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Abstract. An absolutely continuous function in calculus is precisely such a function that, within the
framework of Lebesgue integration, can be restored from its derivative, that is, the Newton–Leibniz
theorem on the relationship between integration and differentiation is fulfilled for it. An equivalent
definition is that the the sum of the moduli of the increments of the function with respect to arbitrary
pair-wise disjoint intervals is less than any positive number if the sum of the lengths of the intervals is small
enough. Certain sufficient conditions for absolute continuity are known, for example, the Banach–Zaretsky
theorem. In this paper we prove a new sufficient condition for the absolute continuity of a function of
one variable and give some of its applications to problems in the theory of function spaces. The proved
condition makes it possible to significantly simplify the proof of the theorems on the pointwise description
of functions of the Sobolev classes defined on Euclidean spaces and Сarnot groups.
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1. Introduction

The function f : [a, b] → R is called absolutely continuous, if for any ε > 0 there is δ > 0
such that for any disjoint set of intervals (αj , βj) ⊂ [a, b], which has the property:

∑

j

(βj − αj) < δ implies
∑

j

|f(βj)− f(αj)| < ε.

Below we formulate two classical criteria for absolute continuity. The first of them is the
well-known Banach–Zaretsky theorem.

Theorem 1 [1]. If a continuous function f : [a, b] → R has bounded variation and

possesses Luzin’s property N , i. e., |f(E)|1 = 0 ∗ for any set E ⊂ [a, b] of measure zero, then

this function is absolutely continuous.

# The study was carried out within the framework of the State contract of the Sobolev Institute of Ma-
thematics, project № 0314-2019-0006.

c© 2021 Vodopyanov, S. K.
∗ Here and below, |A|1 is the Lebesgue measure of a measurable set A ⊂ R.
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In the following statement a local condition of absolute continuity of a function is given.
It was proved in [2].

Lemma 1 [2, Lemma 8.3]. Let the function f : [a, b] → R be continuous. Let f : [a, b] → R

also have Luzin’s property N , and the upper derivative Df(x) = limh→0
f(x+h)−f(x)

h
is

integrable, i. e.,
∫

[a,b] |Df(x)| dx <∞. Then f : [a, b] → R is absolutely continuous.

In [3], a more general local condition for the absolute continuity of a function was obtained,
which applied in [3] for describing regularity properties of mappings inverse to Sobolev.

Lemma 2 [3, Lemma 1]. Let ψ : [a, b] → R be a continuous function, [a, b] = A ∪ B,

A ∩B = ∅, where A and B are Borel sets such that

1) |ψ(B)|1 = 0, and the function ψ : A → R has the Luzin’s property N on the set A:

|ψ(E)|1 = 0 for each subset E of A of zero measure;

2) ψ(t) has an approximate derivative ∗∗ appψ′(t) almost everywhere on A;

3) appψ′ ∈ L1(A).

Then the function ψ : [a, b] → R is absolutely continuous and its ordinary derivative

ψ′(t) =

{

appψ′(t), for almost every t ∈ A,

0, for almost every t ∈ B.

It can be verified that from Lemma 2 one can deduce Banach–Zaretsky theorem. Indeed,
let a function f : [a, b] → R meet the conditions of Banach–Zaretsky theorem. Since the
function f(x) has the bounded variation, f(x) is differentiable on the segment [a, b] for almost
all points x ∈ [a, b], and

∫

[a,b] |f ′(x)| dx <∞. We define the set

A =
{

x ∈ [a, b] : there is the derivative f ′(x)
}

.

Complement B = [a, b] \A has zero measure. Moreover, we have |f(B)|1 = 0, and the func-
tion f : A → R possesses the Luzin’s property N on the set A. By Lemma 2 the function
f : [a, b] → R is absolutely continuous.

Obviously, from Lemma 2 one can also deduce Lemma 1.

2. Pointwise Absolute Continuity Condition

In the next statement, we will establish a new pointwise criterion for the absolute conti-
nuity of a function defined on the real line.

