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Abstract. In 1962, Andreotti and Grauert showed that every q-complete complex space X is
cohomologically q-complete, that is for every coherent analytic sheaf F on X, the cohomology group
Hp(X,F ) vanishes if p > q. Since then the question whether the reciprocal statements of these theorems
are true have been subject to extensive studies, where more specific assumptions have been added.
Until now it is not known if these two conditions are equivalent. Using test cohomology classes, it was
shown however that if X is a Stein manifold and, if D ⊂ X is an open subset which has C2 boundary
such that Hp(D,OD) = 0 for all p > q, then D is q-complete. The aim of the present article is to
give a counterexample to the conjecture posed in 1962 by Andreotti and Grauert [1] to show that
a cohomologically q-complete space is not necessarily q-complete. More precisely, we show that there
exist for each n > 3 open subsets Ω ⊂ Cn such that for every F ∈ coh(Ω), the cohomology groups
Hp(Ω,F ) vanish for all p > n− 1 but Ω is not (n− 1)-complete.
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1. Introduction

In 1962, A. Andreotti and H. Grauert [1] showed finiteness and vanishing theorems for
cohomology groups of analytic spaces under geometric conditions of q-convexity. Since then
the question whether the reciprocal statements of these theorems are true have been subject to
extensive studies, where for q > 1 more specific assumptions have been added. For example, it
is known from the theory of Andreotti–Grauert [1] that a q-complete complex space is always
cohomologically q-complete, but it is not known if these two conditions are equivalent except
when X is a Stein manifold, Ω ⊂ X is cohomologically q-complete with respect to OΩ and Ω
has a smooth boundary [2].

The aim of the present article is to give a counterexample to the conjecture posed by
Andreotti and Grauert [1] to show that a cohomologically q-complete space is not necessarily
q-complete.

More precisely we will show

Theorem 1. For each integer n > 3, there is a domain Ω ⊂ Cn which is cohomologically

(n− 1)-complete but Ω is not (n− 1)-complete.

c© 2022 Alaoui, Y.
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2. Preliminaries

Let φ be a real valued function in C∞(Ω), where Ω is an open set in Cn with complex

coordinates z1, . . . , zn. Then we say that φ is q-convex if its complex Hessian
(
∂2φ(z)
∂zi∂zj

)
16i,j6n

has at most q − 1 negative or zero eingenvalues for every z ∈ Ω.
A function ρ ∈ Co(Ω,R) is said to be q-convex with corners, if every point of Ω admits

a neighborhood U on which there exist finitely many q-convex functions φ1, . . . , φl such that
ρ|U = Max (φ1, . . . , φl).

The open set Ω is called q-complete if there exists a smooth q-convex exhaustion function
on Ω.

We say that Ω is cohomologically q-complete, if for every coherent analytic sheaf F on Ω,
the cohomology group Hp(Ω,F ) = 0 for all p > q.

Finally, an open subset D of Ω is called q-Runge, if for each compact set K ⊂ Ω, there is
a q-convex exhaustion function φ ∈ C∞(Ω) such that

K ⊂ {z ∈ Ω : φ(z) < c} ⊂⊂ D.

It is known from [1] that if D is q-Runge in Ω, then for every coherent analytic sheaf
F ∈ coh(Ω), the restriction map Hp(Ω,F ) −→ Hp(D,F ) has dense image for all p > q − 1,
or equivalently, for every open covering U = (Ui)i∈I of Ω with a fundamental system of Stein
neighborhoods of Ω, the restriction map between spaces of cocycles

Zp(U ,F ) −→ Zp(U |D,F )

has dense range for p > q − 1.

3. Proof of the Theorem

We consider for n > 3 the functions φ1, φ2 : Cn → R defined by

φ1(z) = σ1(z) + σ1(z)
2 +N‖z‖4 −

1

4
‖z‖2,

φ2(z) = −σ1(z) + σ1(z)
2 +N‖z‖4 −

1

4
‖z‖2,

where σ1(z) = Im(z1)+
∑n

i=3 |zi|
2−|z2|

2, z = (z1, z2, . . . , zn), and N > 0 a positive constant.
Then, if N is large enough, the functions φ1 and φ2 are (n − 1)-convex on Cn and, if ρ =
Max (φ1, φ2), then, for εo > 0 small enough, the set Dεo = {z ∈ Cn : ρ(z) < −εo} is relatively
compact in the unit ball B = B(0, 1), if N is sufficiently large. This is a special case of
an example given and utilized by Diederich and Fornaess in a different context (see [3]).

