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1. Introduction

In 1962, A. Andreotti and H. Grauert [1] showed finiteness and vanishing theorems for
cohomology groups of analytic spaces under geometric conditions of g-convexity. Since then
the question whether the reciprocal statements of these theorems are true have been subject to
extensive studies, where for ¢ > 1 more specific assumptions have been added. For example, it
is known from the theory of Andreotti-Grauert [1] that a g-complete complex space is always
cohomologically g-complete, but it is not known if these two conditions are equivalent except
when X is a Stein manifold, 2 C X is cohomologically g-complete with respect to Oq and 2
has a smooth boundary [2].

The aim of the present article is to give a counterexample to the conjecture posed by
Andreotti and Grauert 1] to show that a cohomologically g-complete space is not necessarily
g-complete.

More precisely we will show

Theorem 1. For each integer n > 3, there is a domain ) C C™ which is cohomologically
(n — 1)-complete but ) is not (n — 1)-complete.

© 2022 Alaoui, Y.
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2. Preliminaries

Let ¢ be a real valued function in C*°(£2), where €2 is an open set in C" with complex

?¢(2)
8z¢8zj

coordinates z1,...,2,. Then we say that ¢ is g-convex if its complex Hessian < >
1<i,j<n

has at most ¢ — 1 negative or zero eingenvalues for every z € Q.
A function p € C°(Q,R) is said to be g-convex with corners, if every point of  admits
a neighborhood U on which there exist finitely many ¢-convex functions ¢, ..., ¢; such that

plv = Max (¢1,...,¢).
The open set € is called g-complete if there exists a smooth g-convex exhaustion function

on 2.

We say that 2 is cohomologically g-complete, if for every coherent analytic sheaf .% on ,
the cohomology group HP (), #) =0 for all p > q.

Finally, an open subset D of €2 is called ¢g-Runge, if for each compact set K C 2, there is
a g-convex exhaustion function ¢ € C*°(2) such that

Kc{zeQ:¢(z) <c}ccD.

It is known from [1] that if D is ¢g-Runge in €, then for every coherent analytic sheaf
F € coh(Q), the restriction map HP(Q2,.%) — HP(D,.%) has dense image for all p > ¢ — 1,
or equivalently, for every open covering % = (U;);cs of 2 with a fundamental system of Stein
neighborhoods of §2, the restriction map between spaces of cocycles

U, F) — 2" |p, F)

has dense range for p > ¢ — 1.

3. Proof of the Theorem

We consider for n > 3 the functions ¢1, ¢s : C" — R defined by

61(2) = 01(2) + 01 (22 + NJell* = 711,

¢2(2) = —01(2) + 01(2)” + N|z|* ~ inH?,

where o1(2) = Im(z1) + > 15 |2i|* — |22/%, 2 = (21, 22, ..., 2n), and N > 0 a positive constant.
Then, if N is large enough, the functions ¢; and ¢9 are (n — 1)-convex on C" and, if p =
Max (¢1, ¢2), then, for g, > 0 small enough, the set D., = {2z € C" : p(z) < —&,} is relatively
compact in the unit ball B = B(0,1), if N is sufficiently large. This is a special case of
an example given and utilized by Diederich and Fornaess in a different context (see [3]).

Proposition 1. In the situation described above for every coherent analytic sheaf %
on D.,, the cohomology groups HP(D,,,.#) vanish for all p > n — 1.

<1 We consider the set A of all real numbers £ > ¢, such that H"1(D.,.%) = 0, where
D. ={ze€C": p(z) < —e}. To prove Proposition 1, it will be sufficient to show that:

(a) A# @ and, if e € A and &’ > ¢, then &’ € 4;

(b) if e \y e and €; € A for all j, then € € A;

(c)if e € A, £ > &,, there exists ¢, < &/ < € such that £ € A.
We first prove (a). Choose €1 > ¢, such that

—e1 <Inf,eop. {¢i(2), i=1,2},
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and set D; = {z € D, : ¢i(z) < —¢} for € > ¢;. Then, if D, is not empty, the sets
D; cC D., are clearly (n — 1)-complete, since @_—is is a (n — 1)-convex exhaustion function
on D;. Therefore, using the exact sequence of cohomology associated to the Mayer—Vietoris
sequence

— H" YD, 7)o H"Y(Dy,.7) - H"Y(D.,.7) — H" (D, U Dy, F) —

one obtains H"~!(D.,.#) = 0 and, obviously [g1, +00[C A.

