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1. Introduction

In 1948 statistical entropy was introduced by C. E. Shannon as a basic concept in
information theory, measuring the average missing information on a random source [1].
A. Renyi [2] and C. Tsallis [3] introduced one-parametric entropies, which include Shannon
entropy in the special case. These entropies in a wide range of phenomena in diverse
disciplines such as physics, chemistry, biology, medicine, economics, geophysics, statistical
physics, abstract algebra, etc. are used.

One of the generalizations of Shannon’s entropy involving two real-valued parameters is
unified (r, s)-entropy which was introduced by P. N. Rathie and I. J. Tanjea [4]. A. E. Rastegin
in 2011 studied some general properties of unified (r, s)-entropy [5]. Entropy measures have
widely been adopted in studying features of quantum channels, A. E. Rastegin considered
properties of quantum channels with the use of unified (r, s)-entropy [6].

Inspired by the notion of measure entropy in Ergodic Theory given by A. N. Kolmogorov [7]
and Y. G. Sinai [8], in 1965 R. Adler, A. Konheim and M. H. McAndrew introduced the
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topological entropy of a continuous self-map of a compact space [9], and this concept was
successively modified and generalized by R. Bowen [10], E. I. Dinaburg [11] and others.
Topological entropy is an indicator of complicated (chaotic) behavior in dynamical systems.
On the other hand, whether the topological entropy of a dynamical system is positive the
system is chaotic.

The concept of topological unified (r, s)-entropy via Bowen’s definition for continuous
self-maps in dynamical systems on compact spaces by using separated and spanning sets was
introduced in [12]. In the present paper we extend this notion and introduce unified (r, s)-
entropy for the continuous maps of a quasi-metric space via spanning and separated sets.

We extend the notion of unified (r, s)-entropy for the continuous maps of a quasi-metric
space via spanning and separated sets. Moreover, we survey unified (r, s)-entropy of a map
for two metric spaces that are associated with a given quasi-metric space and we compare
unified (r, s)-entropy of a map of a given quasi-metric space and the maps of its associated
metric spaces.

Finally we define Tsallis topological entropy for the continuous map of a quasi-metric
space via Bowen’s definition and analyze some properties such as chain rule.

Paper organization: In Section 2 the important preliminaries and main concepts are
stated. In Section 3 we extend the notion of unified (r, s)-entropy for the continuous maps
of a quasi-metric space via spanning and separated sets. Moreover, we survey unified (r, s)-
entropy of a map for two metric spaces that are associated with a given quasi-metric space
and we compare unified (r, s)-entropy of a map of a given quasi-metric space and the maps of
its associated metric spaces. In Section 4 the definition of Tsallis topological entropy for the
continuous maps of a quasi-metric space via Bowen’s definition similar to that of Kazemi et al.
in [12] is presented and this definition to Tsallis joint topological entropy, Tsallis conditional
topological entropy, and mutual Topological entropy is extended. Finally the relationship
between conditional entropy and joint entropy in the chain rule of Tsallis topological entropy
is studied.

2. Preliminaries

Firstly, we give the Stoltenberg’s definition of quasi-metric spaces [13, 14]. Then we state
the concept of topological entropy for the maps on quasi-metric spaces which are continuous
according to a special topology defined by quasi-metrics according to the definition of sayyari
et al. in [15].

Finally, we present the definitions of Shannon entropy, Renyi entropy, Tsallis entropy, the
entropy of type r and unified (r, s)-entropy of a discrete random variables X.

Definition 2.1. Let X be a set, a quasi metric is defined as a function e : X×X → [0,∞)
that satisfies the following axioms:

(1) e(x, y) > 0;
(2) e(x, y) = 0 ⇔ x = y;
(3) e(x, z) 6 e(x, y) + e(y, z) for all x, y, z ∈ X.

(X, e) is called a quasi-metric space. So quasi-metric has all the properties of metrics except
symmetry.

