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Abstract. We consider new conditions for existence and uniqueness of a Caratheodory solution for an
initial value problem with a discontinuous right-hand side. The method used here is based on: 1) the
representation of the solution as a Fourier series in a system of functions orthogonal in Sobolev sense and
generated by a classical orthogonal system; 2) the use of a specially constructed operator A acting in l2,
the fixed point of which are the coefficients of the Fourier series of the solution. Under conditions given
here the operator A is contractive. This property can be employed to construct robust, fast and easy to
implement spectral numerical methods of solving an initial value problem with discontinuous right-hand
side. Relationship of new conditions with classical ones (Caratheodory conditions with Lipschitz condition)
is also studied. Namely, we show that if in classical conditions we replace L

1 by L
2, then they become

equivalent to the conditions given in this article.
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1. Introduction

Consider an initial value problem:

x′(t) = f(t, x), x(a) = x0, t ∈ [a, b], (1)

where f(t, x) can be discontinuous. Classic definition of a solution is too restrictive for
differential equations with discontinuous right-hand side. There are different ways to generalize
the notion of a solution in this case: Caratheodory solution, Filippov [1, 2] and Krasovskij [3, 4]
solutions (based on differential inclusions), Hermes solution [5] (uses limiting transitions) and
others (see [2, 6, 7, 8, 9] and references therein). In this paper we consider only Caratheodory
solutions. A function x(t) is called a Caratheodory solution of problem (1), if it is absolutely
continuous, equality x′(t) = f(t, x(t)) holds for almost every t ∈ [a, b] and x(a) = x0.

We say that a function f(t, x) satisfies the Caratheodory conditions in a domain D

if in the domain
C1) f(t, x) is continuous with respect to x for almost every t;
C2) f(t, x) is measurable with respect to t for each x;
C3) there exists an integrable function m(t) such that |f(t, x)| 6 m(t).
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The following results are well-known (see [2, 10]).

Theorem A. Let f(t, x) satisfy the Caratheodory conditions in D = [a, b]×[x0−c, x0+c].
Then there exists a Caratheodory solution of problem (1) on [a, a+ d], where d is such that

0 < d 6 b− a, ϕ(a+ d) 6 c, ϕ(t) =

t
∫

a

m(s) ds. (2)

We say that f satisfies L) condition in domain D = [a, b]× [x0 − c, x0 + c] if
L) there exist an integrable function l(t), such that for almost every t ∈ [a, b] and every

x, y ∈ [x0 − c, x0 + c]

|f(t, x)− f(t, y)| 6 l(t)|x− y|. (3)

Theorem B. Suppose f satisfies L) in domain D = [a, b]× [x0 − c, x0 + c]. Then if in the

domain D a solution of problem (1) exists, it is unique.

Thus, if f(t, x) satisfies in D = [a, b] × [x0 − c, x0 + c] the Caratheodory conditions and
condition L) then there exists a unique solution of problem (1) in [a, a+d] where d satisfies (2).

I. Sharapudinov obtained another conditions for existence and uniqueness of a solution of
problem (1). Before stating the main result obtained in [11], we give some definitions.

Let L
p
µ[a, b] be a space of functions, integrable with weight µ on the segment [a, b]:

Lp
µ[a, b] =







f :

b
∫

a

|f(t)|p µ(t) dt < ∞







. (4)

By W r
Lp

µ

[a, b] we denote a space of (r− 1)-times continuously differentiable functions f = f(t)

defined on [a, b] such that f (r−1)(t) is absolutely continuous and f (r) ∈ L
p
µ[a, b].

Let Φ = {ϕk, k = 0, 1, . . .} be a complete orthonormal system in L2
µ = L2

µ[0, 1]. Define
a new system Φ1 = {ϕ1,k} using formulas:

ϕ1,0(t) = 1, ϕ1,1+k(t) =

t
∫

a

(t− x)ϕk(x) dx, k > 0.

This system is orthogonal with respect to Sobolev-type inner product (12), where r = 1 (see
details in section 3). Suppose that the system Φ1 = {ϕ1,k} possess the property κ(Φ1) =
(
∑

∞

k=1

∫ b
a ϕ2

1,k(t)µ(t) dt
)1/2

< ∞. Systems with this property exist (see [12]). The following
theorem was proved in [11].