Proposition 1. In the situation described above for every coherent analytic sheaf F

on Dεo , the cohomology groups Hp(Dεo ,F ) vanish for all p > n− 1.

⊳ We consider the set A of all real numbers ε > εo such that Hn−1(Dε,F ) = 0, where
Dε = {z ∈ Cn : ρ(z) < −ε}. To prove Proposition 1, it will be sufficient to show that:

(a) A 6= ∅ and, if ε ∈ A and ε′ > ε, then ε′ ∈ A;
(b) if εj ց ε and εj ∈ A for all j, then ε ∈ A;
(c) if ε ∈ A, ε > εo, there exists εo 6 ε′ < ε such that ε′ ∈ A.

We first prove (a). Choose ε1 > εo such that

−ε1 < Infz∈∂Dεo
{φi(z), i = 1, 2},
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and set Di = {z ∈ Dεo : φi(z) < −ε} for ε > ε1. Then, if Dε is not empty, the sets
Di ⊂⊂ Dεo are clearly (n − 1)-complete, since −1

φi+ε
is a (n − 1)-convex exhaustion function

on Di. Therefore, using the exact sequence of cohomology associated to the Mayer–Vietoris
sequence

→ Hn−1(D1,F ) ⊕Hn−1(D2,F ) → Hn−1(Dε,F ) → Hn(D1 ∪D2,F ) →

one obtains Hn−1(Dε,F ) = 0 and, obviously [ε1,+∞[⊂ A.
To complete the proof of assertion (a), we remark at first that if ε > εo, then

dimCH
n−1(Dε,F ) < ∞. In fact, choose finitely many Stein open sets Ui ⊂⊂ Dεo ,

i = 1, . . . , k, such that ∂Dε ⊂
⋃k

i=1 Ui. Let θj ∈ C∞

o (Uj ,R
+) such that

∑k
j=1 θj(x) > 0

at any point x ∈ ∂Dε. Let also ci > 0 be sufficiently small constants such that the functions
φi −

∑j
i=1 ciθi are (n − 1)-convex for i = 1, 2 and 1 6 j 6 k. We now define the continuous

functions ρj : C
n → R by

ρj = ρ−

j∑

i=1

ciθi, j = 1, . . . , k.

Then ρj are (n − 1)-convex with corners and, if Dj = {z ∈ Dεo : ρj(z) < −ε}, j = 1, . . . , k,
and Do = Dε, then Do ⊂ D1 ⊂ · · · ⊂ Dk, Do ⊂⊂ Dk ⊂⊂ Dεo and Dj \ Dj−1 ⊂⊂ Uj for
j = 1, . . . , k. Moreover, we claim that Hn−1(Dj ∩ Ul,F ) = 0 for 0 6 j 6 k, 1 6 l 6 k.
In fact, since Dj ∩Ul can be written in the form Dj ∩Ul = B1,j ∩B2,j, where Bi,j = {z ∈ Ul :

φi −
∑j

r=1 crθr < −ε}, i = 1, 2, is (n − 1)-complete, because Ul is Stein and φi −
∑j

r=1 crθr
is (n− 1)-convex in Ul, then from the Mayer–Vietoris sequence

→ Hn−1(B1,j ,F ) ⊕Hn−1(B2,j ,F ) → Hn−1(Dj ∩ Ul,F ) → Hn(B1,j ∪B2,j,F ) →

it follows that Hn−1(Dj ∩ Ul,F ) = 0. Now using the Mayer–Vietoris sequence

→ Hn−1(Dj ,F ) → Hn−1(Dj−1,F ) ⊕Hn−1(Dj ∩ Uj ,F ) → Hn−1(Dj−1 ∩ Uj ,F ) →

and noting that Hn−1(Dj ∩ Uj ,F ) = Hn−1(Dj−1 ∩ Uj ,F ) = 0 for all 1 6 j 6 k, we find
that Hn−1(Dk,F ) → Hn−1(Dε,F ) is surjective. It follows from Theorem 11 of [1] that
dimCH

n−1(Dε,F ) <∞.
Let now ε ∈ A and ε′ > ε. Then Dε′ ⊂⊂ Dε is n-Runge in Dε. Indeed, if K ⊂ Dε′

is a compact set, there exists a (n − 1)-convex exhaustion function ψi ∈ C∞(B), such that
K ⊂ {ψi < 0} ⊂⊂ Di = {z ∈ B : φi(z) < −ε′}, i = 1, 2 because Di is obviously (n−1)-Runge
in B, the function φi being (n − 1)-convex and B is Stein. Then a suitable smooth n-convex
approximation of Max (ψ1, ψ2) [4] shows that Dε′ is n-Runge in Dε. We deduce from [3] that
Dε \Dε′ has no compact connected components and, therefore the restriction map