Now, we review and explain the salient conceptions and results of topological entropies
of continuous self-maps on quasi-metric space. If (X, e) is a quasi-metric space, then the
definition of open right t-ball centered at p is:

Br
t (p) = {x ∈ X : e(p, x) < t},
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{Br
t (p), p ∈ X, t, r ∈ R} is a base for a topology on X. Also, the definition of an open left

t-ball centered at a point p is:

Bl
t(p) = {x ∈ X : e(x, p) < t},

Bt(p) = {x ∈ X : e(x, p) < t, e(p, x) < t} = Bl
t(p) ∩Br

t (p).

If T : X → X is a continuous map and n is a natural number

en(x, y) = max
{

e
(

T i(x), T i(y)
)

: 0 6 i 6 n− 1
}

is a new quasi-metric en on X.

Definition 2.2. If n ∈ N, ǫ > 0 and K is a compact subset of X, then F ⊂ X is called an
(n, ǫ)-span of K with respect to T , if for any x ∈ K, there exists y ∈ F such that en(x, y) 6 ǫ

and en(y, x) 6 ǫ.
If n is a natural number, ǫ > 0 and K is a compact subset of X then the smallest cardinality

of any (n, ǫ)-spanning set of K with respect to T is denoted by r′n(ǫ,K). (If we are going to
emphasise on T we can write r′n(ǫ,K, T ).) If K is a compact subset of X and ǫ > 0, then

r′(ǫ,K, T ) = lim sup
n→∞

log r′n(ǫ,K)

n
.

We also denote r′(ǫ,K, T ) by r′(ǫ,K, T, e). The value of r′(ǫ,K) could be ∞ and r′n(·,K) is
a non-increasing map on (0,+∞) Let

h′(T,K) = lim
ǫ→0

r′(ǫ,K, T ). (1)

Then the topological entropy of T is

h′(T ) = sup
K

h′(T,K),

where the supremum is taken over the collection of all compact subsets of X.
For a natural number n, ǫ > 0 and a compact subset K of X, a subset E of X is called an

(n, ǫ)-separated of K with respect to T , if it satisfies the following property: If x, y ∈ E and
x 6= y, then en(x, y) > ǫ or en(y, x) > ǫ (i. e., if x, y ∈ E and x 6= y, then y ∈ ∩n−1

i=0 T
−iBr

ǫ (T
ix)

or x ∩n−1
i=0 T−iBr

ǫ (T
iy)).

If n is a natural number, ǫ > 0 and K is a compact subset of X then sn(ǫ,K) denotes
the largest cardinality of any (n, ǫ)-separated subset of K with respect to on T . (When we
need to emphasize T we shall write s′n(ǫ,K, T )). If K is a compact subset of X, ǫ > 0 then
we define s′(ǫ,K, T ) by

lim sup
n→∞

log sn(ǫ,K)

n
.

We also write s′n(ǫ,K, T, e) if we need to emphasis to the quasi-metric e. The value of s′n(ǫ,K)
could be infinity, and it is obvious that sn(· ,K) is a non-increasing map of (0,+∞).

h′(T,K) = lim
ǫ→0

s′(ǫ,K, T ) (2)

and
h′(T ) = sup

K

h′(T,K), (3)

where the supremum is taken over the collection of all compact subset of X.
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We sometimes write h′e(T ) instead of h′(T ) to emphasis the dependence on e.
In [15] it was proven that equations (1) and (2) are equal.
By the two following definitions, we can turn a quasi-metric space into a metric space.