To complete the proof of assertion (a), we remark at first that if ¢ > &,, then
dime¢ H"Y(D.,.#) < oo. In fact, choose finitely many Stein open sets U; CcC D.,,
i =1,...,k such that 9D, C U5, U. Let 0; € C°(U;,R*) such that Y5, 0;(x) > 0
at any point x € dD,.. Let also ¢; > 0 be sufficiently small constants such that the functions
i — Z{Zl ¢if; are (n — 1)-convex for i = 1,2 and 1 < j < k. We now define the continuous
functions p; : C" — R by

J
pi=p— b j=1... .k
=1

Then p; are (n — 1)-convex with corners and, if D; = {2z € D, : p;j(2) < —€}, j=1,...,k,
and D, = D, then D, C D; C --- C Dy, D, CC Dy CC D,, and D; \ Dj_; CC Uj for
j =1,...,k. Moreover, we claim that H"_l(Dj NU,Z)=0for 0 <j<k 1<I<Ek
In fact, since D; NU; can be written in the form D; NU; = By jN By j, where B; j = {z € U; :
o; — Zi:l ¢l < —e},i=1,2,is (n — 1)-complete, because U; is Stein and ¢; — Z£=1 ¢,
is (n — 1)-convex in Uj, then from the Mayer—Vietoris sequence

— H""Y(By;,F)® H" By, 7) - H" Y (D;NU,,F) = H"(B1; U B, 7) —
it follows that H"_l(Dj NU;, #) = 0. Now using the Mayer—Vietoris sequence
— H""YDj, F) - H" Y (D;_,F)&® H* Y(D; NU;,.F) - H" Y(D;_1 N U;,7) —

and noting that H" (D; NU;,. %) = H"" Y(D;j_1NU;,#) = 0 for all 1 < j < k, we find
that H" Y(Dy,.#) — H" Y D.,.#) is surjective. It follows from Theorem 11 of [1] that
dim¢ H" Y(D., F) < .

Let now ¢ € A and ¢ > . Then D., CC D, is n-Runge in D.. Indeed, if K C D
is a compact set, there exists a (n — 1)-convex exhaustion function ¢; € C°(B), such that
K c{y;<0}cc D;,={z€ B: ¢i(z) < —¢'},i=1,2 because D; is obviously (n—1)-Runge
in B, the function ¢; being (n — 1)-convex and B is Stein. Then a suitable smooth n-convex
approximation of Max (11,12) [4] shows that D,/ is n-Runge in D.. We deduce from [3| that
D\ D. has no compact connected components and, therefore the restriction map

H"YD.,#) — H" " YD.,.7)

has dense image. This proves that H" }(D.,,.#) = 0 and ¢’ € A.

The proof of statement (c) will result from two lemmas.

We now put ¢;; = ¢; — >0 ¢ibi, Yio = ¢iy @ = 1,2, 1 < j < k, and define the
open sets Dj;, as follows Dy, = {¢1 < —¢, ¢p2 < —¢€}, D1g = {¢11 < —¢, ¢p2 < —¢},
DLQ = {wl,l < —¢, ¢2,1 < —8}. And for 2 < j < k we set Dj70 = {1/1173‘_1 < —¢, ¢2,j—1 < —E},
Dj,l = {T/)l,j < —g, 1/)24;1 < —6}, D]”Q = {¢17j < —g, ¢27j < —6}. Obviously, Dl,o = D, and
Dj72 = Dj+1,o = Dj for 1 < j < k. Therefore D, = Dl,o C D171 C DLQ = D270 c---C Dk,o C
Dk71 - Dk72 = Dy.
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Lemma 1. The restriction map H" 2(Dj11,.-#7) — H"?(D;, #) has a dens image for
al0 <y <k—1.