Hn−1(Dε,F ) −→ Hn−1(Dε′ ,F )

has dense image. This proves that Hn−1(Dε′ ,F ) = 0 and ε′ ∈ A.
The proof of statement (c) will result from two lemmas.
We now put ψi,j = φi −

∑j
i=1 ciθi, ψi,o = φi, i = 1, 2, 1 6 j 6 k, and define the

open sets Dj,i, as follows D1,o = {φ1 < −ε, φ2 < −ε}, D1,1 = {ψ1,1 < −ε, φ2 < −ε},
D1,2 = {ψ1,1 < −ε, ψ2,1 < −ε}. And for 2 6 j 6 k we set Dj,o = {ψ1,j−1 < −ε, ψ2,j−1 < −ε},
Dj,1 = {ψ1,j < −ε, ψ2,j−1 < −ε}, Dj,2 = {ψ1,j < −ε, ψ2,j < −ε}. Obviously, D1,o = Do and
Dj,2 = Dj+1,o = Dj for 1 6 j 6 k. Therefore Do = D1,o ⊂ D1,1 ⊂ D1,2 = D2,o ⊂ · · · ⊂ Dk,o ⊂
Dk,1 ⊂ Dk,2 = Dk.
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Lemma 1. The restriction map Hn−2(Dj+1,F ) → Hn−2(Dj ,F ) has a dens image for

all 0 6 j 6 k − 1.

⊳ It is clear that it is sufficient to show that the restriction map

Hn−2(Dj+1,1,F ) −→ Hn−2(Dj ,F )

has a dense image. We have Dj ∩Uj+1 = B1,j ∩B2,j and Dj+1,1∩Uj+1 = B1,j+1∩B2,j , where
Bi,j = {z ∈ Uj+1 : ψi,j < −ε}, i = 1, 2, and B1,j+1 = {z ∈ Uj+1 : ψ1,j+1(z) < −ε}. Note also
that Bi,j are (n− 1)-complete and (n− 1)-Runge in the Stein set Uj+1. Also it is easy to see
that B1,j is (n− 1)-Runge in B1,j+1, which shows that the restriction map

Hn−2(B1,j+1,F ) −→ Hn−2(B1,j ,F )

has a dense range. Moreover, we can choose the open sets Ui, 1 6 i 6 k, so that Uj+1 \ (B1,j ∪
B2,j) has no compact connected components, which implies according to [4] that for every
coherent analytic sheaf G on Uj+1, the restriction map

Hn−1(B1,j+1 ∪B2,j,G ) −→ Hn−1(B1,j ∪B2,j,G )

has also a dense image. Now consider the following commutative diagrams given by the Mayer–
Vietoris sequence for cohomology

→ Hn−2(B1,j+1,F )⊕Hn−2(B2,j ,F )→Hn−2(Dj+1,1 ∩ Uj+1,F ) →Hn−1(B1,j+1 ∪B2,j ,F )→0

↓ ρ1 ⊕ id ρ2 ↓ ρ3 ↓

→ Hn−2(B1,j ,F ) ⊕Hn−2(B2,j ,F ) → Hn−2(Dj ∩ Uj+1,F )
u
→ Hn−1(B1,j ∪B2,j ,F ) → 0.

Since u is surjective, then u is open by Lemma 3.2 of [2] and, since ρ1⊕ id and ρ3 have dense
image, it follows that ρ2 has also a dense image.