Definition 2.3. If (X, e) is a quasi-metric space then it is obvious that (X, de) is a metric
space, where de : X ×X → [0,∞) is a metric on X defined by:

de(x, y) =
e(x, y) + e(y, x)

2
. (4)

If (X, e) is a quasi-metric space, then (X, de) is a metric space.
If T : (X, de) → (X, de) is a continuous map, then topological entropy is equal to:

hde(T ) = sup
K

lim
ǫ→0

lim sup
n→∞

log(rn(ǫ,K, T, de))

n
= sup

K

lim
ǫ→0

lim sup
n→∞

log(sn(ǫ,K, T, de))

n
,

where the supremum is taken over the collection of all compact subsets of X and rn(ǫ,K, T, de)
denotes the smallest cardinality of any (n, ǫ)-spanning set for K with respect to the metric de
and T , and sn(ǫ,K, T, de) denotes the largest cardinality of any (n, ǫ)-separated subset of K
with respect to the metric de and T . In [15] it was shown that hde(T ) = h′e(T ).

Now we give another metric definition on (X, e).

Definition 2.4. If (X, e) is a quasi-metric space, then (X,me) is a metric space, where
me(x, y) = max{e(x, y), e(y, x)}.

The topology generated by open sets {Bme
(x, ǫ), x ∈ X, ǫ > 0} is the same as the topology

generated by open sets {Br(x), x ∈ X, r > 0}. Therefor hme
(T ) = h′e(T ).

Definition 2.5. Let X be a discrete random variable taking values in a finite set χ and
PX(x) be a probability mass function. Then Shannon entropy is defined as:

H(X) = −
∑

x∈χ

PX(x) log PX(x). (5)

Definition 2.6. Let X and Y be random variables taking values, respectively, in finite
sets χ and γ with a joint distribution pX,Y (x, y). Shannon joint entropy formula is:

H(X,Y ) = −
∑

x∈χ

∑

y∈γ

PX,Y (x, y) log PX,Y (x, y). (6)

The joint entropy is used to calculate the amount of uncertainty when two random vari-
ables X and Y happen together.

The formula H(Y |X) = −
∑

x∈χ

∑

y∈γ PX,Y (x, y) log PX,Y (y|x) denotes conditional
entropy of Y given X. If X and Y are independent, then H(X,Y ) = H(X) +H(Y ).

The mutual information between two discrete random variables X,Y is given by

I(X : Y ) = H(X) +H(Y )−H(X,Y ).

So, if X and Y are independent, then I(X : Y ) is equal to zero and vice versa.
Rényi entropy or entropy of order r is defined by

Hr(X) =
1

1− r
log
∑

x∈χ

PX(x)r (when r > 0, r 6= 1), (7)
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also, the definition of Tsallis entropy or entropy of degree r is:

Hr(X) =
1

1− r

(

∑

x∈χ

PX(x)r − 1

)

(when r > 0, r 6= 1) (8)

or equivalently

Hr(X) =
∑

x∈χ

PX(x)r lnr PX(x)

(

when lnr(x) =
x1−r − 1

1− r

)

. (9)

One of the basic properties of Tsallis entropy is the pseudoadditivity property for r 6= 1:

Hr(X × Y ) = Hr(X) +Hr(Y ) + (1− r)Hr(X)Hr(Y ). (10)

The entropy of type r [16] is another extension of Shannon entropy, it was defined as:

rH(X) =
1

r − 1

(

∑

x∈χ

(

PX(x)
1

r

)r

− 1

)

(when r > 0, r 6= 1). (11)

Tsallis entropy, Rényi entropy and entropy of type r coincide with Shannon entropy, when r

tends to 1, so that they are extensions of Shannon entropy.
The following entropy involving two real parameters r and s is called (r, s)-entropy:

Hs
r (X) =

1

(1− r)s

[(

∑

x∈χ

PX(x)r

)s

− 1

]

(when r > 0, r 6= 1, s 6= 0). (12)

This entropy can be considered as an extension of the above four entropies. We can rewrite
this entropy as follows:

Hs
r (X) = gsr(Hr(X)), (13)

where

gsr(x) =
1

(1− r)s

(

e(1−r)sx − 1
)

(when r > 0, r 6= 1, s 6= 0). (14)

It is easy to verify that gsr is an increasing function of x.
When α, β > 0 and α, β 6= 1, by replacing r = α and s = β−1

α−1 , this entropy converts itself
to Sharma and Mittal’s entropy of order α and degree β [17].

