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Abstract. We consider new conditions for existence and uniqueness of a Caratheodory solution for an
initial value problem with a discontinuous right-hand side. The method used here is based on: 1) the
representation of the solution as a Fourier series in a system of functions orthogonal in Sobolev sense and
generated by a classical orthogonal system; 2) the use of a specially constructed operator A acting in [2,
the fixed point of which are the coefficients of the Fourier series of the solution. Under conditions given
here the operator A is contractive. This property can be employed to construct robust, fast and easy to
implement spectral numerical methods of solving an initial value problem with discontinuous right-hand
side. Relationship of new conditions with classical ones (Caratheodory conditions with Lipschitz condition)
is also studied. Namely, we show that if in classical conditions we replace L' by L?, then they become
equivalent to the conditions given in this article.
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1. Introduction

Consider an initial value problem:
o'(t) = f(t,x), w(a) =z0, tE€[ab], (1)

where f(t,z) can be discontinuous. Classic definition of a solution is too restrictive for
differential equations with discontinuous right-hand side. There are different ways to generalize
the notion of a solution in this case: Caratheodory solution, Filippov [1, 2| and Krasovskij |3, 4]
solutions (based on differential inclusions), Hermes solution [5] (uses limiting transitions) and
others (see [2, 6, 7, 8, 9] and references therein). In this paper we consider only Caratheodory
solutions. A function z(t) is called a Caratheodory solution of problem (1), if it is absolutely
continuous, equality z/(t) = f(t,x(t)) holds for almost every ¢ € [a,b] and z(a) = zy.

We say that a function f(¢,z) satisfies the Caratheodory conditions in a domain D
if in the domain

C1) f(t,x) is continuous with respect to x for almost every t;

C2) f(t,z) is measurable with respect to ¢ for each z;

C3) there exists an integrable function m(t) such that |f(t, z)| < m(t).
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The following results are well-known (see [2, 10]).

Theorem A. Let f(t,x) satisfy the Caratheodory conditions in D = [a, b] X [xo—¢, o +c].
Then there exists a Caratheodory solution of problem (1) on [a,a + d], where d is such that

0<d<b—a, ¢la+d) <c, w(t):/m(s)ds. (2)

We say that f satisfies L) condition in domain D = [a,b] X [xg — ¢, z¢ + ] if
L) there exist an integrable function [(¢), such that for almost every ¢ € [a,b] and every
x,y € [rg — ¢, x0 + ]

[f () = [t ) < UE)|e -yl (3)

Theorem B. Suppose f satisfies L) in domain D = [a,b] X [xg — ¢, zo + ¢|]. Then if in the
domain D a solution of problem (1) exists, it is unique.

Thus, if f(¢,z) satisfies in D = [a,b] X [z¢ — ¢, 29 + ¢] the Caratheodory conditions and
condition L) then there exists a unique solution of problem (1) in [a, a+d] where d satisfies (2).

I. Sharapudinov obtained another conditions for existence and uniqueness of a solution of
problem (1). Before stating the main result obtained in [11], we give some definitions.

Let L}[a,b] be a space of functions, integrable with weight p on the segment [a, b]:

b
2lab) =4 f - / FOP p(t)di < 00 b (4)

By W/, [a,b] we denote a space of (r — 1)-times continuously differentiable functions f = f(¢)
m
defined on [a, b] such that f"~1(t) is absolutely continuous and f") € L% [a,b].
Let ® = {p, k = 0,1,...} be a complete orthonormal system in Li = LZ[O, 1]. Define

a new system ®; = {1} using formulas:

t
pro) =1, priplt) = / (t - 2) i) de, k0.

a

This system is orthogonal with respect to Sobolev-type inner product (12), where r = 1 (see
details in section 3). Suppose that the system ®; = {1} possess the property x(®1) =

(>0, fab o3 L (D)p(t) dt) Y2 < 5. Systems with this property exist (see [12]). The following
theorem was proved in [11].