< It is clear that it is sufficient to show that the restriction map
H" *(Dj11,7) — H" (D}, 7)

has a dense image. We have D; NUj;41 = By ;N By j and Dj 1,1 NUj41 = By j4+1 N By, where
Bi,j = {Z S Uj+1 : ¢i,j < —6}, i1=1,2, and B17j+1 = {Z S Uj+1 : 1/)1J+1(Z) < —6}. Note also
that B; ; are (n — 1)-complete and (n — 1)-Runge in the Stein set Uj;1. Also it is easy to see
that By ; is (n — 1)-Runge in By j11, which shows that the restriction map

H" *(Byj1,.F) — H" *(By;,.7)

has a dense range. Moreover, we can choose the open sets U;, 1 < i < k, so that U1\ (B1; U
By ;) has no compact connected components, which implies according to [4] that for every
coherent analytic sheaf & on Uj1, the restriction map

Hnil(Bl,ijl U Bg,j,g) — Hnil(BLj U BQJ,%)

has also a dense image. Now consider the following commutative diagrams given by the Mayer—
Vietoris sequence for cohomology

— H""%(Byj11,.7) ® H" %(By,j, F) - H""*(Dj411 NUj11,.F) —H" '(Byj41UBsj, F)—0

ILpr@id p2 | p3
— H""2(By,;,7)® H""%(Bs;, #) - H" 2(D; NUj41, %) 5 H" Y (B UByj, F) — 0.

Since u is surjective, then u is open by Lemma 3.2 of [2] and, since p; @ id and p3 have dense
image, it follows that po has also a dense image.

Now since Supp 0]' cUj,j=1,...,k, then Dj7i+1\Dj,i CCUjand Dj ;11 = DjJ‘U(DjJ‘_Hﬂ
Uj;). So the Mayer—Vietoris sequence for cohomology gives the exactness of the sequence
cee = Hn72(Dj+171, ﬁ) — Hn72(Dj, ﬁ)@H”fQ(Dj_H,lﬂUj_i_l, 9) — Hn72(DjﬂUj+1, ﬁ) —
Hnil(Dj—f—l,lwg\) — ... Since Hn72(Dj+171 N Uj+1,§) — HniQ(Dj N Uj+1, 9) has a dense
image and dim¢ H" " *(Dj41,1,-F) < oo, then in view of the proof of Theorem 11 of [1] the
restriction map

H"*(Djs11,7) = H" (D;, F)
has also a dense image. >

Lemma 2. Suppose that € € A. Then there is €, < €' < € such that £’ € A.

< Let ¥ = (V;)ieny be an open covering of D, with a fundamental system of Stein
neighborhoods of D, such that if V;, N---NV; # @ and V;, U---UV; C Djyq, then
‘/ioU"'U‘/ir CD]' or V’Z’OU"'UV’Z'T C Uj+1ij+1.

We first show that H"~1(Dy,,.#) = 0. We shall prove it assuming that it has already been
proved for j < k. For this, we consider the Mayer—Vietoris sequence for cohomology

*

— Hn—Z(Dj,g) & Hn_z(DjJrl N Uj+1,g) r_*) Hn_z(Dj N Uj+1,g) J—*> Hn_l(DjJrl,y) 2y

Let € be a cocycle in Z"*(¥|p,,,,#) and let p(&) be its restriction to a cocycle in
Z" (¥ |p,, F). Since p(£) is a coboundary by induction and H* 1(D;y1 N Ujy1,.7) = 0,
from the Mayer—Vietoris sequence, it follows that there exist

ne Zn72(7/|Dijj+l?g) and € Cn72(7/|D F),

413



18 Alaoui, Y.

such that & = j(n) + 6p. There exists a sequence {n,} C Z" (¥ |p,,,nv,.,,F) with r(n,) —
1 — 0, when n — co. This is possible because Z"*(¥|p,,,rv,.1:F) = 2" *(¥|p,nU; 41> F)
has a dense range. Now choose a sequence {7, } C C"2(¥|Dj1, %) such that j(r(n,)) = 5yn.
Then

£ —0p—6vn = j(n —r(m)).