Theorem 2. Let I = (a, b) be an arbitrary interval in R. Let a function f : I → R and

a function g : I → R of the class L1(I) satisfy the pointwise inequality

|f(τ)− f(t)| 6 |τ − t| (g(τ) + g(t)) (1)

for almost all τ, t ∈ I \S where S ⊂ I is some set of mesuare zero. Then the function f is

measurable, and it can be changed on a set of measure zero so that it becomes absolutely

continuous on I, and its derivative enjoys the estimate

|f ′(t)| 6 2g(t) for almost all t ∈ I. (2)

∗∗ Recall that a number a is the approximative derivative of a function ψ : A → R at a point x if the
point x is the density point the set

{

y ∈ A :
∣

∣

ψ(y)−ψ(x)
y−x

− a
∣

∣ < ε
}

for any ε > 0.
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⊳ For any k ∈ N, define the measurable set

Ak =
{

t ∈ I \S : g(t) 6 k
}

.

Obviously, Ak ⊂ Al for all k < l, and |I \⋃∞

k=1Ak|1 = 0.
For all points τ, t ∈ Ak we have

|f(τ)− f(t)| 6 2k|τ − t| (3)

(here it is assumed that k is big enough so that the set Ak has positive measure). Thus, on the
set Ak the function f satisfies the Lipschitz condition. Therefore, the function f is uniformly
continuous, is extended by continuity to the closure Ak, and the inequality (3) holds for all
points τ, t ∈ Ak.

The complement R \Ak is an open set. It is known that an open set on R is the union
of an at most countable collection of intervals: R \Ak =

⋃

∞

i=1(αi, βi). In view of the above,
we can assume that the function f is defined at the endpoints of a finite interval (αi, βi). We
extend it to the segment [αi, βi] ⋐ I so that it is linear and takes in the boundary point αi

(βi) the value f(αi) (f(βi)):

(αi, βi) ∋ t 7→ f̃k(t) = f(αi) +
f(βi)− f(αi)

βi − αi

(t− αi); (4)

in the case of unbounded intervals (αi, βi) = (αi,∞) or (and) (αi, βi) = (−∞, βi), we put

(αi, βi) ∋ t 7→ f̃k(t) =

{

f(βi), if αi = −∞,

f(αi), if βi = +∞.
(5)

The function extended in this way will be denoted by the symbol f̃k : I → R. The func-
tion f̃k has the following properties:

5) f̃k : I → R satisfies the Lipschitz condition with the same Lipschitz constant as the func-
tion f : Ak → R (see (3) and (4));

6) f̃k|Ak = f |Ak ;
It is evident that f(x) = limk→∞ f̃k(x) · χAk(x) for almost all x ∈ I. As soon as functions

I ∋ x 7→ f̃k(x) · χAk(x) =

{

fk(x), if x ∈ Ak,

0, otherwise,

are measurable, k ∈ N, the limits f(x) is measurable too.
7) the function f̃k : I → R is bounded on I and, for almost t ∈ I, there is a derivative

df̃k
dt

(t) for which the estimate
∣

∣

∣

df̃k
dt

(t)
∣

∣

∣
6 2k is valid; (6)

8) if Ak,l ⊂ Ak, l > k, is the collection of all points of differentiability of the function
f̃l : I → R on the set Ak, then

⋂

l>kAk,l is a full measure set ∗∗∗ in Ak, and the equality holds

df̃l
dt

(t) =
df̃k
dt

(t) for all l > k and all t ∈
⋂

l>k

Ak,l. (7)

∗∗∗ Since Ak,l is a set of full measure in Ak for any l > k.
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It is known that the following properties are fulfilled:
9) almost every point t ∈ Ak has density 1 with respect to the set Ak:

lim
δ→0

|∆ ∩Ak|1
|∆| = 1, (8)

where ∆ = (t− δ, t+ δ);
10) almost every point t ∈ Ak is a Lebesgue point for the function g : I → R.
Next, we will establish an estimate for the derivative of the function f̃k : I → R:

∣

∣

∣

∣

df̃k
dt

∣

∣

∣

∣

(t) 6 2g(t) for almost all t ∈ I. (9)