Theorem C. If for some § the conditions
A) f(t,g(t)) € Li[a, b] for any function g(t) € W}, [a,b];
n

B) for any g1(t), g2(t) € W}, [a,b] the following relation holds:
m

b b

/ [t (0) — F(t g2 ()] u(t) dt < 62 / [91(t) — g (0] (1) d;

a a

C) 6%((1)1) <1,
hold then initial value problem (1) has a unique solution z(t) € W}, [a,b]. This solution can
n
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be represented as a uniformly convergent series

x(t) =0+ Z Cl,k@l,k(t)a te [CL, b] (5)
k=1

In this article, we show that in the case of unit weight u(t), using the methods from [11-13],
we can

1) remove condition C) in Theorem C;

2) replace condition B) with

B’) there exists an integrable function w(t), such that for any g;(t),g2(t) € WLli [a, b]

the following relation holds:

b

b
[t @) = o) dt < [ wlo)loa(®) - gule)? at.
Namely, the following theorem holds.

Theorem 1. If f satisfies conditions A), B’), initial value problem (1) has a unique
solution z(t) € Ws[a,b] on [a,b].

A proof of this theorem, which is given in section 5, is based on using the next theorem.

Theorem 2. Let ® = {¢.} be a complete orthonormal system in L?[u,v] such that for
@ = {11} a condition §(P1) = (SUPefy] Dopet cpik(t))l/2 < 00 holds.

If f satisfies A), B’), then for any « € [a,b) and any h < b— « that satisfies the condition

a-+h
Uv—U

h / ’U)(t)dt< m (6)

«

an initial value problem
?'(t) = f(t,z), w(a)==0, tE[a,a+h] (7)

has a unique solution z(t) € W], |o, a + h] on [a, a + h]. This solution can be represented as
a uniformly convergent series

w(t) =20+ Y cipprn(8(t), O(t) == - Yt—a)+u, tela,a+hl. (8)
k=1

A proof of Theorem 2 is given in section 4. The proof is based on using Fourier series with
respect to ®1-type system, orthogonal in Sobolev sense and generated by an ordinary system.
Some general information about these systems we give in section 3.

Coefficients ¢ in (8) are Fourier coefficients with respect to Sobolev system ®;.
To determine the coefficients ¢ i, we use a specially constructed operator A (see (26)), defined

in Hilbert space la, consisting of sequences C' = (¢;)72; with the norm ||C| = (Z;’;l c?)l/z.
The operator A is constructed in such a way that its fixed point is a sequence of the
coeflicients ¢y ;. In this connection, the question of whether the operator A has a contraction
property becomes important. It turns out that a positive answer to this question can be given
when functions of the system ®; have the following property

e under conditions of Theorem C: k(®;1) < oo [12-14];

e under conditions of Theorem 2: §(®1) < oo (see section 4).
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It was shown in [12] that the properties x(®1) < oo and §(P;) < oo hold for the system
of functions x r(x) generated by the Haar system, and for the system of functions generated
by the system of cosine functions.

It should be noted that under conditions of Theorem 2 the operator A is contractive. This
property can be employed to construct robust, fast and easy to implement numerical methods
of solving an initial value problem with discontinuous right-hand side.

We begin with considering a relationship between conditions C1), C2), C3), L) and A),
B).

2. Relationship Between Conditions

Let’s introduce modifications of conditions C3) and L) in the following way:
(3’) there exists a function m(t) € L?[a,b] such that |f(¢,z)| < m(t).
L’) there exist a function I(t) € L?[a,b], such that for almost every ¢ € [a,b] and every ,
Y € [xo — ¢, o + ¢
[f(t,2) = [t y)| <1l =yl (9)
These conditions differ from their counterparts only in that here we require functions m(t)
and [(t) to be from L?[a, b].

Theorem 3. A function f(t,z) satisfies conditions C1), C2), C3’), L") if and only if it
satisfies conditions A), B’).

This theorem proof is based on the following lemmas.