Theorem C. If for some δ the conditions

A) f(t, g(t)) ∈ L2
µ[a, b] for any function g(t) ∈ W 1

L2
µ

[a, b];

B) for any g1(t), g2(t) ∈ W 1
L2
µ

[a, b] the following relation holds:

b
∫

a

[f(t, g1(t))− f(t, g2(t))]
2 µ(t) dt 6 δ2

b
∫

a

[g1(t)− g2(t)]
2 µ(t) dt;

C) δκ(Φ1) < 1,
hold then initial value problem (1) has a unique solution x(t) ∈ W 1

L2
µ

[a, b]. This solution can
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be represented as a uniformly convergent series

x(t) = x0 +
∞
∑

k=1

c1,kϕ1,k(t), t ∈ [a, b]. (5)

In this article, we show that in the case of unit weight µ(t), using the methods from [11–13],
we can

1) remove condition C) in Theorem C;
2) replace condition B) with
B’) there exists an integrable function w(t), such that for any g1(t), g2(t) ∈ W 1

L2
µ

[a, b]

the following relation holds:

b
∫

a

[f(t, g1(t))− f(t, g2(t))]
2 dt 6

b
∫

a

w(t) [g1(t)− g2(t)]
2 dt.

Namely, the following theorem holds.

Theorem 1. If f satisfies conditions A), B’), initial value problem (1) has a unique

solution x(t) ∈ W 1
L2 [a, b] on [a, b].

A proof of this theorem, which is given in section 5, is based on using the next theorem.

Theorem 2. Let Φ = {ϕk} be a complete orthonormal system in L2[u, v] such that for

Φ1 = {ϕ1,k} a condition δ(Φ1) =
(

supt∈[u,v]
∑

∞

k=1 ϕ
2
1,k(t)

)1/2
< ∞ holds.

If f satisfies A), B’), then for any α ∈ [a, b) and any h 6 b−α that satisfies the condition

h

α+h
∫

α

w(t) dt <
v − u

δ2(Φ1)
(6)

an initial value problem

x′(t) = f(t, x), x(α) = x0, t ∈ [α,α + h], (7)

has a unique solution x(t) ∈ W 1
L2 [α,α + h] on [α,α+ h]. This solution can be represented as

a uniformly convergent series

x(t) = x0 +
∞
∑

k=1

c1,kϕ1,k(θ(t)), θ(t) =
v − u

h
(t− α) + u, t ∈ [α,α + h]. (8)

A proof of Theorem 2 is given in section 4. The proof is based on using Fourier series with
respect to Φ1-type system, orthogonal in Sobolev sense and generated by an ordinary system.
Some general information about these systems we give in section 3.

Coefficients c1,k in (8) are Fourier coefficients with respect to Sobolev system Φ1.
To determine the coefficients c1,k, we use a specially constructed operator A (see (26)), defined

in Hilbert space l2, consisting of sequences C = (cj)
∞

j=1 with the norm ‖C‖ =
(
∑

∞

j=1 c
2
j

)1/2
.

The operator A is constructed in such a way that its fixed point is a sequence of the
coefficients c1,k. In this connection, the question of whether the operator A has a contraction
property becomes important. It turns out that a positive answer to this question can be given
when functions of the system Φ1 have the following property

• under conditions of Theorem C: κ(Φ1) < ∞ [12–14];
• under conditions of Theorem 2: δ(Φ1) < ∞ (see section 4).
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It was shown in [12] that the properties κ(Φ1) < ∞ and δ(Φ1) < ∞ hold for the system
of functions χ1,k(x) generated by the Haar system, and for the system of functions generated
by the system of cosine functions.

It should be noted that under conditions of Theorem 2 the operator A is contractive. This
property can be employed to construct robust, fast and easy to implement numerical methods
of solving an initial value problem with discontinuous right-hand side.

We begin with considering a relationship between conditions C1), C2), C3), L) and A),
B’).

2. Relationship Between Conditions

Let’s introduce modifications of conditions C3) and L) in the following way:
C3’) there exists a function m(t) ∈ L2[a, b] such that |f(t, x)| 6 m(t).
L’) there exist a function l(t) ∈ L2[a, b], such that for almost every t ∈ [a, b] and every x,

y ∈ [x0 − c, x0 + c]
|f(t, x)− f(t, y)| 6 l(t)|x− y|. (9)

These conditions differ from their counterparts only in that here we require functions m(t)
and l(t) to be from L2[a, b].