Now since Supp θj ⊂ Uj, j = 1, . . . , k, thenDj,i+1\Dj,i ⊂⊂ Uj andDj,i+1 = Dj,i∪(Dj,i+1∩
Uj). So the Mayer–Vietoris sequence for cohomology gives the exactness of the sequence
· · · → Hn−2(Dj+1,1,F ) → Hn−2(Dj ,F )⊕Hn−2(Dj+1,1∩Uj+1,F ) → Hn−2(Dj∩Uj+1,F ) →
Hn−1(Dj+1,1,F ) → . . . Since Hn−2(Dj+1,1 ∩ Uj+1,F ) → Hn−2(Dj ∩ Uj+1,F ) has a dense
image and dimCH

n−1(Dj+1,1,F ) < ∞, then in view of the proof of Theorem 11 of [1] the
restriction map

Hn−2(Dj+1,1,F ) → Hn−2(Dj ,F )

has also a dense image. ⊲

Lemma 2. Suppose that ε ∈ A. Then there is εo 6 ε′ < ε such that ε′ ∈ A.

⊳ Let V = (Vi)i∈N be an open covering of Dεo with a fundamental system of Stein
neighborhoods of Dεo such that if Vio ∩ · · · ∩ Vir 6= ∅ and Vio ∪ · · · ∪ Vir ⊂ Dj+1, then
Vio ∪ · · · ∪ Vir ⊂ Dj or Vio ∪ · · · ∪ Vir ⊂ Uj+1 ∩Dj+1.

We first show that Hn−1(Dk,F ) = 0. We shall prove it assuming that it has already been
proved for j < k. For this, we consider the Mayer–Vietoris sequence for cohomology

→ Hn−2(Dj ,F ) ⊕Hn−2(Dj+1 ∩ Uj+1,F )
r∗
→ Hn−2(Dj ∩ Uj+1,F )

j∗

→ Hn−1(Dj+1,F )
ρ∗

→ .

Let ξ be a cocycle in Zn−1(V |Dj+1
,F ) and let ρ(ξ) be its restriction to a cocycle in

Zn−1(V |Dj
,F ). Since ρ(ξ) is a coboundary by induction and Hn−1(Dj+1 ∩ Uj+1,F ) = 0,

from the Mayer–Vietoris sequence, it follows that there exist

η ∈ Zn−2(V |Dj∩Uj+1
,F ) and µ ∈ Cn−2(V |Dj+1

,F ),
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such that ξ = j(η) + δµ. There exists a sequence {ηn} ⊂ Zn−2(V |Dj+1∩Uj+1
,F ) with r(ηn)−

η → 0, when n→ ∞. This is possible because Zn−2(V |Dj+1∩Uj+1
,F ) → Zn−2(V |Dj∩Uj+1

,F )
has a dense range. Now choose a sequence {γn} ⊂ Cn−2(V |Dj+1,F ) such that j(r(ηn)) = δγn.
Then

ξ − δµ − δγn = j(η − r(ηn)).

This proves that δµ + δγn converges to ξ when n → ∞. Since dimCH
n−1(Dj+1,F ) <∞,

then the coboundary space Bn−1(V |Dj+1
,F ) is closed in Zn−1(V |Dj+1

,F ). Therefore
ξ ∈ Bn−1(V |Dj+1

,F ) and Hn−1(Dj ,F ) = 0 for all 0 6 j 6 k. On the other hand, there
exists ε′ > 0 such that ε− ε′ > εo and Dε−ε′ = {z ∈ Dεo : ρ(z) < ε′ − ε} ⊂⊂ Dk.

Since Hn−1(Dk,F ) → Hn−1(Dε−ε′ ,F ) has a dense image, Hn−1(Dk,F ) = 0 and
dimCH

n−1(Dε−ε′ ,F ) <∞, then Hn−1(Dε′−ε′ ,F ) = 0. Whence ε− ε′ ∈ A. ⊲

In order to prove statement (b), it is sufficient to show that if εj ց ε and εj ∈ A for all j,
then

Hn−2(Dεj+1
,F ) −→ Hn−2(Dεj ,F )

has dense image (Cf. [1, p. 250]). To complete the proof of Proposition 1, it is therefore enough
to prove the following lemma.

Lemma 3. The restriction map Hn−2(Dεo ,F ) → Hn−2(Dε,F ) has dense image for every

real number ε > εo.

⊳ We consider the set T of all ε > εo, such that Hn−2(Dε,F ) → Hn−2(Dε1 ,F ) has dense
image for every real number ε1 > ε.