Lemma 1. If f for some function w(t) satisfies the condition B’) on the segment |a,b],
then f will satisfy this condition with the same function w(t) on any subsegment [a, 3] C [a, b].

<1 Let g1, g2 be arbitrary functions from WLl2 [a, B]. Denote by g1 the continuous extension
of g1 by the constants to the entire interval [a, b]:

g1(a), z€la,a),
gi(x) = q1(2), z€a,p],
91(B), =z € (B,0],

and by go(z;h) the continuous extension of go by constants gi(«), g1(8) on the segments
[a,a — h], [B + h,b] and by linear functions on the segments [« — h, o], [5, 5 + Al

g1 (), x € la,a — hl,
M(:ﬂ—&)—i—gp(@), z € (a—h,a),
g2(z;h) = ¢ g2(x), z € [a, f],
2CBr01B)(z — §) + go(B), x € (8,8 +h),
91(B), x € B+ h,b|.

It is clear that gi(t) and ga(t; h) belong to W},[a,b] for any sufficiently small h. Further, for
any small h > 0 we have

b

B
o) - 0] de < [ [76.30) - ft.ga(60)] ae

a

b B
< [ [an® - g@n] = [ o060 - 0] a0 n0+ R0, 0w)
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where

2

« b
0w = [wO[n® -pen] @ nm= [wnno -mpen) o
a B

Consider I (h):
< 2
|11 (h / w( [91 20 -0l - a1(@) ——(t—-a)- 92(04)} dt

a—t 2

[e%
= (g1(@) — g2())? / w(t) [1 - T} di| < (g1(a / |w(t)| dt.
o
Last integral vanishes as h — 0 (absolute continuity). Hence, I1(h) — 0, h — 0. Similarly, we
can show that I3(h) — 0, h — 0. Then lemma’s statement follows from (10). >
Lemma 2. If f satisfies condition B’), then the function w(t) is nonnegative for a.e.
t € [a,b] and the function f satisfies condition L’), in which I(t) = \/w(t) € L*[a, ).
< Let x, y be arbitrary numbers. By Lemma 1, it follows that for any small h > 0

1 u+h ) 1 u+h
Hence, tending h to 0, we get that for a.e. u € [a,b] |15, th. 1.3, p. 104]
|f(u, ) = fu,y)? < wlu)(z —y)*. (11)
This implies that w(t) must be nonnegative for a.e. ¢t € [a,b]. Then to obtain L’) it remains
to extract square roots from both sides of (11) and denote I(u) = y/w(u). >

< PROOF OF THEOREM 3. Suppose f satisfies the conditions C1), C2), C3’), L’). Arguing
as in [10, Chapter VIII, §8| (or in [16, Chapter III, § 10, Supplement II, p. 122]) one can show
that f(t,g(t)) € L?[a, b] for any measurable function g(t), so condition A) holds for f. Further,
it follows from L’) that

b b
o) - r0.0)] d < [w@[n® - e

where w(t) = (?(t) € L'[a,b], and condition B’) also holds for f. Thus, conditions C1), C2),
C3’), L’) imply conditions A), B).

Now we show that the converse is also true. Condition C2) follows from A). By Lemma 2,
condition B’) imply L’). It follows from L’) that f(¢,z) satisfies C1). It remains to show that
f(t,x) satisfies C3’). We claim that L’) and A) imply C3’). Indeed, using L") we get

’f(tw%') - f(t7a)‘ < l(t)’x - a’ < l(t)(b - a’)? S [a7 b]?

where [(t) € L?[a, b]. This can be rewritten as f(t,a)—1(t)(b—a) < f(t,z) < f(t,a)+1(t)(b—a).
Hence,
F(t,2)] < m(t) = max{[f(t,a) — (O — )l [f(t, ) + LB -}, = € [a,8],

Since f(t,a) € L?[a,b] (due to A)), we have f(t,a)£1(t)(b—a) € L?[a,b], so m(t) is also from
L?[a,b] and condition C3’) holds. >
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3. Sobolev Orthogonal Systems