Theorem 3. A function f(t, x) satisfies conditions C1), C2), C3’), L’) if and only if it

satisfies conditions A), B’).
This theorem proof is based on the following lemmas.

Lemma 1. If f for some function w(t) satisfies the condition B’) on the segment [a, b],
then f will satisfy this condition with the same function w(t) on any subsegment [α, β] ⊂ [a, b].

⊳ Let g1, g2 be arbitrary functions from W 1
L2 [α, β]. Denote by g̃1 the continuous extension

of g1 by the constants to the entire interval [a, b]:

g̃1(x) =











g1(α), x ∈ [a, α),

g1(x), x ∈ [α, β],

g1(β), x ∈ (β, b],

and by g̃2(x;h) the continuous extension of g2 by constants g1(α), g1(β) on the segments
[a, α− h], [β + h, b] and by linear functions on the segments [α− h, α], [β, β + h]:

g̃2(x;h) =



































g1(α), x ∈ [a, α − h],
g2(α)−g1(α)

h (x− α) + g2(α), x ∈ (α− h, α),

g2(x), x ∈ [α, β],
g1(β)−g2(β)

h (x− β) + g2(β), x ∈ (β, β + h),

g1(β), x ∈ [β + h, b].

It is clear that g̃1(t) and g̃2(t;h) belong to W 1
L2 [a, b] for any sufficiently small h. Further, for

any small h > 0 we have

β
∫

α

[

f(t, g1(t))− f(t, g2(t))
]2

dt 6

b
∫

a

[

f(t, g̃1(t))− f(t, g̃2(t;h))
]2

dt

6

b
∫

a

w(t)
[

g̃1(t)− g̃2(t;h)
]2
dt =

β
∫

α

w(t)
[

g1(t)− g2(t)
]2
dt+ I1(h) + I2(h), (10)
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where

I1(h) =

α
∫

a

w(t)
[

g̃1(t)− g̃2(t;h)
]2
dt, I2(h) =

b
∫

β

w(t)
[

g̃1(t)− g̃2(t;h)
]2
dt.

Consider I1(h):

|I1(h)| =

∣

∣

∣

∣

∣

∣

α
∫

α−h

w(t)

[

g1(α)−
g2(α)− g1(α)

h
(t− α)− g2(α)

]2

dt

∣

∣

∣

∣

∣

∣

= (g1(α)− g2(α))
2

∣

∣

∣

∣

∣

∣

α
∫

α−h

w(t)

[

1−
α− t

h

]2

dt

∣

∣

∣

∣

∣

∣

6 (g1(α) − g2(α))
2

α
∫

α−h

|w(t)| dt.

Last integral vanishes as h → 0 (absolute continuity). Hence, I1(h) → 0, h → 0. Similarly, we
can show that I2(h) → 0, h → 0. Then lemma’s statement follows from (10). ⊲

Lemma 2. If f satisfies condition B’), then the function w(t) is nonnegative for a. e.

t ∈ [a, b] and the function f satisfies condition L’), in which l(t) =
√

w(t) ∈ L2[a, b].

⊳ Let x, y be arbitrary numbers. By Lemma 1, it follows that for any small h > 0

1

h

u+h
∫

u

[

f(t, x)− f(t, y)
]2
dt 6 (x− y)2

1

h

u+h
∫

u

w(t) dt, u ∈ [a, b].

Hence, tending h to 0, we get that for a. e. u ∈ [a, b] [15, th. 1.3, p. 104]

|f(u, x)− f(u, y)|2 6 w(u)(x − y)2. (11)

This implies that w(t) must be nonnegative for a. e. t ∈ [a, b]. Then to obtain L’) it remains
to extract square roots from both sides of (11) and denote l(u) =

√

w(u). ⊲

⊳ Proof of Theorem 3. Suppose f satisfies the conditions C1), C2), C3’), L’). Arguing
as in [10, Chapter VIII, § 8] (or in [16, Chapter III, § 10, Supplement II, p. 122]) one can show
that f(t, g(t)) ∈ L2[a, b] for any measurable function g(t), so condition A) holds for f . Further,
it follows from L’) that

b
∫

a

[

f(t, g1(t))− f(t, g2(t))
]2

dt 6

b
∫

a

w(t)
[

g1(t)− g2(t)
]2

dt,

where w(t) = l2(t) ∈ L1[a, b], and condition B’) also holds for f . Thus, conditions C1), C2),
C3’), L’) imply conditions A), B’).