By [4], we can write the above five entropies with respect to the parameters r and s in
the following form:

Es
r(X) =































Hs
r (X), r 6= 1, s 6= 0,

Hr(X), r 6= 1, s = 0,

Hr(X), r 6= 1, s = 1,

rH(X), r 6= 1, s = 1
r
,

H(X), r = 1.

(15)

3. Topological Unified (r, s)-Entropy on Quasi-Metric Spaces

Now, we extend the notion of unified (r, s)-entropy for the continuous maps of
a quasi-metric space according to Bowen’s definition. Moreover, we survey unified (r, s)-
entropy of a map for two metric spaces that are associated with a given quasi-metric space and
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we compare unified (r, s)-entropy of a map of a given quasi-metric space and the maps of its
associated metric spaces. Then we state the definition of joint topological unified (r, s)-entropy

Definition 3.1. Suppose that, (X, e) is a quasi-metric space, T : X → X is a continuous
transformation and K ⊆ X is compact, when s 6= 0 and r is a positive number r > 0 and
r 6= 1, then the definition of topological (r, s)-entropy for the continuous maps of a quasi-
metric space is:

Hs
e,r(T,K) = lim

ǫ→0
lim
n→∞

1

(1 − r)s

(

r′n(T,K, ǫ)
1

n
(1−r)s − 1

)

(16)

or

Hs
e,r(T,K) = lim

ǫ→0
lim
n→∞

1

(1 − r)s

(

s′n(T,K, ǫ)
1

n
(1−r)s − 1

)

. (17)

Hs
e,r(T ) = sup

K

Hs
e,r(T,K), (18)

where the supremum is taken over the collection of all compact subsets of X. According to
equation (14), this formula can be rewritten in composite form with the topological entropy
as follows:

Hs
e,r(T,K) = gsr(h

′

e(T,K)) (19)

and
Hs

e,r(T ) = sup
K

Hs
e,r(T,K). (20)

Sice gsr is an increasing function, we have

Hs
e,r(T ) = gsr(h

′

e(T )). (21)

Hs
e,r(T ) = lim

ǫ→0
lim
n→∞

1

(1− r)s

(

r′n(T, ǫ)
1

n
(1−r)s − 1

)

(when s 6= 0, r 6= 1, r > 0) (22)

or

Hs
e,r(T ) = lim

ǫ→0
lim
n→∞

1

(1− r)s

(

s′n(T, ǫ)
1

n
(1−r)s − 1

)

(when s 6= 0, r 6= 1, r > 0) . (23)

When r approaches to 1, the limit of topological (r, s)-entropy coincides with topological
entropy:

lim
r→1

Hs
e,r(T ) = h′e(T ).

Similarly, when s approaches to 0, we have

lim
s→0

Hs
d,r(T ) = h′e(T ).

According to definitions of me and de in Definition 2.3 and Definition 2.4, it is concluded that:

Hs
e,r(T ) = gsr(h

′

e(T )) = gsr(hde(T )) = gsr(hme
(T )).

Definition 3.2. Tsallis topological entropy or entropy of degree r and topological entropy
of type r are relatively denoted by Hr

e (T ) and rHe(T ) and are defined as follows:

rHe(T ) =
1

r − 1

(

r′n(T, ǫ)
r−1

n − 1
)

, (24)

Hr
e (T ) = lim

ǫ→0
lim
n→∞

1

1− r

(

r′n(T, ǫ)
1−r

n − 1
)

. (25)
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We can write the above four topological entropies with respect to the parameters r, s in
the following form:

Es
e,r(T ) =































Hs
e,r(T ) r 6= 1, s 6= 0,

h′e(T ) r 6= 1, s = 0,

Hr
e (T ) r 6= 1, s = 1,

rHe(T ) r 6= 1, s = 1
r
,

h′e(T ) r = 1,

Es
e,r(T ) is called unified (r, s)-entropy.

