждаем природу C

∗-алгебр. Точнее, для любой примитивной C
∗-алгебры A . Точнее, для любой

примитивной C
∗-алгебры A получаем следующее. Если антиизоморфизм ζ : A → A удовлетворяет со-

отношению (xn)ζ+xn∗ ∈ Z (A ) для всех x, y ∈ A , то A служит C
∗−W4-алгеброй, т. е., A удовлетворяет

стандартному тождеству W4(a1, a2, a3, a4) = 0 for all a1, a2, a3, a4 ∈ A .

Ключевые слова: первичное кольцо, автоморфизм, полупроизводная.

Mathematical Subject Classification (2010): 16W25, 16N60.

Образец цитирования: Raza, M. A. and Rehman, N. A Note on Semiderivations in Prime Rings and
C

∗-Algebras // Владикавк. мат. журн.—2021.—Т. 23, № 2.—C. 70–77 (in English). DOI: 10.46698/d4945-
5026-4001-v.