Now we show that the converse is also true. Condition C2) follows from A). By Lemma 2,
condition B’) imply L’). It follows from L’) that f(t, x) satisfies C1). It remains to show that
f(t, x) satisfies C3’). We claim that L’) and A) imply C3’). Indeed, using L’) we get

|f(t, x)− f(t, a)| 6 l(t)|x− a| 6 l(t)(b− a), x ∈ [a, b],

where l(t) ∈ L2[a, b]. This can be rewritten as f(t, a)−l(t)(b−a) 6 f(t, x) 6 f(t, a)+l(t)(b−a).
Hence,

|f(t, x)| 6 m(t) = max{|f(t, a) − l(t)(b− a)|, |f(t, a) + l(t)(b− a)|}, x ∈ [a, b].

Since f(t, a) ∈ L2[a, b] (due to A)), we have f(t, a)± l(t)(b−a) ∈ L2[a, b], so m(t) is also from
L2[a, b] and condition C3’) holds. ⊲
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3. Sobolev Orthogonal Systems

In [17–20] I. Sharapudinov considered systems of functions orthogonal with respect
to Sobolev-type inner product

〈f, g〉 =
r−1
∑

ν=0

f (ν)(a) g(ν)(a) +

b
∫

a

f (r)(x) g(r)(x)µ(x) dx. (12)

He introduced systems Φr = {ϕr,k} defined as

ϕr,k(x) =
(x− a)k

k!
, k = 0, 1, . . . , r − 1, (13)

ϕr,k(x) =
1

(r − 1)!

x
∫

a

(x− t)r−1ϕk−r(t) dt, k = r, r + 1, . . . , (14)

where Φ = {ϕk}
∞

k=0 is a system, orthogonal with respect to the ordinary inner product of the
form

〈f, g〉 =

b
∫

a

f(t)g(t)µ(t) dt, (15)

and showed orthogonality of these systems with respect to inner product (12). The system Φr

is called a Sobolev orthogonal system generated by the system Φ.
A Fourier series of a function x(t) in the system Φr has the following form [18]:

x(t) ∼
r−1
∑

k=0

x(k)(a)
(t− a)k

k!
+

∞
∑

k=r

cr,k(x)ϕr,k(t), (16)

where

cr,k(x) =

b
∫

a

x(r)(t)ϕk−r(t)µ(t) dt. (17)

The Fourier series of form (16) turned out to be a natural and very convenient tool for solving
systems of differential equations [12]. In [12–14] it was proposed an iterative method for solving
an initial value problem for a nonlinear ordinary differential equation of the form

x′(t) = f(t, x), x(a) = x0, t ∈ [a, b], (18)

based on a representation of the solution of problem (18) as a Fourier series in a Φ1-type
system:

x(t) = x(a) +

∞
∑

k=1

c1,k(x)ϕ1,k(t), (19)

where x(a) = x0 is an initial value and c1,k(x) are unknown Fourier coefficients that should
be found.

In already mentioned works [12–14] it is assumed that a function on the right-hand side
of a differential equation is continuous in both variables and satisfies the Lipschitz condition
with respect to y. However, it turned out that the method used there can be extended to the
case of differential equations with a discontinuous right-hand side [11]. We use this method
to prove Theorem 2.
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4. Proof of Theorem 2

If we introduce a function y(s) = x(θ−1(s)), where θ−1(s) = s−u
v−uh+ α, then problem (7)

can be written as follows

y′(s) = F (s, y), y(u) = y0, s ∈ [u, v], (20)

where F (s, y) = h
v−uf(θ

−1(s), y). It is easy to verify that F (s, g(s)) ∈ L2[u, v] for any g ∈

W 1
L2 [u, v]. Indeed, using the substitution s = θ(t), we obtain

v
∫

u

F 2(s, g(s)) ds =
h

v − u

α+h
∫

α

f2(t, g(θ(t))) dt. (21)

Assuming

g̃(t) =











g(θ(α)), t ∈ [a, α),

g(θ(t)), t ∈ [α,α + h],

g(θ(α + h)), t ∈ (α+ h, b],

and noting that g̃(t) ∈ W 1
L2 [a, b], from (21) and condition A) we get

v
∫

u

F 2(s, g(s)) ds 6
h

v − u

b
∫

a

f2(t, g̃(t)) dt < ∞.