In [17-20] I. Sharapudinov considered systems of functions orthogonal with respect
to Sobolev-type inner product

r—1 b
(f.9)=>_ f"(a)g"(a) +/f(”(w)g(r)(:v)ﬂ(:v) dz. (12)
v=0

a

He introduced systems ®, = {¢, 1} defined as
Nk
%k(m):%, k=0,1,...,r—1, (13)

xT

! ) /(m—t)rlgpk_r(t) dt, k=rr+l,... (14)

Pr k() = o)

a

where ® = {¢}}7°, is a system, orthogonal with respect to the ordinary inner product of the
form

b
(f.9) = / F(0)g(®) pt) dt, (15)

and showed orthogonality of these systems with respect to inner product (12). The system @,
is called a Sobolev orthogonal system generated by the system ®.
A Fourier series of a function z(¢) in the system @, has the following form [18]:

Zw(k

+ Z Cr k (pr k (16)
where

Crk / (T) (Pk: r :U'( )d (17)

The Fourier series of form (16) turned out to be a natural and very convenient tool for solving
systems of differential equations [12]. In [12-14] it was proposed an iterative method for solving
an initial value problem for a nonlinear ordinary differential equation of the form

2'(t) = f(t,z), z(a)=uxz0, tE][a,b), (18)

based on a representation of the solution of problem (18) as a Fourier series in a ®;-type
system:

+chk )1k (t (19)

where x(a) = x is an initial value and ch(:U) are unknown Fourier coefficients that should
be found.

In already mentioned works [12-14] it is assumed that a function on the right-hand side
of a differential equation is continuous in both variables and satisfies the Lipschitz condition
with respect to y. However, it turned out that the method used there can be extended to the
case of differential equations with a discontinuous right-hand side [11]. We use this method
to prove Theorem 2.
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4. Proof of Theorem 2

If we introduce a function y(s) = z(07*(s)), where §7!(s) = 2=%h + «, then problem (7)
can be written as follows

Y (s)=F(s,y), yu) =y, sE€lu] (20)

where F(s,y) = -2 f(0~1(s),y). It is easy to verify that F(s,g(s)) € L*[u,v] for any g €

v—u

W1,[u, v]. Indeed, using the substitution s = 6(t), we obtain

a-+h

/F2sg v_u/f2tg (21)

Assuming
9(0(a)), t € [a, ),
g9(t) = 4 9(0(t)), t€a,a+h],
g(@(a+h)), te (a+h,b,

and noting that g(t) € W}s[a, b], from (21) and condition A) we get

(2

/F2(sg( \v_u/fQ ) dt < 0.

u

Further, for problem (20) following the work [11] we introduce the operator A,
the construction of which is based on the following relations:

u) + Z cLk+1(Y) P1k+1(8), (22)
y'(s) =) crp+1(y) pr(s) (23)
k=0
q(s) = F(s,y(s)) = Y _ cxlq) n(s), (24)
k=0

where the first relation is the Fourier series in the system {y;x} of the function y(s) €
W}, [u,v], and the second and third ones are Fourier series in system {¢y} of functions y/(s) €
L?[u,v] and q(s) € L?*u,v] respectively. Note that in the relation (22) the Fourier series
converges uniformly (see, for example, |18, Theorem 2.2]), and in (23) and (24) series converge
in the metric of L?[u,v] (due to the completeness of the system ¢y, in the space L%[u,v]).

It follows from (7), (23) and (24) that

c1r+1(y) = crlq /F 5,9(s)) pr(s) ds.

Combining this equality with (22) we obtain the relation

v

cLe+1(y) = /F<S,y(u) +> ) <P1,j+1(8)><ﬂk(8) ds, k=0. (25)
=0

u
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The right-hand side expression is the aforementioned operator A that takes the point d € 2
to the point A(d) € 12 according to the following rule

(2

A(d) = ( Fls,y(u)+ 3 d; 1+1(s) (s)ds, k > 0), (26)
u/ < Yy jZO 3 PLj+1 >80k
where 5
Fls,;y) = ——f(07(s)y), 67(s) =—h+a.