This proves that du + 6+, converges to & when n — oo. Since dimg H"_l(DjH,ﬁ) < 00,
then the coboundary space B" '(¥|p,,,,.#) is closed in Z""Y(¥|p,,,,F). Therefore
¢ e B (¥|p,.,,F) and H" 1(D;,#) = 0 for all 0 < j < k. On the other hand, there
exists ¢/ > 0 such that e — ¢’ > e, and D._o ={z € D, : p(z) <&’ —e} CC Dy.

Since H" Y(Dy,#) — H" Y(D._.,.%) has a dense image, H" (Dy,.#) = 0 and
dime¢ H" Y(D._./,.#) < oo, then H" (Do, ) =0. Whence ¢ — ¢’ € A. >

In order to prove statement (b), it is sufficient to show that if £; \, ¢ and ¢; € A for all j,
then

H" *(D,,,,7) — H"*(D,,,.7)

€j+17

has dense image (Cf. [1, p. 250]). To complete the proof of Proposition 1, it is therefore enough
to prove the following lemma.

Lemma 3. The restriction map H"2(D.,, #) — H" %(D.,.¥) has dense image for every

real number ¢ > ¢,.

<1 We consider the set T of all € > ¢,, such that H" 2(D.,.#) — H" %(D,,,.#) has dense
image for every real number g1 > ¢.

To see that T # &, we choose € > ¢,, such that —¢ < Minﬁso{(ﬁi(z), i = 1,2}, and let
g1 >e. If D, is not empty, D; ={z € B: ¢;(z) < —e1} and D, = {z € B: ¢i(z) < —¢} are
relatively compact in D, , (n — 1)-complete and (n — 1)-Runge in B. Moreover, D; CC D,
is clearly (n — 1)-Runge in D!. Therefore H"2(D!, %) — H" 2(D;, %) has dense image for
i =1,2. Also it is easy to see that D, \ D1 U Dy has no compact connected component, which
means that D; U Ds is n-Runge in D,,, or equivalently for every coherent analytic sheaf ¢
on Dy, the restriction homomorphisms

09

H" YDy UDy,.Z7) — H" Y (D, U Dy,.#) and H" ' (D,u D} F)— H" (D} U D,y,.7)

have dense images. Consequently we can show exactly as in Lemma 1 that if D.; =
D N Ds, then we have the density of the image of the restriction maps H”*Q(Dg,l, F) —
H""%(D.,,#), and H" ?(D., %) — H" 2(D.1,.%). This proves that ¢ € T and, clearly
[e, +oo[C T.

Let now ¢; € T, j > 0, such that ; \, ¢, and let % = (U;);cr be a Stein open covering
of D., with a countable base of open subsets of D, . Then the restriction map between
spaces of cocycles Z"_Q(%|DEH1,§'7) — Z"_z(%h)sj,gz) has dense image for j > 0. Let
e >eand j € N, such that & > ;. By [1, p. 246], the restriction map Z" (% |p., F) —
anz(%‘ngjy) has dense image. Since €; € T, then Z”*Q(%]DEJ_,Q) — 2" *(%\|p_,,F)
has also dense image, and hence € € T'.

To prove that T is open in [g,, +00[ it is sufficient to show that if e € T', € > &,, then there is
£, < € < g, such that & € T. But this can be done in the same way as in the proof of Lemma, 1.
We consider a finite covering (U;)1<i<x of 9D, by Stein open sets U; CC D., and compactly
supported functions §; € C5°(U;), 6; > 0, j = 1,..., k, such that Zle 0;(x) > 0 at any point
of dD,. Define D; = {z € D,, : p;j(z) < —e}, where p;(z) = Max(¢1 — Y ] ¢ibi, o2 — > _1 cibh)
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with ¢; > 0 sufficiently small so that v; ; = ¢; — Zjl cif; are still (n — 1)-convex for i = 1,2
and 1 < j < k. By Lemma 1, the restriction map

H""*(Dy, ) — H" %(D.,.%)

has dense image. Since p is proper and D. CC Dy, there exists €, < & < &, such that
D. CC D, CC Dy. Then obviously the restriction

Hn_Q(Da”y) —>Hn_2(D€,y)

has dense range, and hence ¢’ € T, which completes the proof of Lemma 3. >

We have shown that D, is cohomologically (n — 1)-complete. We are now going to prove
that for a good choice of the contants ey and N, introduced in Proposition 1, we can find
a constant £ > g such that D, is cohomologically (n — 1)-complete but not (n — 1)-complete.