Let t ∈ ⋂

l>kAk,l be such a point that the above properties 8)–10) hold. From (1), for
function

Ak \S ∋ τ → f̃k(τ) = f(τ),

we have an estimate for the difference ratio:
∣

∣

∣

∣

f̃k(τ)− f̃k(t)

τ − t

∣

∣

∣

∣

=

∣

∣

∣

∣

f(τ)− f(t)

τ − t

∣

∣

∣

∣

6 g(t) + g(τ) = 2g(t) + g(τ)− g(t). (10)

From relations (10) it is seen that the estimate for the derivative f̃ ′k(t) depends on the behavior
of the difference g(τ) − g(t). Since t is a Lebesgue point for g : I → R then

1

2δ

t+δ
∫

t−δ

|g(τ) − g(t)| dτ = o(1), if δ → 0. (11)

Put ∆ = (t− δ, t + δ). From (10), (11) we have

1

2δ

∫

∆∩Ak

∣

∣

∣

∣

f(τ)− f(t)

τ − t

∣

∣

∣

∣

dτ 6 2g(t) +
1

2δ

∫

∆∩Ak

|g(τ) − g(t)| dτ

6 2g(t) +
1

2δ

t+δ
∫

t−δ

|g(τ)− g(t)| dτ = 2g(t) + o(1),

(12)

if δ → 0.
We will show that the limit of the left-hand side of (12) at δ → 0 equals

∣

∣f̃ ′k(t)
∣

∣ =
∣

∣

df̃k
dt

∣

∣(t).
Indeed, the left-hand side of (12) is equal to

1

2δ

∫

∆∩Ak

∣

∣

∣

∣

f(τ)− f(t)

τ − t

∣

∣

∣

∣

dτ =
1

2δ

∫

∆∩Ak

∣

∣

∣

∣

f̃k(τ)− f̃k(t)− f̃ ′k(t)(τ − t) + f̃ ′k(t)(τ − t)

(τ − t)

∣

∣

∣

∣

dτ

=
1

2δ

∫

∆∩Ak

∣

∣

∣

∣

o(1)(τ − t) + f̃ ′k(τ − t)

(τ − t)

∣

∣

∣

∣

dτ =
1

2δ

∫

∆∩Ak

∣

∣f̃ ′k(t) + o(1)
∣

∣ dτ

=
|∆ ∩Ak|1

|∆|
∣

∣f̃ ′k(t) + o(1)
∣

∣ →
∣

∣f̃ ′k(t)
∣

∣, (13)
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if δ → 0 (see (8) for the limit of the fraction on line (13)). Therefore, the inequality (9) is
proved in almost all t ∈ Ak. Note that at all points of t /∈ Ak the following relations hold:

∣

∣

∣

∣

df̃k
dt

∣

∣

∣

∣

(t) 6 2k 6 2g(t), (14)

so (9) is proved.
Since Ak ⊂ Ak+1, k = 1, 2, . . . , and |I \⋃∞

k=1Ak|1 = 0, for almost all t ∈ I there exists
a limit

lim
k→∞

f̃k(t) = f(t),

and taking into account (7), we have

∞
⋃

k=1

Ak ∋ t 7→ w(t)
def
= lim

l→∞

df̃l
dt

(t) =















df̃1
dt

(t), if t ∈ A1,

df̃k
dt

(t), if t ∈ Ak\Ak−1, k = 2, 3, . . . , n, . . .

By virtue of (9), the inequality

|w(t)| 6 2g(t) holds for almost all t ∈ I. (15)

As noted above, the set
⋃

∞

k=1Ak is a set of full measure in I. Therefore, for arbitrary
points α, β ∈ Ak and for l > k, by the Lebesgue dominated convergence theorem (see (9)
and (15)), we have

f(β) = f(α) +

β
∫

α

df̃l
dt

(t) dt → f(α) +

β
∫

α

w(t) dt.