Further, for problem (20) following the work [11] we introduce the operator A,
the construction of which is based on the following relations:

y(s) = y(u) +

∞
∑

k=0

c1,k+1(y)ϕ1,k+1(s), (22)

y′(s) =
∞
∑

k=0

c1,k+1(y)ϕk(s), (23)

q(s) = F (s, y(s)) =
∞
∑

k=0

ck(q)ϕk(s), (24)

where the first relation is the Fourier series in the system {ϕ1,k} of the function y(s) ∈
W 1

L2 [u, v], and the second and third ones are Fourier series in system {ϕk} of functions y′(s) ∈
L2[u, v] and q(s) ∈ L2[u, v] respectively. Note that in the relation (22) the Fourier series
converges uniformly (see, for example, [18, Theorem 2.2]), and in (23) and (24) series converge
in the metric of L2[u, v] (due to the completeness of the system ϕk in the space L2[u, v]).

It follows from (7), (23) and (24) that

c1,k+1(y) = ck(q) =

v
∫

u

F
(

s, y(s)
)

ϕk(s) ds.

Combining this equality with (22) we obtain the relation

c1,k+1(y) =

v
∫

u

F

(

s, y(u) +
∞
∑

j=0

c1,j+1(y)ϕ1,j+1(s)

)

ϕk(s) ds, k > 0. (25)
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The right-hand side expression is the aforementioned operator A that takes the point d ∈ l2

to the point A(d) ∈ l2 according to the following rule

A(d) =

( v
∫

u

F

(

s, y(u) +
∞
∑

j=0

dj ϕ1,j+1(s)

)

ϕk(s) ds, k > 0

)

, (26)

where

F (s, y) =
h

v − u
f
(

θ−1(s), y
)

, θ−1(s) =
s− u

v − u
h+ α.

It follows from (25) that the Fourier coefficients sequence C(y) =
(

c1,k+1(y), k > 0
)

of the solution y(s) with respect to the system Φ1 = {ϕ1,k(s)} is a fixed point of the operator
A: A(C(y)) = C(y).

We now show that A is contractive provided B’).
Let d1 and d2 be two arbitrary points in l2. We introduce the notation:

g1(s) = y(u) +

∞
∑

j=0

d1j ϕ1,j+1(s), g2(s) = y(u) +

∞
∑

j=0

d2j ϕ1,j+1(s). (27)

Theorem [18, Theorem 2] implies that g1, g2 ∈ W 1
L2 [u, v] and that their series uniformly

converge on [u, v]. Consider the difference:

A(d1)−A(d2) =

( v
∫

u

[

F (s, g1(s))− F (s, g2(s))
]

ϕk(s) ds, k > 0

)

.

By Parseval’s equality, we have:

∥

∥A(d1)−A(d2)
∥

∥

2

l2
=

v
∫

u

[

F (s, g1(s))− F (s, g2(s))
]2

ds
.
= J. (28)

Changing the variable s = θ(t) reduces the integral J to the form:

J =
h

v − u

α+h
∫

α

[

f(t, ḡ1(t))− f(t, ḡ2(t))
]2

dt,

where ḡj(t) = gj(θ(t)), j = 1, 2. It is obvious that ḡj(t) ∈ W 1
L2 [α,α + h], j = 1, 2. Since f

satisfies condition B’) on the segment [a, b], using Lemma 1 and making the inverse change
t = θ−1(s) we get

J 6
h

v − u

α+h
∫

α

w(t)
[

ḡ1(t)− ḡ2(t)
]2

dt =
h2

(v − u)2

v
∫

u

w(θ−1(s))
[

g1(s)− g2(s)
]2

ds. (29)

Substituting the expressions from (27) into the last integral and applying the Cauchy–Buny-
akovsky inequality we obtain:

v
∫

u

w(θ−1(s))
[

g1(s)− g2(s)
]2

ds 6
∥

∥d1 − d2
∥

∥

2

l2
δ2(Φ1)

v − u

h

α+h
∫

α

w(t) dt.
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This inequality with (28), (29) yields:

∥

∥A(d1)−A(d2)
∥

∥

l2
6 δ(Φ1)

(

h

v − u

α+h
∫

α

w(t) dt

)1/2
∥

∥d1 − d2
∥

∥

l2
.