In fact, it was shown by Diederich-Fornaess [4] that if 6 > 0 is small enough, then the
topological sphere

n
S5 = {z €C": al+ |0+ +|u?=6 n= —Z|Zi|2+ |Z2|2}
i=3

is not homologous to 0 in D.,. This follows from the fact that the set F = {z € C" : x; =
29 = ... = z, = 0} does not intersect D, since on F

3 3
p(z) = Max <y1 + ny + Nyt, —y1 + ny + Nyi‘) > 0.

So the following real form of degree 2n — 2

n

n n —2n+1
w= <Z$?+Zy@2> (Z(—l)ixidaﬁl A.oodry N Ndxg, ANdya A -+ A dyy
i=1 =2

i=1

n—1
+ Z(—l)"“ymdazl A Ndxg Adys A - Ndyri A+ A dyn>
i=1

is well-defined and d-closed on D.,. Since w does not depend on y;, then by the standard
argument |, 55 W # 0. Therefore Ss is not homologous to 0 in D,.

Let &, be the sheaf of germs of C* ¢-forms on C" and .7, the sheaf of germs of C'*°
d-closed ¢-forms. Then we have an exact sequence of sheaf homomorphisms

O—>§q—>£qi>ﬂq+1—>0.

Since by the de Rham theorem for every p > 1, the cohomology group HP(D.,,C) is
isomorphic to

{weT(Dsy, &) : df =0}

{dw: w €T (Dey,&-1)}

it follows from Stockes formula that H?"~2(D,,,C) does not vanish.
We are going to show that H"(Dg,, Op, ) =0 for all r with 1 <7 <n —3.
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We first assert that we can choose N, g and € > ¢y such that, if with the notations of
Proposition 1 we set

n
1
o1(z) =Tm 21+ ) [ai” |22, w(2) = N|z|* = |12l + <o,
i=3

p(2) = [o1(2)] + o1 (=) + 9(2) — <o

then we obtain
Dez{zEDez m+ M < ¢(z) <60—€},

where m = Min_ 5 W(z), M = Max_.p_ ¥(2) and ¢(2) = o1(2) + 01(2)? + m.

In fact, we can choose € > g sufficiently big and A > 0 small enough so that eg—e < m—M,
m < (14 A). Min,5_1(2) and Ae — (1 + A)egg > 0.

On the other hand, if 6 = Min 2D, |z]|?, then we have

1 o

0<6<]2? < NN for every z € De,.

Therefore by suitable choice of €y, € and N we can also achieve that

1 ) 1 . €E—¢€p
<N||z”4 _ ZHZ||2> - Mmzeﬁso <N\|z||4 _ ZHZH2> < Min < 5 JAe— (14 )\)60> ,

and

1 1 ) €E—¢€g
Mg, (V1" = Z117 ) = (N1 = J1a17 ) < Min (552006 = (14 =0

for every z € D..
Because 9(z) < g9 — € on D, then clearly we obtain

P(z) = 01(2) + 01(2)> + m < 01(2) + 01(2)? + (L + Np(2)) < (L + N)(eo —¢), 2z € D..
Moreover,

d(z)=m— (Y(z) +e—e9) >m+ M, when z € 9D, and o1(z) = 0.