We can see H2−r
e (T ) = rHe(T ), and when r > 0 we have Es

e,r(T ) > 0.

Lemma 3.1. For 0 < r 6 1 and r′n(T, ǫ) 6= 1 we have h′e(T ) 6 Hr
e (T ).

⊳ Since for any x > 0, log x 6 x− 1, we have:

h′e(T ) =
1

n
log r′n(T, ǫ) =

1

1− r
log r′n(T, ǫ)

1

n
(1−r)

6
1

1− r

(

r′n(T, ǫ)
1

n
(1−r) − 1

)

= Hr
e (T ). ⊲

We state the definition of joint topological unified (r, s)-entropy.

Definition 3.3. Let (X, e) be a quasi-metric space and T, T ′ : X → X, be two continuous
transformations on X, the joint topological unified (r, s)-entropy is defined as:

Es
e,r(T, T

′) = lim
ǫ→0

lim
n→∞

1

(1− r)s

(

r′n(T, ǫ)
1

n
(1−r)sr′n(T

′, ǫ)
1

n
(1−r)s − 1

)

, (26)

when s 6= 0, r 6= 1 and r > 0.
So

Es
e,r(T, T

′) = Es
e,r(T ) + Es

e,r(T
′) + (1− r)sEs

e,r(T )E
s
e,r(T

′).

When r > 1, it is concluded that:

Es
e,r(T, T

′) 6 Es
e,r(T ) + Es

e,r(T
′),

i. e., in this case, topological unified (r, s)-entropy satisfies in subadditivity property.
Also, max{Es

r(T ), E
s
r (T

′)} 6 Es
r(T, T

′), i. e., joint topological unified (r, s)-entropy
is greater than two corresponding topological unified (r, s)-entropy.

Monotonicity of the topological unified (r, s)-entropy was studied in [12]. Now, we extend
this subject for a quasi-metric space.

Theorem 3.1. Let (X, e) be a quasi-metric space and T : X → X, be a continuous

transformation on X. Then we have

1) For any s > 0, Es
e,r(T ) is decreasing with respect to r ∈ (0, 1) ∪ (1,∞).

2) If 0 < r < 1, then Es
e,r(T ) is increasing with respect to s ∈ (−∞,∞), and if r > 1,

then Es
r(T ) is decreasing with respect to s ∈ (−∞,∞).

3) For any r > 0, Es
e,r(T ) is convex with respect to s ∈ (−∞,+∞)\{0}.

For any s > 0, Es
e,r(T ) is decreasing with respect to r ∈ (0, 1) ∪ (1,∞).

4. Tsallis Topological Entropy

In this section we define Tsallis topological entropy for the continuous map of a quasi-
metric space via Bowen’s definition.
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Definition 4.1. Suppose that, (X, e) is a compact quasi-metric space, T : X → X

is a continuous transformation, when r is a positive number, then the definition of Tsallis
topological entropy for the continuous map of a quasi-metric space is:

Hr(T ) = lim
ǫ→0

lim
n→∞

1

1− r

(

r′n(T, ǫ)
1−r

n − 1
)

=
1

1− r

(

e(1−r)he(T ) − 1
)

(27)

or equivalently
Hr(T ) = lim

ǫ→0
lim
n→∞

−r′n(T, ǫ) lnr r
′

n(T, ǫ)
−1

n

and

Hr(T ) = lim
ǫ→0

lim
n→∞

−
1

1− r

(

s′n(T, ǫ)
1−r

n − 1
)

=
1

1− r

(

e(1−r)he(T ) − 1
)

(28)

or equivalently
Hr(T ) = lim

ǫ→0
lim
n→∞

−s′n(T, ǫ)
1−r

n lnr s
′

n(T, ǫ)
−1

n .