To see that T 6= ∅, we choose ε > εo, such that −ε < MinDεo
{φi(z), i = 1, 2}, and let

ε1 > ε. If Dε1 is not empty, Di = {z ∈ B : φi(z) < −ε1} and D′

i = {z ∈ B : φi(z) < −ε} are
relatively compact in Dεo , (n − 1)-complete and (n − 1)-Runge in B. Moreover, Di ⊂⊂ D′

i

is clearly (n − 1)-Runge in D′

i. Therefore Hn−2(D′

i,F ) → Hn−2(Di,F ) has dense image for
i = 1, 2. Also it is easy to see that Dε0 \D1∪D2 has no compact connected component, which
means that D1 ∪ D2 is n-Runge in Dε0 , or equivalently for every coherent analytic sheaf G

on Dε0 , the restriction homomorphisms

Hn−1(D′

1 ∪D2,F ) → Hn−1(D1 ∪D2,F ) and Hn−1(D′

1 ∪D
′

2,F ) → Hn−1(D′

1 ∪D2,F )

have dense images. Consequently we can show exactly as in Lemma 1 that if Dε,1 =
D′

1 ∩ D2, then we have the density of the image of the restriction maps Hn−2(Dε,1,F ) →
Hn−2(Dε1 ,F ), and Hn−2(Dε,F ) → Hn−2(Dε,1,F ). This proves that ε ∈ T and, clearly
[ε,+∞[⊂ T .

Let now εj ∈ T , j > 0, such that εj ց ε, and let U = (Ui)i∈I be a Stein open covering
of Dεo with a countable base of open subsets of Dεo . Then the restriction map between
spaces of cocycles Zn−2(U |Dεj+1

,F ) → Zn−2(U |Dεj
,F ) has dense image for j > 0. Let

ε′ > ε and j ∈ N, such that ε′ > εj . By [1, p. 246], the restriction map Zn−2(U |Dε ,F ) →
Zn−2(U |Dεj

,F ) has dense image. Since εj ∈ T , then Zn−2(U |Dεj
,F ) → Zn−2(U |Dε′

,F )
has also dense image, and hence ε ∈ T .

To prove that T is open in [εo,+∞[ it is sufficient to show that if ε ∈ T , ε > εo, then there is
εo < ε′ < ε, such that ε′ ∈ T . But this can be done in the same way as in the proof of Lemma 1.
We consider a finite covering (Ui)16i6k of ∂Dε by Stein open sets Ui ⊂⊂ Dεo and compactly
supported functions θi ∈ C∞

o (Ui), θj > 0, j = 1, . . . , k, such that
∑k

i=1 θi(x) > 0 at any point

of ∂Dε. Define Dj = {z ∈ Dεo : ρj(z) < −ε}, where ρj(z) = Max(φ1 −
∑j

1 ciθi, φ2 −
∑j

1 ciθi)
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with ci > 0 sufficiently small so that ψi,j = φi −
∑j

1 ciθi are still (n − 1)-convex for i = 1, 2
and 1 6 j 6 k. By Lemma 1, the restriction map

Hn−2(Dk,F ) −→ Hn−2(Dε,F )

has dense image. Since ρ is proper and Dε ⊂⊂ Dk, there exists εo < ε′ < ε, such that
Dε ⊂⊂ Dε′ ⊂⊂ Dk. Then obviously the restriction

Hn−2(Dε′ ,F ) −→ Hn−2(Dε,F )

has dense range, and hence ε′ ∈ T, which completes the proof of Lemma 3. ⊲

We have shown that Dε0 is cohomologically (n− 1)-complete. We are now going to prove
that for a good choice of the contants ε0 and N , introduced in Proposition 1, we can find
a constant ε > ε0 such that Dε is cohomologically (n− 1)-complete but not (n− 1)-complete.

In fact, it was shown by Diederich–Fornaess [4] that if δ > 0 is small enough, then the
topological sphere

Sδ =

{
z ∈ Cn : x21 + |z2|

2 + · · ·+ |zn|
2 = δ, y1 = −

n∑

i=3

|zi|
2 + |z2|

2

}

is not homologous to 0 in Dε0 . This follows from the fact that the set E = {z ∈ Cn : x1 =
z2 = . . . = zn = 0} does not intersect Dε0 , since on E

ρ(z) = Max

(
y1 +

3

4
y21 +Ny41,−y1 +

3

4
y21 +Ny41

)
> 0.