Furthermore, if z € 9D, and 01(z) < 0, then
2 2 4 L 4 12
—01(2) +01(2)” + M = —01(2) + 01(2)" + [ Nll2|" = Zll=l7 ) + M = [ N2|[" = ][] | -
Hence
2 a1 2 a1 2 €0 — ¢
—01(2)+01(2)°+M = —E—l—ao—i—MaxzeEEO N|z||* — ZHZH — | N|z||* = ZHZH < 5

This implies that o1(z) > 01(2)? + M + 52 and, therefore

E—£&0

P(2) > 201(2)* +m + M + >m+ M,

when z € D, and o1(z) < 0, which shows that

D.={z€D:: m+M< ¢(z) <eo—¢}.
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We are now going to show that for every none-positive real numbers «, 5 with m + M <
a < B < eg— ¢, the open sets

Bypg={2€D.: a<¢(z) < b}

are relatively compact in D..
To see this, we consider a sequence (2;);>0 C Ba,g which converges to a point z € D..
Suppose first that o1(z) > 0. Then one has for every sufficiently large integer j

1
p(zj) = o1(z) + o1(2)* + N||z||* — Z”Zj”z < —e

Since
¢(Zj) <€yg—€+ )ﬂb(z]) < (1 + )\)(60 — 6)
and ) )
Nl = g1~ Min,ggs, (MIall = Z0EIP) < A = (14 2o
then

1
ples) = 8(z) + 8 (Il = G517 = m < 20— 2+ Mbley) + e = (1+ V2o
A passage to the limit shows that
p(z)<eg—e+M(2)+Ae—(1+Neg < (1+N)(eg—¢e) +Ae — (1 4+ N)gg = —¢,

because ¥ (z) < g9 — €, which implies that z € D..
If now 01(z) < 0 and z € 0D, then o1(z) > 01(2)? + M + =52, Therefore

Eo — €

plz) < —M + 2

1 . 1
# Nl = 1P = Min,p,, (NIl = 301 +m = o

In order to have the inequality

_M+€0—€

1 . 1
# Nl = el = Min g, (NI = 12+ e < e

it suffices to have m — M — g9 < —¢, since

E—£&0
2

1 . 1
NIl = 117 = Min, g, (el - 51412 ) <

As this condition is satisfied, we conclude that with such a choice of gy, N and ¢ the limit
z € D,, and hence the open set

Byg={z€D.: a<¢(z) < B}

is relatively compact in D, for all real numbers «, 8, with m < a < 8 < gy — €.

Now since ¢ is in addition 3-convex, then a similar proof of theorem 15 of [1] shows
that, if Q is the sheaf of germs of holomorphic i-forms on C*, i > 0 (Q° = Ocn), and
B.={z€ D.: ¢(z) < c} for ¢ < gg — ¢, then the map

H"(D.,Q) — H"(D, \ B., Q")
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is injective for every 7 < n—2 and ¢ < g —e. Then obviously H"(D., Q") =0for1 <r <n—3
and i > 0. In fact, let co = Max_5_¢(z). Then there exists 21 € 9D, such that ¢(z1) = co.
Since cg = ¢(21) = o1(21) + 01(21)® + m < p(z1) + €0 < €0 — &, then B, = D, and hence
H"(D;,Q) =0for1<r<n-3.

We now consider the resolution of the constant sheaf C on D,

0oCoobatd. ... 5%gn .
If we set Z7 = Im (Qj_l “ Qj) for 1 < j < n—1, then we get short exact sequences

05C—=0—=27' =0

02" 2525271 50
0= 2"t 5 0n—o.

Since, by Proposition 1, D, is cohomologically (n — 1)-complete, then H"(D., Q%) = 0 for all
r>n—1and i > 0. So we obtain the isomorphisms

H" Y (D.,z" ") =...2 H**D.,2") = H*"*(D,,C)
and the exact sequence
<o = H" (D, Q") - H" YD, Z" ') - H" }(D.,Q" 1) =0.

We deduce that the map
H"%(D.,Q") 5 H* %(D,,C)

is surjective. The map ¢ is defined as follows: If a differential form w € C%, _5(D.) satisfies
the equation 0w = 0, then w is also d-closed and therefore defines a cohomology class in
H?"2(D,,C).

Moreover, since, by [6], every d-closed differential form w € C5, _5(D:) is cohomologous to
a O-closed (n,n — 2) differential form w’ € C°,_,(D.), it follows that the map

n,n—2
H"2(D., Q") % H*?(D,,C)

is bijective.