It follows from (25) that the Fourier coefficients sequence C(y) = (cip41(y), k = 0)
of the solution y(s) with respect to the system ®; = {1 1(s)} is a fixed point of the operator
A: A(C(y)) = C(y).

We now show that A is contractive provided B’).

Let d' and d? be two arbitrary points in [?. We introduce the notation:

91(s) = y(u) + Z dj 1541(5),  g2(s) = y(u) + Z 7 o1,541(5). (27)
j=0 Jj=0

Theorem [18, Theorem 2| implies that gi1,g2 € Wjs[u,v] and that their series uniformly
converge on [u,v]. Consider the difference:

(2

A(d") — A(d) = ( / [F(s,91(5)) — F(s, 92()] ou(s) ds, & > o>.

u

By Parseval’s equality, we have:

v

|A(d) - A3 = / [F(s,g1(5)) — F(s,ga(s))]” ds = J. (28)

u

Changing the variable s = 0(t) reduces the integral J to the form:

g=" / [F(Lg1(t) — F(t.ga(t))] dt,

where g;(t) = g;(0(t)), 7 = 1,2. It is obvious that g;(t) € W}, + h], j = 1,2. Since f
satisfies condition B’) on the segment [a,b], using Lemma 1 and making the inverse change
t =071(s) we get

a+h ) v
J < v ﬁ u a/ w(t) [gl(t) - gZ(t)]th = (vﬁiu)z u/w(é’l(s)) [gl(s) — 92(3)]2613. (29)

Substituting the expressions from (27) into the last integral and applying the Cauchy—Buny-
akovsky inequality we obtain:

(2

a+h
/w(@l(s))[gl(s) - gg(s)]zds < Hdl - d2H122 52((I>1)v ; “ / w(t) dt.

u
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This inequality with (28), (29) yields:
a+h

1/2
HA(dU—A(d%HP<6<<1>1><va /w<t>dt> [ — a?,..

a

Therefore, under the condition (6), the operator A will be contractive.

Hence, since [? is a complete space, the operator A will have a unique fixed point. This
point as noted above (see (25)) is a Fourier coefficients sequence of the solution y(s) for
problem (20). So a solution exists and has a form (22), where C(y) = (c1,k41(y), k = 0)
is a fixed point of A. The solution uniqueness follows from the fact that any solution y(s)
of problem (20) belongs to the space W}, [u, v] and therefore can be decomposed into uniformly
convergent series (22), in which the sequence of coefficients is a fixed point of the operator A.

If y(s) is a solution of problem (20), then z(t) = y(6(t)) is a solution of problem (7)
on [a, v + hj.

5. Proof of Theorem 1

To obtain a solution on the segment [a,b], we divide it into m subsegments [a;, a;1+1] =
[ih, (i + 1)h], i = 0,1,...,m — 1, where h = =2 m > §2(®;)2=2 bw(t) dt (therefore, on

v—u Ja
each segment condition (6) will hold). We will successively solve the initial value problems

2 (t) = f(t,x), wx(a;) =zi0, tE [a;,ait1], (30)

on the segments [a;,a;+1] with initial values defined as follows: xgo0 = xo, Zio = zi—1(ai),
i=1,...,m —1, where z;(t) is a solution of the problem on the subsegment [a;, a;+1]. Then
the solution on the segment [a, b] will have the form:

.%'(t) :mi(t), t e [ai,aHl], 1=0,....,m—1.