From the obtained equality, we deduce that the function

I ∋ β 7→ f(α) +

β
∫

α

w(t) dt

is absolutely continuous and coincides with the function f(β) for almost all β ∈ I. From this
we get f ′(β) = w(β) for almost all β ∈ I. From (15) we get the inequality (9). Theorem 2 is
proved. ⊲

3. A Short Proof of Some Pointwise Estimates for Sobolev Functions

We say that a function f : Ω → R
n → R where Ω ⊂ R

n is an open set, belongs to
L1
q(Ω) (W 1

q (Ω)), q ∈ [1,∞), if f is locally integrable in Ω and its gradient ∇f in the sense
of distribution belongs to Lq(Ω) (both f and its gradient ∇f belong to Lq(Ω)); one more
notation: f ∈W 1

q,loc(Ω) if f ∈W 1
q (U) for any U ⋐ Ω, that is U ⊂ Ω and U is a compact.

We apply Theorem 2 for proving the following statement.

Theorem 3. 1) A function f : Ω → R belongs to W 1
1,loc(Ω) if there exists a non-negative

function g ∈ L1,loc(Ω) such that the inequality

|f(x)− f(y)| 6 |x− y|(g(x) + g(y)) (16)
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holds for all x, y outside of some set Σ ⊂ Ω of measure zero. Mareover, the estimate |∇f(x)| 6√
n · g(x) holds a. e. in Ω.

2) If g ∈ L1(Ω) then f ∈ L1
1(Ω).

3) If f ∈ L1(Ω) and g ∈ L1(Ω) then f ∈W 1
1 (Ω).

⊳ Fix a cube Q(a, r) = {x = (x1, x2, . . . , xn) : |(x − a)i| < r, i = 1, . . . , n} such that
Q(a, r) ⋐ Ω. Every point x ∈ Q(a, r) can be represented as x = (x̄i, xi) where x̄i is a projection
of x on the hyperplane Pi = (x1, . . . , xi−1, 0, xi+1, . . . , xn) and xi is a projection of x on the
line Li = {x = tei : t ∈ R} (here ei = (0, . . . , 1

i
, . . . , 0) is ith vector of the canonical basis

in R
n).

It follows from the conditions of Theorem 3 and (16) that g ∈ L1(Q(a, r)), f is measurable
in Q(a, r) and f ∈ L1(Q(a, r)). The first property is evident. For proving the second one we
define a measurable set

Ak = {x ∈ Q(a, r) : g(x) 6 k}, k ∈ N.

Then the restriction fk of f to Ak is Lipschitz and therefore is measurable. Moreover, by
Kirszbraun theorem fk : Ak → R can by extended to Q(a, r) to be a Lipschitz function
f̃k : Q(a, r) → R on Q(a, r).

Further,
⋃

k∈NAk is a set of full measure in Q(a, r). Hence,

f(x) = lim
k→∞

χAk(x) · f̃k(x)

a. e. in Q(a, r). Since χAk(x) · f̃k(x) is a measurable function on Q(a, r), k ∈ N, f(x) coincides
with the limit of measurable functions a. e. By this reason f(x) is measurable function
in Q(a, r). Finally, (16) gives the inequality

|f(x)| 6 |f(x)− f(y)|+ |f(y)| 6
√
n · rg(x) +

√
n · rg(y)

for all x ∈ Q(a, r) \ Σ with a fixed point y ∈ Q(a, r) \ Σ. It follows immediately that f ∈
L1(Q(a, r)) for any Q(a, r) ⋐ Ω and consequently f ∈ L1,loc(Ω).

Then we apply Fubini theorem to integrable functions f and g on Q(a, r) for coming to
the conclusion that both f and g are integrable on an interval

Li(r) = x̄i + {x = xiei : |xi − ai| < r} for almost all x̄i ∈ Pi(Q(a, r)).