Therefore, under the condition (6), the operator A will be contractive.
Hence, since l2 is a complete space, the operator A will have a unique fixed point. This

point as noted above (see (25)) is a Fourier coefficients sequence of the solution y(s) for
problem (20). So a solution exists and has a form (22), where C(y) =

(

c1,k+1(y), k > 0
)

is a fixed point of A. The solution uniqueness follows from the fact that any solution y(s)
of problem (20) belongs to the space W 1

L2 [u, v] and therefore can be decomposed into uniformly
convergent series (22), in which the sequence of coefficients is a fixed point of the operator A.

If y(s) is a solution of problem (20), then x(t) = y(θ(t)) is a solution of problem (7)
on [α,α + h].

5. Proof of Theorem 1

To obtain a solution on the segment [a, b], we divide it into m subsegments [ai, ai+1] =

[ih, (i + 1)h], i = 0, 1, . . . ,m − 1, where h = b−a
m , m > δ2(Φ1)

b−a
v−u

∫ b
a w(t) dt (therefore, on

each segment condition (6) will hold). We will successively solve the initial value problems

x′(t) = f(t, x), x(ai) = xi,0, t ∈ [ai, ai+1], (30)

on the segments [ai, ai+1] with initial values defined as follows: x0,0 = x0, xi,0 = xi−1(ai),
i = 1, . . . ,m− 1, where xi(t) is a solution of the problem on the subsegment [ai, ai+1]. Then
the solution on the segment [a, b] will have the form:

x(t) = xi(t), t ∈ [ai, ai+1], i = 0, . . . ,m− 1.

It is easy to verify that given function is a solution of problem (1). Indeed, x(0) = x0(0) =
x0,0 = x0, so initial condition holds. It is also obvious that x(t) ∈ W 1

L2 [u, v]. Further, denote
by Ei ⊂ [ai, ai+1] a set with measure µ(Ei) = |ai+1 − ai| such that x′i(t) = f(t, xi(t)), t ∈ Ei.
If t ∈ E = ∪m−1

i=0 Ei then t belongs to some Ei. Hence, for this t we have x′(t) = x′i(t) =
f(t, xi(t)) = f(t, x(t)). Since µ(E) = b− a, x(t) satisfies (1) almost everywhere on [a, b].
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Аннотация. Рассмотрены новые условия существования и единственности решения Каратеодори
задачи Коши для дифференциального уравнения первого порядка с разрывной правой частью. Приме-
няемый в статье метод основан на: 1) представлении решения в виде ряда Фурье по системе функций,
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ортогональной относительно скалярного произведения типа Соболева и порожденной классической орто-
гональной системой; 2) использовании специальный образом сконструированного оператора A, действу-
ющего в пространстве l2, неподвижной точкой которого являются коэффициенты Фурье решения. При
выполнении условий, рассматриваемых в данной статье, оператор A будет сжимающим. Это свойство
может быть использовано для конструирования устойчивых, быстрых и легко реализуемых спектраль-
ных численных методов решения задачи Коши с разрывной правой частью. Изучена также взаимосвязь
новых условий с хорошо известными классическими условиями (условия Каратеодори вместе с услови-
ем Липшица) существования и единственности решения Каратеодори задачи Коши с разрывной правой
частью. А именно, показано, что если в классических условиях заменить пространство суммируемых
функций L

1 на пространство суммируемых с квадратом функций L
2, то они станут эквивалентными

условиям, приведенным в данной статье.

Ключевые слова: задача Коши, разрывная правая часть, ортогональная в смысле Соболева си-
стема, теорема существования и единственности, решение Каратеодори.
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