It is easy to verify that given function is a solution of problem (1). Indeed, z(0) = z¢(0) =
xo,0 = X0, so initial condition holds. It is also obvious that x(t) € VVLI2 [u, v]. Further, denote
by E; C [ai, a;+1] a set with measure p(E;) = |a;41 — a;| such that z}(t) = f(t,z;(t)), t € E;.
If t € E = U, 'E; then ¢ belongs to some E;. Hence, for this ¢ we have 2/(t) = 2/(t) =
f(t,zi(t)) = f(t,z(t)). Since u(E) = b — a, x(t) satisfies (1) almost everywhere on [a, b].
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TEOPEMBI CYIIECTBOBAHIY I EAMHCTBEHHOCTH
J1J1d JNOOEPEHIINMAJIBHOI'O YPABHEHISA
C PA3PBIBHOI TTPABOI YACTBHIO

Maromen-Kacymos M. T.1+2

L 1Okup1i MaTemaTuueckumii nacruryr BHI] PAH,
Poccus, 362027, Bnanukaskas, yi. Baryruna, 53;

2 Marecranckuii denepanpHbLil ncciaenosarensekuii nearp PAH,
Poccus, 367000, Maxauakana, yi. M. Iajxuea, 45,

E-mail: rasuldev@gmail.com

Awnnorarusi. PaccMoTpenbl HOBBIE YCJIOBUSI CYIIECTBOBAHUSI U €MHCTBEHHOCTH pertenust Kapareomopu
sagaun Ko gis nuddepeHmasbsHOro ypaBHeHHsT IEPBOTO MOPSIAKA C PA3PBIBHOM mpaBoil yacTeio. [Ipume-
HSEMBIA B CTATHE METOJ OCHOBaH Ha: 1) mpejcrasiennu pemenusa B Bune pana Pypoe mo cucreme dbyHKIMiA,
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OPTOrOHAJILHON OTHOCUTEJIBHO CKAJIIPHOTO Iipou3BeieHus tuita CobosieBa U MOPOXK IEHHOM KJIACCUIECKON OPTO-
FOHAJILHOM CHCTEMOI; 2) UCIIOJIb30BAHUY CIIEIUAIbLHBIN 06Pa30M CKOHCTPYUPOBAHHOIO oneparopa A, mgeficrsy-
IOIIETr0 B IIPOCTPAHCTBE 2, HEIIOJIBUKHOM TOYKOI KOTOPOro siBisiorcst Koaddurmentsl Pypoe pemenust. [Ipn
BBIIIOJIHEHUU YCJIOBUHN, PACCMATPUBAEMBIX B JAHHOW cTaThe, omeparop A OyleT CKUMAOIUM. DTO CBOWCTBO
MOXKET OBITH HCIIOJIB30BAHO JIJIsi KOHCTPYMPOBAHMS YCTONYIMBBIX, OBICTPBIX U JIEIKO PEAJIN3YEMBbIX CIHEKTPAaJIb-
HBIX YHCJIEHHBIX METOJIOB PellleHus 3a7a4u Komu ¢ pa3pbIBHOI IIpaBoil 4acThio. V3ydyeHa Takzke B3aMOCBS3b
HOBBIX yCJIOBHIi C XOPOIIIO M3BECTHBIMU KJIACCHYECKUMHU ycsoBusaMu (yciaosus Kapareomopu BMecTe ¢ ycaoBu-
em Jlummuia) cyIecTBoBaHUsI ¥ €MHCTBEHHOCTH pemenust Kapareonopu 3ama4du Kommu ¢ pa3pbeIBHOM IpaBoil
4acThio. A MMEHHO, IIOKAa3aHO, YTO €CJIM B KJIACCHYECKUX YCJIOBUSX 3aMEHUTH IPOCTPAHCTBO CYMMUPYEMBIX
dbynxumit L' Ha 1pOCTPAHCTBO CyMMHPYEMBIX ¢ KBajaparoM (dyHKuil L2, To OHM CTaHyT 9KBHBAJIEHTHBIMI
YCJIOBUSIM, IIPUBEJEHHBIM B JIAHHOM CTaTbe.

KuroueBsble ciioBa: 3ajada Komu, paspbiBHas npaBasi 9acTh, OPTOrOHaJIbHas B cMbicyie CobosieBa cu-
cremMa, Teopema CyIIeCTBOBaHUsI M eJIMHCTBEHHOCTH, pemnienne Kapareomopu.
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