So the following real form of degree 2n − 2

ω =

(
n∑

i=1

x2i +
n∑

i=2

y2i

)−2n+1( n∑

i=1

(−1)ixidx1 ∧ . . . d̂xi ∧ · · · ∧ dxn ∧ dy2 ∧ · · · ∧ dyn

+

n−1∑

i=1

(−1)n+iy1+idx1 ∧ · · · ∧ dxn ∧ dy2 ∧ · · · ∧ d̂y1+i ∧ · · · ∧ dyn

)

is well-defined and d-closed on Dε0 . Since ω does not depend on y1, then by the standard
argument

∫
Sδ
ω 6= 0. Therefore Sδ is not homologous to 0 in Dε0 .

Let Eq be the sheaf of germs of C∞ q-forms on Cn and Tq the sheaf of germs of C∞

d-closed q-forms. Then we have an exact sequence of sheaf homomorphisms

0 → Tq → Eq
d
→ Tq+1 → 0.

Since by the de Rham theorem for every p > 1, the cohomology group Hp(Dε0 ,C) is
isomorphic to {

ω ∈ Γ(Dε0 ,Eq) : df = 0
}

{
dω : ω ∈ Γ(Dε0 ,Eq−1)

} ,

it follows from Stockes formula that H2n−2(Dε0 ,C) does not vanish.

We are going to show that Hr(Dε0 ,ODε0
) = 0 for all r with 1 6 r 6 n− 3.
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We first assert that we can choose N , ε0 and ε > ε0 such that, if with the notations of
Proposition 1 we set

σ1(z) = Im z1 +
n∑

i=3

|zi|
2 − |z2|

2, ψ(z) = N‖z‖4 −
1

4
‖z‖2 + ε0,

ρ(z) = |σ1(z)|+ σ1(z)
2 + ψ(z) − ε0,

then we obtain
Dε =

{
z ∈ Dε : m+M < φ(z) < ε0 − ε

}
,

where m = Minz∈Dε0
ψ(z), M = Maxz∈Dε0

ψ(z) and φ(z) = σ1(z) + σ1(z)
2 +m.

In fact, we can choose ε > ε0 sufficiently big and λ > 0 small enough so that ε0−ε < m−M ,
m < (1 + λ). Minz∈Dε

ψ(z) and λε− (1 + λ)ε0 > 0.

On the other hand, if δ = Minz∈Dε0
‖z‖2, then we have

0 < δ 6 ‖z‖2 <
1

4N
−
ε0

N
for every z ∈ Dε0 .

Therefore by suitable choice of ε0, ε and N we can also achieve that
(
N‖z‖4 −

1

4
‖z‖2

)
−Minz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
< Min

(
ε− ε0

2
, λε− (1 + λ)ε0

)
,

and

Maxz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
−

(
N‖z‖4 −

1

4
‖z‖2

)
< Min

(
ε− ε0

2
, λε− (1 + λ)ε0

)

for every z ∈ Dε.

Because ψ(z) < ε0 − ε on Dε, then clearly we obtain

φ(z) = σ1(z) + σ1(z)
2 +m < σ1(z) + σ1(z)

2 + (1 + λ)ψ(z)) < (1 + λ)(ε0 − ε), z ∈ Dε.

Moreover,

φ(z) = m− (ψ(z) + ε− ε0) > m+M, when z ∈ ∂Dε and σ1(z) > 0.

Furthermore, if z ∈ ∂Dε and σ1(z) < 0, then

−σ1(z) + σ1(z)
2 +M = −σ1(z) + σ1(z)

2 +

(
N‖z‖4 −

1

4
‖z‖2

)
+M −

(
N‖z‖4 −

1

4
‖z‖2

)
.

Hence

−σ1(z)+σ1(z)
2+M = −ε+ε0+Maxz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
−

(
N‖z‖4 −

1

4
‖z‖2

)
<
ε0 − ε

2
.

This implies that σ1(z) > σ1(z)
2 +M + ε−ε0

2 and, therefore

φ(z) > 2σ1(z)
2 +m+M +

ε− ε0

2
> m+M,

when z ∈ Dε and σ1(z) < 0, which shows that

Dε =
{
z ∈ Dε : m+M < φ(z) < ε0 − ε

}
.
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We are now going to show that for every none-positive real numbers α, β with m+M <

α < β < ε0 − ε, the open sets

Bα,β = {z ∈ Dε : α < φ(z) < β}

are relatively compact in Dε.
To see this, we consider a sequence (zj)j>0 ⊂ Bα,β which converges to a point z ∈ Dε.