It is obvious that equations (27) and (28) are existing and equal.
As r tends to 1, the limit of Tsallis topological entropy coincides with topological entropy,

since Tsallis topological entropy is an extension of topological entropy. Hr(T ) is nonnegative
and decreasing with respect to r. Also Hr

e (T ) = 0 if and only if h′e(T ) = 0.
Now, we define Tsallis joint and conditional entropy for two continuous transformations

on compact quasi-metric space (X, e).

Definition 4.2. If (X, e) is a compact quasi-metric space and T, T ′ : X → X are two
continuous transformations on X, the definition of Tsallis joint topological entropy for r > 0
and r 6= 1 is:

Hr
e (T, T

′) = lim
ǫ→0

lim
n→∞

1

1− r

(

r′n(T, ǫ)
1−r

n r′n(T
′, ǫ)

1−r

n − 1
)

. (29)

Furthermore, we define Tsallis joint topological entropy for m continuous transformations
T1, . . . , Tm on compact quasi-metric space (X, e), when r > 0 and r 6= 1 as:

Hr
e (T1, T2, . . . , Tm) = lim

ǫ→0
lim
n→∞

1

1− r

(

r′n(T1, ǫ)
1−r

n r′n(T2, ǫ)
1−r

n . . . r′n(Tm, ǫ)
1−r

n − 1
)

. (30)

Proposition 4.1. If (X, e) is a compact quasi-metric space and T : X → X and

T ′ : X → X are two continuous transformations on X, then to fulfill the above assumptions,

we must have

Hr
e (T, T

′) = Hr
e (T ) +Hr

e (T
′) + (1− r)Hr

e (T )H
r
e (T

′). (31)

⊳ It is clear that:

Hr
e (T, T

′) =
1

1− r

(

r′n(T, ǫ)
1−r

n r′n(T
′, ǫ)

1−r

n − 1
)

=
1

1− r

(

r′n(T, ǫ)
1−r

n − 1 + r′n(T
′, ǫ)

1−r

n − 1 +
(

r′n(T, ǫ)
1−r

n − 1
)(

r′n(T
′, ǫ)

1−r

n − 1
))

= Hr
e (T ) +Hr

e (T
′) + (1− r)Hr

e (T )H
r(T ′). ⊲

For r > 1, due to equation (31), the subadditivity inequality holds:

Hr
e (T, T

′) 6 Hr
e (T ) +Hr

e (T
′), (32)

and for 0 6 r < 1 the subadditivity inequality does not hold.
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Corollary 4.1. If (X, e) is a compact quasi-metric space and T1, . . . , Tn : X → X are

continuous transformations on X, then for r > 1 is concluded that:

Hr
e (T1, T2, . . . , Tn) 6

n
∑

i=1

Hr
e (Ti).

Now, we define Tsallis conditional topological entropy.

Definition 4.3. If (X, e) is a compact metric space and T : X → X and T ′ : X → X

are two continuous transformations on X, we define Tsallis conditional topological entropy by
the following formula:

Hr
e (T |T

′) = lim
ǫ→0

lim
n→∞

1

1− r

(

r′n(T
′, ǫ)

1−r

n (r′n(T, ǫ)
1−r

n − 1)
)

(when r > 0, r 6= 1). (33)

Therefore the strong subadditivity is verified for r > 1.

Proposition 4.2. If (X, e) is a quasi-metric space and T, T ′ : X → X are continuous

transformations on X, then

(1) Hr
e (T |T

′) = Hr
e (T, T

′)−Hr
e (T

′);

(2) Hr
e (T |T

′) 6 Hr
e (T, T

′);

(3) Hr
e (T ) 6 Hr

e (T, T
′).