Thus f and g meets the conditions ot Theorem 2 on Li(r) including inequality (1).
By conclusion of Theorem 2, for almost all x̄i ∈ Pi(Q(a, r)), the function f : Li(r) → R

can be redefined on a set of measure zero to be absolutely continuous on Li(r); moreover, the

estimate
∣

∣

∂f ′(x)
∂xi

(x)
∣

∣ 6 2g(x) holds for almost all points x ∈ Li(r). As soon as i = 1, . . . , n and
Q(a, r) ⋐ Ω are arbitrary we have proved that f ∈ W 1

1,loc(Ω), and the inequality |∇f(x)| 6
2
√
n · g(x) is valid a. e. in Ω.
The asserions 2) and 3) of the Theorem 3 follows immediately from the saying above. ⊲

Now we are ready to give a short proof of the known statement [4, 5].

Theorem 4 [4, Theorem 1]; [5, Theorem 3]. Let 1 < q < ∞. A function f ∈ Lq(R
n)

(f : Rn → R) belongs toW 1
q (R

n) (L1
q(R

n)) if and only if there exists a non negative g ∈ Lq(R
n)

such that the inequality

|f(x)− f(y)| 6 |x− y|(g(x) + g(y)) (17)

holds for all x, y outside of some set Σ ⊂ R
n of measure zero.
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⊳ The sufficiency of conditions is proved in [6]. We prove the necessity of conditions below.
1) Let f ∈ Lq(R

n). Fix a cube Q(0, r) = {x = (x1, x2, . . . , xn) : |xi| < r, i = 1, . . . , n}.
By conditions of Theorem 4 we have f, g ∈ L1(Q(0, r)). Therefore conditions of Theorem 3
hold with Ω = Q(0, r). By its conclusion we have that f ∈ W 1

1 (Q(0, r)) and the estimate
|∇f(x)| 6 2

√
n · g(x) holds a. e. in Q(0, r). By this reason, f ∈ W 1

q,loc(Q(0, r)) for any
r ∈ (0,∞). The properties f ∈ Lq(R

n) and g ∈ Lq(R
n) provide also f ∈W 1

q (R
n).

2) If for a function f : Rn → R the inequality (17) holds with g ∈ Lq(R
n) then applying

above mentioned arguments we come to conclusion that f ∈ L1,loc(R
n). The property g ∈

Lq(R
n) provides ∇f ∈ Lq(R

n). Hence, f ∈ L1
q(R

n). ⊲

4. A Short Proof of Some Pointwise Estimates for Banach Function Spaces

Definition 1. Let (T, µ) be a σ-finite measure space and let M denote the set of all
measurable functions on (T, µ). We say that a function ‖·‖ : M → [0,∞] is a Banach function

norm if for all fn, f , g ∈ M and α ∈ R:
(i) ‖f‖ = 0 if and only if f = 0 a. e., ‖αf‖ = |α|‖f‖ and ‖f + g‖ 6 ‖f‖+ ‖g‖;
(ii) if |f | 6 |g| a.e. then ‖f‖ 6 ‖g‖;
(iii) if 0 6 fn ր f then ‖fn‖ ր ‖f‖;
(iv) for every measurable E ⊂ T , µ(E) <∞: ‖χE‖ <∞;
(v) for every measurable E ⊂ T , there exists a constant CE > 0 (independent of f), such

that
∫

E
|f | dµ 6 CE‖f‖.

The space X(T ) = {f ∈ M : ‖f‖ <∞} with norm ‖ · ‖ is called a Banach function space.

Let Ω ⊂ R
n be an open set and X(Ω) be a Banach function space w.r.t. the Lebesgue

measure. The Sobolev space WX(Ω) denotes the space of weakly differentiable mappings f
with f , ∇f ∈ X(Ω). This space is equipped with a norm

‖f‖WX(Ω) := ‖f‖X(Ω) + ‖∇f‖X(Ω) .

In [7] the following statement is proved.

Theorem 5 [7, Theorem 2.2]. Let Ω ⊂ R
n be an open set and X(Ω) be a Banach

function space such that the Hardy–Littlewood maximal operator is bounded in X(Ω). Then

a function f belongs to WX(Ω) if and only if f ∈ X(Ω) and there exists a non negative

function g ∈ X(Ω) such that the inequality

|f(x)− f(y)| 6 |x− y|(g(x) + g(y)) (18)

holds for almost all x, y ∈ Ω with B(x, 3|x− y|) ⊂ Ω.