Suppose first that σ1(z) > 0. Then one has for every sufficiently large integer j

ρ(zj) = σ1(zj) + σ1(zj)
2 +N‖zj‖

4 −
1

4
‖zj‖

2 < −ε.

Since
φ(zj) < ε0 − ε+ λψ(zj) < (1 + λ)(ε0 − ε)

and

N‖zj‖
4 −

1

4
‖zj‖

2 −Minz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
< λε− (1 + λ)ε0,

then

ρ(zj) = φ(zj) +N

(
‖zj‖

4 −
1

4
‖zj‖

2

)
−m < ε0 − ε+ λψ(zj) + λε− (1 + λ)ε0.

A passage to the limit shows that

ρ(z) 6 ε0 − ε+ λψ(z) + λε− (1 + λ)ε0 < (1 + λ)(ε0 − ε) + λε− (1 + λ)ε0 = −ε,

because ψ(z) < ε0 − ε, which implies that z ∈ Dε.
If now σ1(z) < 0 and z ∈ ∂Dε, then σ1(z) > σ1(z)

2 +M + ε−ε0
2 . Therefore

ρ(z) < −M +
ε0 − ε

2
+N‖z‖4 −

1

4
‖z‖2 −Minz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
+m− ε0.

In order to have the inequality

−M +
ε0 − ε

2
+N‖z‖4 −

1

4
‖z‖2 −Minz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
+m− ε0 < −ε

it suffices to have m−M − ε0 < −ε, since

N‖z‖4 −
1

4
‖z‖2 −Minz∈Dε0

(
N‖z‖4 −

1

4
‖z‖2

)
<
ε− ε0

2
.

As this condition is satisfied, we conclude that with such a choice of ε0, N and ε the limit
z ∈ Dε, and hence the open set

Bα,β =
{
z ∈ Dε : α < φ(z) < β

}

is relatively compact in Dε for all real numbers α, β, with m < α < β < ε0 − ε.
Now since φ is in addition 3-convex, then a similar proof of theorem 15 of [1] shows

that, if Ωi is the sheaf of germs of holomorphic i-forms on Cn, i > 0 (Ω0 = OCn), and
Bc = {z ∈ Dε : φ(z) < c} for c 6 ε0 − ε, then the map

Hr(Dε,Ω
i) −→ Hr(Dε \Bc,Ω

i)
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is injective for every r < n−2 and c < ε0−ε. Then obviously Hr(Dε,Ω
i) = 0 for 1 6 r 6 n−3

and i > 0. In fact, let c0 = Maxz∈Dε
φ(z). Then there exists z1 ∈ ∂Dε such that φ(z1) = c0.

Since c0 = φ(z1) = σ1(z1) + σ1(z1)
2 +m < ρ(z1) + ε0 6 ε0 − ε, then Bc0 = Dε, and hence

Hr(Dε,Ω
i) = 0 for 1 6 r 6 n− 3.

We now consider the resolution of the constant sheaf C on Dε

0 → C → O
d
→ Ω1 d

→ · · · →
d
→ Ωn → 0.

If we set Zj = Im
(
Ωj−1 d

→ Ωj
)

for 1 6 j 6 n− 1, then we get short exact sequences

0 → C → O → Z1 → 0

............................................

0 → Zj → Ωj → Zj+1 → 0

.............................................

0 → Zn−2 → Ωn−2 → Zn−1 → 0

0 → Zn−1 → Ωn−1 → Ωn → 0.

Since, by Proposition 1, Dε is cohomologically (n − 1)-complete, then Hr(Dε,Ω
i) = 0 for all

r > n− 1 and i > 0. So we obtain the isomorphisms

Hn−1(Dε, Z
n−1) ∼= . . . ∼= H2n−3(Dε, Z

1) ∼= H2n−2(Dε,C)

and the exact sequence

· · · → Hn−2(Dε,Ω
n) → Hn−1(Dε, Z

n−1) → Hn−1(Dε,Ω
n−1) = 0.

We deduce that the map
Hn−2(Dε,Ω

n)
ϕ
→ H2n−2(Dε,C)

is surjective. The map ϕ is defined as follows: If a differential form ω ∈ C∞

n,n−2(Dε) satisfies

the equation ∂ω = 0, then ω is also d-closed and therefore defines a cohomology class in
H2n−2(Dε,C).