⊳ (1) and (2) are clear.
For (3), let r > 1. Then

r′n(T, ǫ)
1−r

n r′n(T
′, ǫ)

1−r

n 6 r′n(T, ǫ)
1−r

n .

Therefore
1

1− r

(

r′n(T, ǫ)
1−r

n r′n(T
′, ǫ)

1−r

n

)

>
1

1− r
r′n(T, ǫ)

1−r

n

and the proof is concluded. The proof for 0 < r < 1 is similar. ⊲

We tend to state the chain rule for Tsallis topological entropy.

Lemma 4.1. We have the following equations:

(1) Hr
e (T1, T2, T3) = Hr

e (T1, T2|T3) +Hr
e (T3);

(2) Hr
e (T1, T2|T3) = Hr

e (T1|T3) +Hr
e (T2|T1, T3).

⊳ From Definition 4.2 and equation (33), we conclude

Hr
e (T1, T2|T3) = Hr

e (T1, T2, T3)−Hr
e (T3),

Hr
e (T2|T1, T3) = Hr

e (T1, T2, T3)−Hr
e (T1, T3)

and
Hr

e (T1, T2) = Hr
e (T1) +Hr

e (T2|T1).

Therefore

Hr
e (T2|T1, T3) = Hr

e (T1, T2, T3)−Hr
e (T1, T3) = Hr

e (T1, T2|T3) +Hr
e (T3)

− (Hr
e (T1|T3) +Hr

e (T3)) = Hr
e (T1, T2|T3)−Hr

e (T1|T3).

From part (2) of proposition 4.2, we conclude that Hr
e (T1|T3) 6 Hr

e (T1, T2|T3). ⊲
In the following theorem, the chain rule is proven.
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Theorem 4.1. Assume that T1, T2, . . . , Tm : X → X are continuous transformations on

compact quasi-metric space (X, e), we have

Hr
e (T1, T2, . . . , Tm) =

m
∑

i=1

Hr
e (Ti|Ti−1, . . . , T1). (34)

So by exploiting the chain rule (34), we have

Hr
e (T1, T2, . . . , Tm|Tm+1) =

m
∑

i=1

Hr
e (Ti|Ti−1, . . . , T1, Tm+1). (35)

In the next theorem, the relationship between conditional and joint topological Tsallis entropy
is studied.

Theorem 4.2. If the conditions of Theorem 4.1 is fulfilled, then:

Hr
e (T1, T2, . . . , Tm) =

1

1− r

[

m
∏

i=1

Hr
e (Ti|T1, . . . , Ti−1)− 1

]

.

Theorem 4.3. For r > 1, the strong subadditivity satisfies, i. e.,

Hr
e (T1, T2, T3) +Hr

e (T3) 6 Hr
e (T1, T3) +Hr

e (T2, T3). (36)

⊳ First, we show that
Hr

e (T1|T2, T3) 6 Hr
e (T1|T3). (37)

Hr
e (T1|T2, T3) 6 Hr

e (T1|T3)

⇐⇒ lim
ǫ→0

lim
n→∞

1

1− r

(

r′n(T1, ǫ)
1−r

n r′n(T2, ǫ)
1−r

n rn(T3, ǫ)
1−r

n − r′n(T2, ǫ)
1−r

n r′n(T3, ǫ)
1−r

n

)

6 lim
ǫ→0

lim
n→∞

1

1− r

(

r′n(T1, ǫ)
1−r

n r′n(T3, ǫ)
1−r

n − r′n(T3, ǫ)
1−r

n

)

⇐⇒ lim
ǫ→0

lim
n→∞

1

1− r

(

r′n(T1, ǫ)
1−r

n r′n(T3, ǫ)
1−r

n (r′n(T2, ǫ)
1−r

n − 1)
)

6 lim
ǫ→0

lim
n→∞

1

1− r
r′n(T3, ǫ)

1−r

n

(

r′n(T2, ǫ)
1−r

n − 1
)

.