Note, that the proof of necessity in Theorem 4 is based on the following facts:
1) f , ∇f , g ∈ L1

loc(R
n);

2) the space Lq(R
n) satisfies the lattice property, i. e. if |f | 6 |g| a. e. then ‖f‖ 6 ‖g‖.

Hence, the proof of Theorem 4 can be applied almost verbatim for proving a similar result
for function spaces meeting conditions of Theorem 5. Notice that Theorem 5 can be applied
for many various spaces, for example, weighted Lebesgue (with Muckenhaupt’s weight), grand
Lebesgue, Musielak–Orlicz, Lorentz and Marcinkiewicz spaces, as well as Lebesgue spaces with
variable exponents. In particular, it includes the general concept of Banach function spaces.
So the method of proving Theorem 4 simpifies the proof of necessity in Theorem 5.
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5. A Short Proof of Some Pointwise Estimates

for Sobolev Functions on Carnot Groups

Similar arguments can be applied for simplifying the proof of pointwise description
of Sobolev functions of Carnot groups given in [5]. For doing this it is enough to generalize
Theorem 2 and its proof in Carnot groups,

Theorem 6. Let I = (a, b) be an arbitrary interval in R. Let G be a Carnot group and Xi

is some horizontal vector field. Let a function f : exp IXi → R and a function g : exp IXi → R

of the class L1(exp I) satisfy the pointwise inequality

|f(τ)− f(t)| 6 |τ − t|(g(τ) + g(t))

for almost all τ, t ∈ exp I \ S where S ⊂ exp I is some set of mesuare zero.

Then the function f is measurable, and it can be changed on a set of measure zero so that

it becomes absolutely continuous on exp I, and its derivative Xif(exp tXi), t ∈ I, enjoys the

estimate

|Xif(exp tXi)| 6 2g(exp tXi) for almost all t ∈ I.

The proof of Theorem 6 can be obtained from the proof of Theorem 2 almost verbatim.
By means of Theorem 6 all previous results of the paper can be generalized to Carnot

groups.
We formulate here a statement proved in [5].

Theorem 7 [5, Theorem 3]. Let 1 < q < ∞ and G be a Carnot group. A function

f ∈ Lq(G) (f : G → R) belongs to W 1
q (G) (L1

q(G)) if and only if there exists a non negative

g ∈ Lq(G) such that the inequality

|f(x)− f(y)| 6 dcc(x, y)(g(x) + g(y))

holds for all x, y outside of some set Σ ⊂ G of measure zero.

Here dcc(x, y) is the Carnot–Carathéodory metric [8] between points x and y in G.
As in Euclidean spaces Theorem 6 allows us to significantly simplify the necessity in the

proof of Theorem 7.
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ПОТОЧЕЧНОЕ УСЛОВИЕ АБСОЛЮТНОЙ НЕПРЕРЫВНОСТИ
ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ И ЕГО ПРИМЕНЕНИЯ

Водопьяов С. К.1
1 Институт математики им. С. Л. Соболева,
Россия, 630090, пр-т Академика Коптюга, 4

E-mail: vodopis@math.nsc.ru

Аннотация. Абсолютно непрерывная функция в математическом анализе это в точности такая
функция, которая в рамках интегрирования по Лебегу может быть восстановлена по своей производ-
ной, то есть для нее выполнена теорема Ньютона — Лейбница о связи между интегрированием и диф-
ференцированием. Эквивалентное определение состоит в том, что сумма модулей приращений функции
по произвольному дизьюнктому набору интервалов меньше любого положительного числа, если сумма
длин интервалов достаточно мала. Известны некоторые достаточные условия вбсолютной непрерывно-
сти, например теорема Банаха — Зарецкого. В этой статье мы доказываем новое достаточное условие
абсолютной непрерывности функции одной переменной и приводим некоторые его применения к задачам
теории функциональных пространств. Доказанное условие дает возможность значительно упростить до-
казательство теорем о поточечном описании функций классов Соболева, определенных на евклидовых
пространствах и группах Карно.
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