Moreover, since, by [6], every d-closed differential form ω ∈ C∞

n,n−2(Dε) is cohomologous to

a ∂-closed (n, n− 2) differential form ω′ ∈ C∞

n,n−2(Dε), it follows that the map

Hn−2(Dε,Ω
n)

ϕ
→ H2n−2(Dε,C)

is bijective.
Now, if we suppose that Dε is (n − 1)-complete, then there exists a C∞ strictly (n − 1)-

convex function ψ : Dε → R, such that Dε,c = {z ∈ Dε : ψ(z) < c} is relatively compact
in Dε for every c ∈ R.

Notice that for the given ε, if δ > 0 is small enough, the topological sphere

Sδ =
{
z ∈ Cn : x21 + |z2|

2 + · · ·+ |zn|
2 = δ, σ1(z) = 0

}
⊂ Dε.

Since ψ is exhaustive on Dε, there exists c′ > 0, such that Sδ is not homologuous to 0
in Dε,c′. Let c > c′. Then Dε,c and Dε,c′ are (n − 1)-complete and, similarly Hp(Dε,c,Ω

i) =
Hp(Dε,c′ ,Ω

i) = 0 for 1 6 p 6 n − 3 and i > 0. Also the maps Hn−2(Dε,c,Ω
n) →

H2n−2(Dε,c,C) and Hn−2(Dε,c′ ,Ω
n) → H2n−2(Dε,c′ ,C) are bijective. Moreover, since the
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levi form of ψ has at least 2 strictly positive eingenvalues, then by using Morse theory (see
for instance [7]) we find that

H2n−2(Dε,c,C) ∼= H2n−2(Dε,c′ ,C).

It follows from the commutative diagram of continuous maps

Hn−2(Dε,c,Ω
n) → H2n−2(Dε,cC)

↓↓

Hn−2(Dε,c′ ,Ω
n) → H2n−2(Dε,c′,C)

that the restriction homomorphism

Hn−2(Dε,c,Ω
n) → Hn−2(Dε,c′ ,Ω

n)

is bijective. Since in addition Dε,c′ is relatively compact in Dε,c, the function ψ being
exhaustive on Dε, then, according to theorem 11 of [1], one obtains

dimCH
n−2(Dε,c′ ,Ω

n) <∞.

Since the sheaf Ωn is isomorphic to ODε , then we have also dimCH
n−2(Dε,c′ ,ODε) < ∞.

Furthermore, since Dε,c′ is cohomologically (n − 1)-complete and Hr(Dε,ODε) = 0 for
1 6 r 6 n− 3, it follows from Theorem 1 of [8] that Dε,c′ is Stein, which is in contradiction
with the fact that H2n−2(Dε,c′ ,C) 6= 0, since Sδ ⊂ Dε,c′ is not homologous to 0 in Dε,c′ . We
conclude that Dε is cohomologically (n− 1)-complete but not (n− 1)-complete.
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1. Andreotti, A. and Grauert, H. Théorèmes de Finitude Pour la Cohomolgie des Espaces Complexes,
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КОНТРПРИМЕР К ГИПОТЕЗЕ АНДРЕОТТИ — ГРАУЭРТА
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Марокко, BP 6202, Рабат
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Аннотация. В 1962 г. Андреотти и Грауэрт показали, что любое q-полное комплексное простран-
ство X когомологически q-полно, т. е. для любого когерентного аналитического пучка F на X группа
когомологии Hp(X,F ) исчезает при p > q. С тех пор вопрос о том, верно ли обратное утверждение,
является предметом обширных исследований, в ходе которых появились и другие специальные предпо-
ложения. До сих пор неизвестно, являются ли эти два утверждения эквивалентны. Используя тестовые
классы когомологий было показано, что если X — многообразие Стейна, а D ⊂ X — открытое множество
с C2 границей, причем Hp(D,OD) = 0 для всех p > q, то D является q-полным. Цель настоящей ста-
тьи — дать контрпример к гипотезе Андреотти и Грауэрта 1962 г., показывающий, что когомологически
q-полное пространство не обязательно является q-полным. Точнее мы показали, что для любого n > 3
существует открытое множество Ω ⊂ Cn такое, что для всех F ∈ coh(Ω), группы когомологий Hp(Ω,F )
исчезают для всех p > n− 1, но Ω не является (n− 1)-полным.

Ключевые слова: q-выпуклая функция, q-выпуклая функция с углами, q-полное пространство,
когомологически q-полное пространство, пространство q-Рунге.
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