Now, if we suppose that D, is (n — 1)-complete, then there exists a C'* strictly (n — 1)-
convex function ¢ : D — R, such that D.. = {z € D, : ¥(z) < ¢} is relatively compact
in D, for every c € R.

Notice that for the given e, if § > 0 is small enough, the topological sphere

Ss={z€C": af+ |2+ +|z|* =4, 01(2) =0} C D..

Since 1) is exhaustive on D, there exists ¢’ > 0, such that Ss is not homologuous to 0
in D, . Let ¢ > ¢/. Then D, . and D, » are (n — 1)-complete and, similarly H?(D,, ) =
HP(Dee,Q) = 0 for 1 < p < n—3 and i > 0. Also the maps H" ?(D.., Q") —
H*2(D,.,C) and H"_Q(D&C/,Q") — HZ"_Q(D&C/,C) are bijective. Moreover, since the
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levi form of 1) has at least 2 strictly positive eingenvalues, then by using Morse theory (see
for instance [7]) we find that

H**(D..,C)= H* %D, .,C).
It follows from the commutative diagram of continuous maps

H""*(D.., Q") — H*2(D. .C)

1 \
H" 2(D, o, 0") — H>2(D, s, C)

that the restriction homomorphism
H" (D¢, ") — H" *(D.r, Q")

is bijective. Since in addition D, . is relatively compact in D, ., the function 3 being
exhaustive on D,, then, according to theorem 11 of [1], one obtains

dimg H" (D, Q") < o0.

Since the sheaf Q" is isomorphic to @p_, then we have also dim¢ H" (D, s, Op.) < oo.
Furthermore, since D, is cohomologically (n — 1)-complete and H"(D.,0p.) = 0 for
1 <r < n—3, it follows from Theorem 1 of [8] that D, .~ is Stein, which is in contradiction
with the fact that HQ"_Z(D&C/,(C) # 0, since Ss C D, s is not homologous to 0 in D, .. We
conclude that D, is cohomologically (n — 1)-complete but not (n — 1)-complete.
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E-mail: ashaw2912@gmail.com

Annoranus. B 1962 r. Aunpeortn u I'payspr nokasasiu, 9To Jiob0€e ¢-II0JTHOE KOMILJIEKCHOE IIPOCTPaH-
c¢TBO X KOrOMOJIOTMYECKHU @-TIOJIHO, T. €. JiJis JIIOOOr0o KON€PEeHTHOrO aHAJUTUYECKOro IydKa % Ha X TpyNna
koromosiornu HP (X, %) ucueszaer npu p > ¢. C Tex mop BOIPOC O TOM, BEPHO Jin OOPATHOE yTBEDKJICHUE,
SIBJISIETCS [IPEJIMETOM OOIIMPHBIX MCCJIEIOBAHUI, B X0/I€ KOTOPBIX IOSIBUJINCH U JIPYIHUe CIenuajIbHbIe IPeIo-
siokenus. /o cux mop HEM3BECTHO, SABJISIOTCS JIU 9TU JIBA YTBEPXK/IEHUs SKBUBAJEHTHBI. VCo/ib3yst TecToBbIe
KJIACCHI KOTOMOJIOTHH OBIIO MOKa3aHo, 9To ecn X — mMHOroobpasue Creiina, a D C X — OTKPBITOE MHOXKECTBO
¢ C? rpanuueit, npuaem HP (D, Op) = 0 aja Bcex p > ¢, T0 D aBnsercs g-noanbiv. ess macrosmieil cra-
TbU — JIATh KOHTPIpUMED K runore3de Anjapeortu u ['payspra 1962 r., mokasblBaiouii, 9T0 KOrOMOJIOTHIECKH
@-TI0JTHOE ITPOCTPAHCTBO He 00s3aTEIbHO SIBJISIETCS ¢-TOJIHBIM. TOYHee MbI ITOKa3aJiy, 4TO JyUisd Joboro n = 3
CylIecTByeT OTKpbIToe MHOXKecTBO 2 C C™ Takoe, uro mis Beex Z € coh(S), rpynner koromosoruit H? (Q, .F)
MCYUE3AI0T JIsd BCeX p > n — 1, vo §2 me asugerca (n — 1)-noaHbIM.
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