Since for r > 1, 1
1−r

(r′n(T2, ǫ)
1−r

n − 1) is nonnegative. Therefore

Hr
e (T1|T2, T3) 6 Hr

e (T1|T3) =⇒

Hr
e (T1, T2, T3)−Hr

e (T2, T3) 6 Hr
e (T1, T3)−Hr

e (T3) =⇒

Hr
e (T1, T2, T3) +Hr

e (T3) 6 Hr
e (T1, T3) +Hr

e (T2, T3).

(38)

For r = 1, (38) coincides with classical (Shannon) case. ⊲

Proposition 4.3. For r > 1, we have

Hr
e (Tm|T1) 6 Hr

e (T2|T1) + . . .+Hr
e (Tm|Tm−1).

⊳ From equations (37) and (35), we conclude

Hr
e (T1, . . . , Tm) 6 Hr

e (T1) +Hr
e (T2|T1) + . . .+Hr

e (Tm|Tm−1). (39)
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Therefore, from (39) and the definition of conditional topological Tsallis entropy is
obtained that:

Hr
e (Tm|T1) 6 Hr

e (T2, . . . , Tm|T1) 6 Hr
e (T1, . . . , Tm)−Hr

e (T1)

6 Hr
e (T2|T1) + . . .+Hr

e (Tm|Tm−1). ⊲

5. Conclusion

In this paper, the notion of unified (r, s)-entropy for the continuous maps of a quasi-metric
space via spanning and separated sets is defined. The concept of topological entropy for maps
on quasi-metric spaces which are continuous according to the sayyari’s definition is stated. We
will generalize the leibler-Kullback distance for two continuous maps on metric and compact
and quasi-metric space.
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ТОПОЛОГИЧЕСКАЯ УНИФИЦИРОВАННАЯ (r, s)-ЭНТРОПИЯ
НЕПРЕРЫВНЫХ ОТОБРАЖЕНИЙ В КВАЗИМЕТРИЧЕСКИХ ПРОСТРАНСТВАХ

Каземи Р.1, Мири М. Р.1, Мохташами Борзадаран Г. Р.2
1 Бирджандский университет, Иран, 9717434765, Бирджан, Университетский бульвар;

2 Мешхедский университет имени Фирдоуси, Иран, 9177948974, Мешхед, площадь Азади́

E-mail: raziehkazemi87@birjand.ac.ir, mrmiri@birjand.ac.ir, grmohtashami@um.ac.ir

Аннотация. Категория метрических пространств является подкатегорией квазиметрических про-
странств. Показано, что энтропия отображения в пространстве с условиями симметричности больше
или равна энтропии того случая, когда условия симметричности не предполагаются. Топологическая
энтропия и энтропия Шеннона имеют схожие свойства такие, как неотрицательность, субаддитивность
и снижение условной энтропии. Другими словами, топологическая энтропия рассматривается как рас-
ширение классической энтропии в динамических системах. В последнее десятилетие были введены раз-
личные обобщения энтропии Шеннона. Одной из них, обобщающей многие классические виды энтропии,
является унифицированная (r, s)-энтропия. В данной работе понятие унифицированной (r, s)-энтропии
распространяется на непрерывные отображения в квазиметрических пространствах посредством связу-
ющих и разделяющих множеств. Далее, рассматривается унифицирующая (r, s)-энтропия отображения
в двух метрических пространствах, ассоциированных с квазиметрическим пространством и сравнива-
ются унифицированные (r, s)-энтропии отображения в данном квазиметрическом пространстве и в ас-
социированных метрических пространствах. Наконец, определяется топологическая энтропия Цаллиса
для непрерывных отображений в квазиметрических пространствах посредствм определения Бовена и
изучаются некоторые свойства, такие как цепное правило.

Ключевые слова: энтропия Цаллиса, топологическая энтропия Цаллиса, квазиметрическое про-
странство.
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